Linking high-frequency lacustrine sequences to orbitally-induced cyclicity (Lower Cretaceous, Iberian Basin)

Main Article Content

Natalia Illueca
Carlos L. Liesa
Ana R. Soria

The lacustrine El Castellar Formation in the Castillo de Aliaga section (Early Cretaceous Galve sub-basin, eastern Spain) features two carbonate successions of marl and limestone, separated by a mudstone and marl interval. Sequence analysis revealed small-scale (44 elementary sequences), medium-scale (ten complete and two incomplete parasequences), and large-scale (three sets of parasequences, one incomplete), high-frequency lacustrine sequences, with an average thickness of 2.9, 12.4 and 54m, respectively. These sequences start with a sudden facies change (deepening) and exhibit a shallowing-upward trend with features of subaerial exposure (bioturbation, oxidation, or brecciation) at the top, indicating phases of climate-modulated lake expansion and retraction. The temporal framework of the lacustrine sequences is further characterized by the correlation of these sequences with sedimentary-cycle periodicities of 3.3, 13.2 and 57.3m, attributed, respectively, to the long precession cycle (22.4kyr) and the short (95kyr) and long (405kyr) eccentricity cycles of the Earth’s orbit. The hierarchical stacking of sequences aligns with orbitally driven cyclicity, with thickness variations interpreted as tectonic subsidence effects (accommodation) resulting from normal fault slip in a rift system. The three sets of parasequences (SPS-1 to SPS-3) align with stages of lake system evolution. SPS-1 represents deposition in a lowenergy shallow carbonate lake. SPS-2 indicates a significant lake expansion and deepening, linked with clastic input and a mixed lake system, and correlates with a major increase in accommodation, over ~200kyr, involving fault-induced local tilting. SPS-3 represents deposition in a high-energy carbonate lake. The parasequences identified show variations in cyclic thickness tied to a >700kyr tectonic cycle. The elementary sequences, mainly corresponding to marl-limestone bundles, exhibit thickness changes probably due to shorter-term tectonic pulses. Accelerated tectonic activity resulted in increased accommodation in shorter (40-50kyr) periods, followed by longer (>100kyr) periods of progressive deceleration.

Paraules clau
Lacustrine facies, Sequence stratigraphy, Climatic forcing, Milankovitch cycles, Tectonic forcing

Article Details

Com citar
Illueca, Natalia et al. “Linking high-frequency lacustrine sequences to orbitally-induced cyclicity (Lower Cretaceous, Iberian Basin)”. Geologica Acta, vol.VOL 22, pp. 1-26, https://raco.cat/index.php/GeologicaActa/article/view/433390.
Referències

Alonso-Zarza, A.M., Wright, V.P., 2010. Palustrine carbonates. In: Alonso-Zarza, A.M., Tanner, L.H. (eds.). Carbonates in Continental Settings: Geochemistry, Diagenesis and Applications. Developments in Sedimentology, 61, 103-132. DOI: https://doi.org/10.1016/S0070-4571(09)06102-0

Alonso-Zarza, A.M., Dorado-Valiño, M., Valdeolmillos-Rodríguez, A., Ruiz-Zapata, B., 2006. A recent analogue for palustrine carbonate environments: The Quaternary deposits of Las Tablas de Daimiel wetlands, Ciudad Real, Spain. Geological Society of America, 416 (Special Paper), 153-168. DOI: https://doi.org/10.1130/2006.2416(10)

Angulo, A., Muñoz, A., 2013. Análisis de la periodicidad climática de baja frecuencia registrada en los sedimentos lacustres del Grupo Enciso (Cretácico inferior de la Cuenca de Cameros, La Rioja). Aplicaciones a la correlación y datación de la serie. Boletín Geológico y Minero de España, 124(2), 203-219.

Anselmetti, F.S., Ariztegui, D., Hodell, D.A., Hillesheim, M.B., Brenner, M., Gilli, A., McKenzie, J.A., Mueller, A.D., 2006. Late Quaternary climate-induced lake level variations in Lake Petén Itzá, Guatemala, inferred from seismic stratigraphic analysis. Palaeogeography, Palaeoclimatology, Palaeoecology, 230(1-2), 52-69. DOI: https://doi.org/10.1016/j.palaeo.2005.06.037

Argylian, E.P., Forman, S.T., 2003. Lake level response to seasonal climatic variability in the Lake Michigan-Huron System from 1920 to 1995. Journal of Great Lakes Research, 29(3), 488-500. DOI: https://doi.org/10.1016/S0380-1330(03)70453-5

Armenteros, I., Huerta, P., 2006. The role of clastic sediment influx in the formation of calcrete and palustrine facies: a response to paleographic and climatic conditions in the southeastern Tertiary Duero basin (northern Spain). In: Alonso-Zarza, A.M., Tanner, L.H. (eds.). Paleoenvironmental Record and Applications of Calcretes and Palustrine Carbonates. Geological Society of America, 416 (Special Paper), 119-132. DOI: https://doi.org/10.1130/2006.2416(08)

Aurell, M., Bádenas, B., Gasca, J.M., Canudo, J.I., Liesa, C., Soria, A.R., Moreno-Azanza, M., Najes, L., 2016. Stratigraphy and evolution of the Galve sub-basin (Spain) in the middle Tithonian-early Barremian: implications for the setting and age of some dinosaur fossil sites. Cretaceous Research, 65, 138-162. DOI: https://doi.org/10.1016/j.cretres.2016.04.020

Azennoud, K., Baali, A., Mesquita-Joanes, F., El Asmi, H., Ait-Brahim, Y., 2023. Disentangling orbital, sub-orbital, and tectonic signatures from lacustrine sediments developed upon a half-graben (Lake Ifrah Basin, Northwest Africa): Insights into lowest-rank T-R sequences in low accommodation basins. Sedimentary Geology, 449, 106376. DOI: https://doi.org/10.1016/j.sedgeo.2023.106376

Aziz, H.A., Hilgen, F., Krijgsman, W., Sanz, E., Calvo, J.P., 2000. Astronomical forcing of sedimentary cycles in the middle to late Miocene continental Calatayud Basin (NE Spain). Earth and Planetary Science Letters, 177(1-2), 9-22. DOI: https://doi.org/10.1016/S0012-821X(00)00035-2

Barron, E.J., Washington, W.M., 1984. The role of geographic variables in explaining paleoclimates: Results from Cretaceous climate model sensitivity studies. Journal of Geophysical Research: Atmospheres, 89(D1), 1267-1279. DOI: https://doi.org/10.1029/JD089iDOIp01267

Berger, A., Loutre, M.F., McIntyre, A., 1997. Intertropical latitudes and precessional and half-precessional cycles/Response. Science, 278(5342), 1476-1478. Last accessed: 12 September 2024. Website: https://www.jstor.org/stable/2894768

Blakey, R., 2008. Gondwana palaeogeography from assembly to breakup – a 500m.y. odyssey. In: Fielding, C.R., Frank, T.D., Isbell, J.L. (eds.). Resolving the Late Paleozoic Ice Age in Time and Space. Geological Society of America, 441 (Special Paper), 1-28. DOI: https://doi.org/10.1130/2008.2441(01)

Bohacs, K.M., Carroll, A.R., Neal, J.E., Mankiewicz, P.J., 2000. Lake-basin type, source potential, and hydrocarbon character: an integrated sequence-stratigraphic geochemical framework. In: Gierlowski-Kordesch, E.H., Kelts, K.R. (eds.). Lake Basins through Space and Time. American Association of Petroleum Geologists Studies in Geology, 46, 3-33. DOI: https://doi.org/10.1306/St46706C1

Bosence, D.W.J., Procter E., Aurell, M., Bel Kahla, A., Boudagher-Fadel, M., Casaglia, F., Cirilli, S., Mehdie, M., Nieto, L., Rey, J., Scherreiks, R., Soussi, M., Waltham, D., 2009. A tectonic signal in high-frequency, peritidal carbonate cycles? A regional analysis of Liassic platforms from western Tethys. Journal of Sedimentary Research, 79, 389-415. DOI: https://doi.org/10.2110/jsr.2009.038

Boulila, S., Galburn, B., Hinnov, L.A., Collin, P.Y., Ogg, J.G., Fortwengler, D., Marchand, D., 2010. Milankovitch and sub‐Milankovitch forcing of the Oxfordian (Late Jurassic) Terres Noires Formation (SE France) and global implications. Basin Research, 22, 717-732. DOI: https://doi.org/10.1111/j.1365-2117.2009.00429.x

Boulila, S., Galbrun, B., Miller, K.G., Pekar, S.F., Browning, J.V., Laskar, J., Wright, J.D., 2011. On the origin of Cenozoic and Mesozoic “third-order” eustatic sequences. Earth-Science Reviews, 109, 94-112. DOI: https://doi.org/10.1016/j.earscirev.2011.09.003

Burgener, L., Hyland, E., Reich, B.J., Scotese, C., 2023. Cretaceous climates: Mapping plaeo-Köppen climatic zones using a Bayesian statistical analysis of lithologic, paleontologic, and geochemical proxies. Palaeogeography, Palaeoclimatology, Palaeoecology, 613, 11373. DOI: https://doi.org/10.1016/j.palaeo.2022.111373

Buscalioni, A.D., Fregenal Martínez, M.A., 2010. A holistic approach to the palaeoecology of Las Hoyas Konservat-Lagerstätte (La Huérguina Formation, Lower Cretaceous, Iberian Ranges, Spain). Journal of Iberian Geology, 36(2), 297-326. DOI: 10.5209/rev_JIGE.2010.v36.n2.13

Camuera, J., Jiménez-Moreno, G., Ramos-Román, M.J., García-Alix, A., Toney, J.L., Anderson, R.S., Jiménez-Espejo, F., Kaufman, D., Bright, J., Webster, C., Yanes, Y., Carrión, J.S., Ohkouchi, N., Suga, H., Yamame, M., Yokoyama, Y., Martínez-Ruiz, F., 2018. Orbital-scale environmental and climatic changes recorded in a new∼200,000-year-long multiproxy sedimentary record from Padul, southern Iberian Peninsula. Quaternary Science Reviews, 198, 91-114. DOI: https://doi.org/10.1016/j.quascirev.2018.08.014

Capote, R., Muñoz, J.A., Simón, J.L., Liesa, C.L., Arlegui, L.E., 2002. Alpine Tectonics I: The Alpine System North of the Betic Cordillera. In: Gibbons, W., Moreno, T. (eds.). The Geology of Spain. London, The Geological Society, 367-400.

Carroll, A.R., Bohacs, K.M., 1999. Stratigraphic classification of ancient lakes: Balancing tectonic and climatic controls. Geology, 27(2), 99-102. DOI: https://doi.org/10.1130/0091-7613(1999)027<0099:SCOALB>2.3.CO;2

Casas, A.M., Muñoz, A., Tella, A., Liesa, C.L., 2024. Magnetic surveying as a proxy for defining cyclicity in thick sedimentary fillings: Application to the Cretaceous Cameros Basin (N Spain). Cretaceous Research, 154, 105736. DOI: https://doi.org/10.1016/j.cretres.2023.105736

Castanera, D., Bádenas, B., Aurell, M., Canudo, J.I., Gasca, J.M., 2022. New ornithopod tracks from the Lower Cretaceous El Castellar Formation (Spain): Implications for track preservation and evolution of ornithopod footprints. Palaeogeography, Palaeoclimatology, Palaeoecology, 591, 110866. DOI: https://doi.org/10.1016/j.palaeo.2022.110866

Catuneanu, O., 2022. Principles of sequence stratigraphy. Elsevier Science, 2nd Edition, 486pp. DOI: https://doi.org/10.1016/C2009-0-19363-5

Changsong, L., Eriksson, K., Sitian, L., Yongxian, W., Jianye, R., Yanmei, Z., 2001. Sequence architecture, depositional systems, and controls on development of lacustrine basin fills in part of the Erlian Basin, northeast China. American Association of Petroleum Geologists Bulletin, 85, 2017-2043. DOI: https://doi.org/10.1306/8626D0DB-173B-11D7-8645000102C1865D

Christie-Blick, N., 1991. Onlap, offlap, and the origin of unconformity-bounded depositional sequences. Marine Geology, 97, 35-56. DOI: https://doi.org/10.1016/0025-3227(91)90018-Y

Coianiz, L., Bialik, O.M., Ben-Avraham, Z., Lazar, M., 2019. Late Quaternary lacustrine deposits of the Dead Sea basin: high resolution sequence stratigraphy from downhole logging data. Quaternary Science Reviews, 210, 175-189. DOI: https://doi.org/10.1016/j.quascirev.2019.03.009

de Wet, C.B., Godfrey, L., de Wet, A.P., 2015. Sedimentology and stable isotopes from a lacustrine-to-palustrine limestone deposited in an arid setting, climatic and tectonic factors: Miocene–Pliocene Opache Formation, Atacama Desert, Chile. Palaeogeography, Palaeoclimatology, Palaeoecology, 426, 46-67. DOI: https://doi.org/10.1016/j.palaeo.2015.02.039

Deino, A.L., Kingston, J.D., Glen, J.M., Edgar, R.K., Hill, A., 2006. Precessional forcing of lacustrine sedimentation in the late Cenozoic Chemeron Basin, Central Kenya Rift, and calibration of the Gauss/Matuyama boundary. Earth and Planetary Science Letters, 247(1-2), 41-60. DOI: https://doi.org/10.1016/j.epsl.2006.04.009

Dercourt, J., Zonensshain, L.P., Ricou, L.E., Kazmin, V.G., Le Pichon, X., Knipper, A.L., Grandjacquet, C., Sbortshikov, I.M., Geyssant, J., Leprevier, C., Pechersky, D.H., Boulin, J., Sibuet, J.C., Savostin, L.A., Sorokhtin, O., Westphal, M., Bazhenov, M.L., Lauer, J.P., Biju-Duval, B., 1986. Geological evolution of the Tethys belt from the Atlantic to the Pamir since the Lias. Tectonophysics, 123, 241-315. DOI: https://doi.org/10.1016/0040-1951(86)90199-X

Emery, D., Myers, K. (eds.), 2009. Sequence stratigraphy. New Jersey, John Wiley & Sons, 309pp.

Ezquerro, L., 2017. El sector norte de la cuenca neógena de Teruel: tectónica, clima y sedimentación. PhD Thesis. Zaragoza, Universidad de Zaragoza, 494pp. Last accessed: 21 October 2024. Website: http://zaguan.unizar.es/record/77098#

Ezquerro, L., Moretti, M., Liesa, C.L., Luzón, A., Simón, J.L., 2015. Seismites from a well core of palustrine deposits as a tool for reconstructing the palaeoseismic history of a fault. Tectonophysics, 655, 191-205. DOI: http://dx.doi.org/10.1016/j.tecto.2015.05.025

Ezquerro, L., Moretti, M., Liesa, C.L., Luzón, A., Pueyo, E.L., Simón, J.L., 2016. Controls on space–time distribution of soft-sediment deformation structures: Applying palaeomagnetic dating to approach the apparent recurrence period of paleoseisms at the Concud Fault (eastern Spain). Sedimentary Geology, 344, 91-111. DOI: http://dx.doi.org/10.1016/j.sedgeo.2016.06.007

Ezquerro, L., Simón, J.L., Luzón, A., Liesa, C.L., 2020. Segmentation and increasing activity in the Neogene-Quaternary Teruel Basin rift (Spain) revealed by morphotectonic approach. Journal of Structural Geology, 135, 104043. DOI: https://doi.org/10.1016/j.jsg.2020.104043

Ezquerro, L., Muñoz, A., Liesa, C.L., Simón, J.L., Luzón, A., 2022a. Late Neogene to early Quaternary climate evolution in southwestern Europe from a continental perspective. Global and Planetary Change, 211, 103788. DOI: https://doi.org/10.1016/j.gloplacha.2022.103788Ezquerro, L., Luzón, A., Simón, J.L., Liesa, C.L., 2022b. A review of the European Neogene Mammal zones from integration of litho-, bio- and magnetostratigraphy in the Teruel Basin. Earth-Science Reviews, 234, 104223. DOI: https://doi.org/10.1016/j.earscirev.2022.104223

Fölmi, K.B., 2012. Early Cretaceous life, climate and anoxia. Cretaceous Research, 35, 230-257. DOI: https://doi.org/10.1016/j.cretres.2011.12.005

Fregenal-Martínez, M.A., Meléndez, N., 2000. The lacustrine fossiliferous deposits of the Las Hoyas Subbasin (Lower Cretaceous, Serranía de Cuenca, Iberian Ranges, Spain). In: Gierlowski-Kordesch, E.H., Kelts, K.R. (eds.). Lake Basins through Space and Time. American Association of Petroleum Geologists Studies in Geology, 46, 303-313. DOI: https://doi.org/10.1306/St46706C25

Friedmann, S.J., Burbank, D.W., 1995. Rift Basins and supradetachment basins: intracontinental extensional end-members. Basin Research, 7(2), 109-127. DOI: https://doi.org/10.1111/j.1365-2117.1995.tb00099.x

García-Penas, A., Aurell, M., 2017. Tectono-sedimentary evolution around the Jurassic-Cretaaceous transition in Galve (Aguilar del Alfambra Formation, Teruel, Iberian Chain). Revista de la Sociedad Geológica de España, 30(2), 79-90.

Gasca, J.M., Moreno-Azanza, M., Canudo, J.I., 2009. The dinosaur assemblage of the El Castellar Formation (upper Hauterivian-lowemost Barremian, Teruel, Spain). In: Godefroit, P., Lambert, O. (eds.). Tribute to Charles Darwin to Bernissart Iguanodons: New perspectives on Vertebrate Evolution and Early Cretaceous Ecosystems. Brussels (Belgium), Programme, Abstracts and Field Trips Guidebook, 43pp.

Gierlowski-Kordesch, E.H., Gómez-Fernández, J.C., Meléndez, N., 1991. Carbonate and coal deposition in an alluvial–lacustrine setting: Lower Cretaceous (Weald) in the Iberian Range (east–central Spain). In: Anadón, P., Cabrera, Ll., Kelts, K.R. (eds.). Lacustrine Facies Analysis. International Association of Sedimentologists, 13 (Special Publication), 109-125. DOI: https://doi.org/10.1002/9781444303919.ch6

Gomes, J.P.B., Bunevich, R.B., Tonietto, S.N., Alves, D.B., Santos, J.F., Whitaker, F.F., 2020. Climatic signals in lacustrine deposits of the Upper Yacoraite Formation, Western Argentina: evidence from clay minerals, analcime, dolomite and fibrous calcite. Sedimentology, 67(5), 2282-2309. DOI: https://doi.org/10.1111/sed.12700

Gómez-Fernández, J.C., Meléndez, N., 1994. Climatic control on Lower Cretaceous sedimentation in a playa–lake system of a tectonically active basin, Huérteles alloformation, Cameros Basin, (north–central Spain). Journal of Paleolimnology, 11, 91-107. DOI: https://doi.org/10.1007/BF00683272

Gong, Z., Langereis, C.G., Mullender, T.A.T., 2008. The rotation of Iberia during the Aptian and the opening of the Bay of Biscay. Earth and Planetary Science Letters, 273, 80-93. DOI: https://doi.org/10.1016/j.epsl.2008.06.016

Guiter, F., Andrieu-Ponel, V., de Beaulieu, J.L., Cheddadi, R., Calvez, M., Ponel, P., Reille, M., Keller, T., Goeury, C., 2003. The last climatic cycles in Western Europe: a comparison between long continuous lacustrine sequences from France and other terrestrial records. Quaternary International, 111(1), 59-74. DOI: https://doi.org/10.1016/S1040-6182(03)00015-6

Hammer, Ø., Harper, D.A.T., Ryan, P.D., 2001. PAST: Paleontological statistics software package for education and data analysis. Paleontologia Electronica, 4(1), 1-9. Last accessed: 21 October 2024. Website: http://palaeoelectronica.org

Hasegawa H., Katsuta, N., Muraki, Y., Heimhofer, U., Ichinnorov, N., Asahi, H., Ando, H., Yamamoto, K., Murayama, M., Ohta, T., Yamamoto, M., Ikeda, M., Ishikawa, K., Kuma, R., Hasegawa, T., Hasebe, N., Nishimoto, S., Yamaguchi, K., Abe, F., Tada, R., Nakagawa, T., 2022. Decadal–centennial-scale solar-linked climate variations and millennial-scale internal oscillations during the Early Cretaceous. Scientific Reports, 12, 21894. DOI: https://doi.org/10.1038/s41598-022-25815-w

Hay, W.W., Floegel, S., 2012. New thoughts about the Cretaceous climate and oceans. Earth-Science Reviews, 115(4), 262-272. DOI: https://doi.org/10.1016/j.earscirev.2012.09.008

Haywood, A.M., Valdes, P.J., Markwick, P.J., 2004. Cretaceous (Wealden) climates: a modelling perspective. Cretaceous Research, 25(3), 303-311. DOI: https://doi.org/10.1016/j.cretres.2004.01.005

Hoorn, C., Kukla, T., Bogotá‐Angel, G., van Soelen, E., González‐Arango, C., Wesselingh, F.P., Vonhof, H., Val, P., Morcote‐Rios, G., Roddaz, M., Luiz Dantas, E., Ventura Santos, R., Sinninghe Damsté, J.S., Kim, J.-H., Morley, R.J., 2022. Cyclic sediment deposition by orbital forcing in the Miocene wetland of western Amazonia? New insights from a multidisciplinary approach. Global and Planetary Change, 210, 103717. DOI: https://doi.org/10.1016/j.gloplacha.2021.103717

Huang, C., Ogg, J.G., Kemp, D.B., 2020. Cyclostratigraphy and astrochronology: Case studies from China. Palaeogeography, Palaeoclimatology, Palaeoecology, 560, 110017. DOI: https://doi.org/10.1016/j.palaeo.2020.110017

Ielpi, A., 2012. Orbitally-driven climate forcing in late Pliocene lacustrine siderite-rich clastic rhythms (Upper Valdarno Basin, Northern Apennines, Italy). Palaeogeography, Palaeoclimatology, Palaeoecology, 331, 119-135. DOI: https://doi.org/10.1016/j.palaeo.2012.03.004

Illueca, N., Liesa, C.L., Soria, A.R., 2023. Ciclicidad climática en sedimentos lacustres de la Formación El Castellar (Cretácico inferior, Cordillera Ibérica). Geogaceta, 74, 3-6. DOI: https://doi.org/10.55407/geogaceta98398

Jervey, M.T., 1988. Quantitative geological modelling of siliciclastic rock sequences and their seismic expression. In: Wilgus, C.K., Hastings, B.S., Kendall, C.G.St.C., Posamentier, H.W., Ross, C.A., Van Wagoner, J.C. (eds.). Sea Level Changes – An Integrated Approach. Society of Economic Paleontologists and Mineralogists (SEPM), 42 (Special Publication), 47-69. DOI: https://doi.org/10.2110/pec.88.01.0047

Jin, Z., Yu, J., Zhang, F., Qiang, X., 2020. Glacial-interglacial variation in catchment weathering and erosion paces the Indian summer monsoon during the Pleistocene. Quaternary Science Reviews, 248, 106619. DOI: https://doi.org/10.1016/j.quascirev.2020.106619

Juhász, E., Kovács, L.Ó., Müller, P., Tóth-Makk, A., Phillips, L., Lantos, M., 1997. Climatically driven sedimentary cycles in the Late Miocene sediments of the Pannonian Basin, Hungary. Tectonophysics, 282(1-4), 257-276. DOI: https://doi.org/10.1016/S0040-1951(97)00222-9

Keighley, D., Flint, S., Howell, J., Moscariello, A., 2003. Sequence stratigraphy in lacustrine basins: A model for part of the Green River Formation (Eocene), Southwest Uinta Basin, Utah, U.S.A. Journal of Sedimentary Research, 73(6), 987-1006. DOI: https://doi.org/10.1306/050103730987

King, M.T., Welford, J.K., Cadenas, P., Tugend, J., 2021. Investigating the plate kinematics of the Bay of Biscay using deformable plate tectonic models. Tectonics, 40, e2020TC006467. DOI: https://doi.org/10.1029/2020TC006467

Kovács, Á., Balázs, A., Špelić, M., Sztanó, O., 2021. Forced or normal regression signals in a lacustrine basin? Insights from 3D stratigraphic forward modeling in the SW Pannonian Basin. Global and Planetary Change, 196, 103376. DOI: https://doi.org/10.1016/j.gloplacha.2020.103376

Kuzucuoğlu, C., Karabiyikoğlu, M., Fontugne, M., Pastre, J.F., Ercan, T., 1997. Environmental changes in Holocene lacustrine sequences from Karapinar in the Konya plain (Turkey). In: Dalfes, H.N., Kukla, G., Weiss, H. (eds.). Third Millennium BC Climate Change and Old World Collapse. Berlin, Heidelberg, Springer, NATO ASI Series, 49, 451-463. DOI: https://doi.org/10.1007/978-3-642-60616-8_18

Laita, E., Bauluz, B., Aurell, M., Bádenas, B., Canudo, J.I., Yuste, A., 2020. A change from warm/humid to cold/dry climate conditions recorded in lower Barremian clay-dominated continental successions from the SE Iberian Chain (NE Spain). Sedimentary Geology, 403, 105673. DOI: https://doi.org/10.1016/j.sedgeo.2020.105673

Laita, E., Bauluz, B., Aurell, M., Bádenas, B., Yuste, A., 2022. Weathering events recorded in uppermost Hauterivian–lower Barremian clay-dominated continental successions from the NW Iberian Range: climatic vs. tectonic controls. Journal of Iberian Geology, 48, 45-63. DOI: https://doi.org/10.1007/s41513-021-00181-0

Leeder, M.R., 1991. Denudation, vertical crustal movements and sedimentary basin fill. Geologische Rundschau, 80, 441-458. DOI: 10.1007/bf01829376

Lepre, C.J., Quinn, R.L., 2022. Aridification and orbital forcing of eastern African climate during the Plio-Pleistocene. Global and Planetary Change, 208, 103684. DOI: https://doi.org/10.1016/j.gloplacha.2021.103684

Li, M., Kump, L.R., Hinnov, L.A., Mann, M.E., 2018. Tracking variable sedimentation rates and astronomical forcing in Phanerozoic paleoclimate proxy series with evolutionary correlation coefficients and hypothesis testing. Earth and Planetary Science Letters, 501, 165-179. DOI: https://doi.org/10.1016/j.epsl.2018.08.041

Liesa, C.L., Casas, A.M., Soria, A.R., Simón, J.L., Meléndez, A., 2004. Estructura extensional cretácica e inversión terciaria en la región Aliaga-Montalbán. In: Colombo, F., Liesa, C.L., Meléndez, G., Pocoví, A., Sancho C., Soria, A.R. (eds.). Itinerarios Geológicos por Aragón. Zaragoza, Sociedad Geológica de España, 151-180.

Liesa, C.L., Soria, A.R., Meléndez, N., Meléndez, A., 2006. Extensional fault control on the sedimentation patterns in a continental rift basin: El Castellar Formation, Galve subbasin, Spain. Journal of the Geological Society, 163(3), 487-498. DOI: https://doi.org/10.1144/0016-764904-169

Liesa, C.L., Casas, A.M., Simón, J.L., 2018. La tectónica de inversión en una región intraplaca: la Cordillera Ibérica. Revista de la Sociedad Geológica de España, 31(2), 23-50.

Liesa, C.L., Soria, A.R., Casas, A., Aurell, M., Meléndez, N., Bádenas, B., Fregenal-Martínez, M., Navarrete, R., Peropadre, C., Rodríguez-López, J.P., 2019. The South-Iberian, Central Iberian and Maestrazgo Basins. In: Oliveira, J.T., Quesada, C. (eds.). The Geology of Iberia: a Geodynamic Approach, Vol. 3 (The Alpine Cycle), (Chapter 5) (Late Jurassic-Early Cretaceous rifting). Springer Nature, Regional Geology Reviews, 214-228. DOI: https://doi.org/10.1007/978-3-030-11295-0_5

Liesa, C.L., Casas, A.M., Aurell, M., Simón, J.L., Soria, A.R., 2023. Salt tectonics vs. inversion tectonics: The anticlines of the western Maestrazgo revisited (eastern Iberian Chain, Spain). Basin Research, 35, 295-335. DOI: https://doi.org/10.1111/bre.12713

Luzón, A., González, A., Muñoz, A., Sánchez-Valverde, B., 2002. Upper Oligocene-Lower Miocene shallowing-upward lacustrine sequences controlled by periodic and non-periodic processes (Ebro Basin, northeastern Spain). Journal of Paleolimnology, 28, 441-456. DOI: https://doi.org/10.1023/A:1021675227754

Martín-Chivelet, J., López-Gómez, J., Aguado, R., Arias, C., Arribas, J., Arribas, M.E., Aurell, M., Bádenas, B., Benito, M.I., Bover-Arnal, T., Casas-Sainz, A., Castro, J.M., Coruña, F., de Gea, G.A., Fornós, J.J., Fregenal-Martínez, M., García-Senz, J., Garófano, D., Gelabert, B., Giménez, J., González-Acebrón, J., Guimerà, J., Liesa, C.L., Mas, R., Meléndez, N., Molina, J.M., Muñoz, J.A., Navarrete, R., Nebot, M., Nieto, L.M., Omodeo-Salé, S., Pedrera, A., Peropadre, C., Quijada, I.E., Quijano, M.L., Reolid, M., Robador, A., Rodríguez-López, J.P., Rodríguez-Perea, A., Rosales, I., Ruiz-Ortiz, P.A., Sàbat, F. Salas, R., Soria, A.R., Suárez-González, P., Vilas, L., 2019. The Late Jurassic-Early Cretaceous Rifting. In: Quesada, C., Oliveira, J.T. (eds.). The Geology of Iberia: A Geodynamic Approach, The Alpine Cycle. Springer Nature, Regional Geology Reviews, vol. 5, 169-249. DOI: https://doi.org/10.1007/978-3-030-11295-0_5

Meléndez, M.N., Liesa, C.L., Soria, A.R., Meléndez, A., 2009. Lacustrine system evolution during early rifting: El Castellar Formation (Galve sub-basin, Central Iberian Chain). Sedimentary Geology, 222, 64-77. DOI: https://doi.org/10.1016/j.sedgeo.2009.05.019

Meléndez, M.N., Soria, A.R., Meléndez, A., Aurell, M., Liesa, C.L., 2000. Early Cretaceous lacustrine systems of the Aguilón Subbasin (Central Iberian range, NE Spain): tectonic evolution. In: Gierlowski-Kordesch, E.H., Kelts, K.R. (eds.). Lake Basins through Space and Time. American Association of Petroleum Geologists Studies in Geology, 46, 285-294. DOI: https://doi.org/10.1306/St46706C23

Meyers, S.R., 2019. Cyclostratigraphy and the problem of astrochronologic testing. Earth-Science Reviews, 190, 190-223. DOI: https://doi.org/10.1016/j.earscirev.2018.11.015

Milankovitch, M.M., 1941. Canon of insolation and the iceage problem. Koniglich Serbische Akademice, 484pp.

Ming, G., Zhou, W., Wang, H., Cheng, P., Shu, P., Xian, F., Fu, Y., 2020. Moisture variations in Lacustrine−eolian sequence from the Hunshandake sandy land associated with the East Asian Summer Monsoon changes since the late Pleistocene. Quaternary Science Reviews, 233, 106210. DOI: https://doi.org/10.1016/j.quascirev.2020.106210

Mitchum, R.M., Van Wagoner, J.C., 1991. High-frequency sequences and their stacking patterns: sequence-stratigraphic evidence of high-frequency eustatic cycles. Sedimentary Geology, 70, 131-160. DOI: https://doi.org/10.1016/0037-0738(91)90139-5

Moreau, M.G., Berthou, J.Y., Malod, J.A., 1997. New paleomagnetic Mesozoic data from the Algarve (Portugal): fast rotation of Iberia between the Hauterivian and the Aptian. Earth and Planetary Science Letters, 146, 689-701. DOI: https://doi.org/10.1016/S0012-821X(96)00239-7

Moreno, A., González-Sampériz, P., Morellón, M., Valero-Garcés, B.L., Fletcher, W.J., 2012. Northern Iberian abrupt climate change dynamics during the last glacial cycle: a view from lacustrine sediments. Quaternary Science Reviews, 36, 139-153. DOI: https://doi.org/10.1016/j.quascirev.2010.06.031

Moriya, K., 2011. Development of the Cretaceous greenhouse climate and the oceanic thermal structure. Paleontological Research, 15(2), 77-88. DOI: https://doi.org/10.2517/1342-8144-15.2.077

Morrill, C., Small, E.E., Sloan, L.C., 2001. Modeling orbital forcing of lake level change: Lake Gostiute (Eocene), North America. Global and Planetary Change, 29, 57-76. DOI: https://doi.org/10.1016/S0921-8181(00)00084-9

Muñoz, A., Angulo, A., Liesa, C.L., Luzón, M.A., Mayayo, M.J., Pérez, A., Soria, A.R., Val, V., Yuste, A., 2020. Climatic periodicities and astrochronological dating of the Enciso Group in the eastern Cameros Basin (N of Spain). Boletín Geológico y Minero, 131(2), 243-268. DOI: https://doi.org/10.21701/bolgeomin.131.2.003

Murphy, D.H. Wilkinson, B.H., 1980. Carbonate deposition and facies distribution in a central Michigan marl lake. Sedimentology, 27, 123-135. DOI: https://doi.org/10.1111/j.1365-3091.1980.tb01164.x

Navarrete, R., 2015. Controles alocíclicos de la sedimentación barremiense en la Subcuenca de Galve (Fm. Camarillas, margen occidental de la Cuenca del Maestrazgo). PhD Thesis. Zaragoza, Universidad de Zaragoza, 448pp.

Nutz, A., Schuster, M., Boës, X., Rubino, J.L., 2017. Orbitally-driven evolution of Lake Turkana (Turkana Depression, Kenya, EARS) between 1.95 and 1.72 Ma: A sequence stratigraphy perspective. Journal of African Earth Sciences, 125, 230-243. DOI: https://doi.org/10.1016/j.jafrearsci.2016.10.016

O'Connor, L., Robinson, S.A., Naafs, B.D.A., Jenkyns, H.C., Henson, S., Clarke, M., Pancost, R.D., 2019. Late Cretaceous temperature evolution of the southern high latitudes: A TEX86 perspective. Paleoceanography and Paleoclimatology, 34, 436-454. DOI: https://doi.org/10.1029/2018PA003546

Oviatt, Ch., Mccoy, W.D., Nash, W.P., 1994. Sequence stratigraphy of lacustrine deposits: A Quaternary example from the Bonneville basin, Utah. Geological Society of America Bulletin, 106(1), 133-144. DOI: https://doi.org/10.1130/0016-7606(1994)106<0133:SSOLDA>2.3.CO;2

Park, J., d’Hont, S.L., King, J.W., Gibson, C., 1993. Late Cretaceous precessional cycles in double time: A warm-Earth Milankovitch response. Science, 261(5127), 1431-1434. DOI: 10.1126/science.261.5127.1431

Platt, N.H., Wright, V.P., 1991. Lacustrine carbonates: facies models, facies distribution and hydrocarbon aspects. In: Anadón, P., Cabrera, L., Kelts, K. (eds.). Lacustrine Facies Analysis. Special Publication International Association of Sedimentologists, 13, 57-74.

Platt, N.H., Wright, V.P., 1992. Palustrine carbonates and the Florida Everglades: towards and exposure index for the fresh-water environment? Journal Sedimentary Petrology, 62, 1058-1071. DOI: https://doi.org/10.1306/D4267A4B-2B26-11D7-8648000102C1865D

Posamentier, H.W., Vail, P.R., 1988. Eustatic controls on clastic deposition II: Sequence and systems tract models. In: Wilgus, C.K., Hastings, B.S., Posamentier, H., Van Wagoner, J., Ross, C.A., Kendall, C.G.St.C. (eds.). Sea Level Changes: An Integrated Approach. Society of Economic Paleontologists and Mineralogists (SEPM), 42 (Special Publication), 125-154. DOI: https://doi.org/10.2110/pec.88.01.0125

Rits, D.S., van Balen, R.T., Prins, M.A., Zheng, H., 2017. Evolution of the alluvial fans of the Luo River in the Weihe Basin, central China, controlled by faulting and climate change-A reevaluation of the paleogeographical setting of Dali Man site. Quaternary Science Reviews, 166, 339-351. DOI: https://doi.org/10.1016/j.quascirev.2017.01.013

Rodríguez-López, J.P., Wu, C., Vishnivetskaya, T.A., Murton, J.B., Tang, W., Ma, C., 2022. Permafrost in the Cretaceous supergreenhouse. Nature Communications, 13, 7946. DOI: https://doi.org/10.1038/s41467-022-35676-6

Rodríguez-López, J.P., Liesa, C.L., Luzón, A., Muñoz, A., Mayayo, M.J., Murton, J.B., Soria, A.R., 2024. Ice-rafted dropstones at midlatudes in the Cretaceous of continental Iberia. Geology, 52, 33-38. DOI: https://doi.org/10.1130/G51725.1

Rosenbaum, G., Lister, G.S., Duboz, C., 2002. Relative motions of Africa, Iberia and Europe during Alpine orogeny. Tectonophysics, 359, 117-129. DOI: https://doi.org/10.1016/S0040-1951(02)00442-0

Ruddiman, W.F., 2006. Orbital changes and climate. Quaternary Science Reviews, 25, 3092-3112. DOI: https://doi.org/10.1016/j.quascirev.2006.09.001

Ruiz Omeñaca, J.I., 2006. Restos directos de dinosaurios (Saurischia, Ornithischia) en el Barremiense (Cretácico Inferior) de la Cordillera Ibérica en Aragón (Teruel, España). PhD Thesis. Zaragoza, Universidad de Zaragoza, 432pp.

Sáez, A., Valero-Garces, B.L., Giralt, S., Moreno, A., Bao, R., Pueyo, J.J., Hernández, A., Casas, D., 2009. Glacial to Holocene climate changes in the SE Pacific. The Raraku lake sedimentary record (Easter Island, 27 S). Quaternary Science Reviews, 28(25-26), 2743-2759. DOI: https://doi.org/10.1016/j.quascirev.2009.06.018

Salas, R., 1987. El Malm i el Cretaci inferior entre el Massís de Garraf i la Serra d'Espadà: anàlisi de conca. PhD Thesis. Barcelona, Universitat de Barcelona, 345pp.

Salas, R., Casas, A., 1993. Mesozoic extensional tectonics, stratigraphy and crustal evolution during the Alpine cycle of the eastern Iberian basin. Tectonophysics, 228, 33-55. DOI: https://doi.org/10.1016/0040-1951(93)90213-4

Salas, R., Guimerà, J., Mas, R., Martín-Closas, C., Meléndez, A., Alonso, A., 2001. Evolution of the Mesozoic central Iberian Rift System and its Cainozoic inversion (Iberian Chain). In: Ziegler, P.A., Cavazza, W., Robertson, A.H.F., Crasquin-Soleau, S. (eds.). Peri-Tethyan Rift/Wrench Basins and Passive Margins. Peri-Tethys Memoir 6: Peri-Tethyan Rift/Wrench Basins and Passive Margins. Paris, Muséum national d'Histoire naturelle, 186, 145-185.

Sames, B., Wagreich, M., Wendler, J.E., Haq, B.U., Conrad, C.P., Melinte-Dobrinescu, M.C., Hu, X., Wendler, I., Wolfgring, E., Yilmaz, I.Ö, Zorina, S.O., 2016. Review: Short-term seal-level changes in a greenhouse world – A review from the Cretaceous. Palaeogeography, Palaeoclimatology, Palaeoecology, 441, 393-411. DOI: https://doi.org/10.1016/j.palaeo.2015.10.045

Scheidt, S., Hambach, U., Hao, Q., Rolf, C., Wennrich, V., 2020. Environmental signals of Pliocene-Pleistocene climatic changes in Central Europe: Insights from the mineral magnetic record of the Heidelberg Basin sedimentary infill (Germany). Global and Planetary Change, 187, 103112. DOI: https://doi.org/10.1016/j.gloplacha.2020.103112

Schnyder, J., Dejax, J., Keppens, E., Tu, T.T.N., Spagna, P., Boulila, S., Galbrun, B., Riboulleau, A., Tshibangu, J.P., Yans, J., 2009. An Early Cretaceous lacustrine record: organic matter and organic carbon isotopes at Bernissart (Mons Basin, Belgium). Palaeogeography, Palaeoclimatology, Palaeoecology, 281(1-2), 79-91. DOI: https://doi.org/10.1016/j.palaeo.2009.07.014

Schwarzacher, W., 2005. The stratification and cyclicity of the Dachstein Limestone in Lofer, Leogang and Steinernes Meer (Northern Calcareous Alps, Austria). Sedimentary Geology, 181, 93-106. DOI: https://doi.org/10.1016/j.sedgeo.2005.07.001

Scotese, C.R., 2016. Tutorial: PALEOMAP Paleoatlas for GPlates and the PaleoData Plotter Program. Tutor, PALEOMAP Project. Last accessed: 12 September 2024. Website: http://www.earthbyte.org/paleomap-paleoatlas-for-gplates/

Sevillano, A., Bádenas, B., Rosales, I., Barnolas, A., López-García, J.M., 2020. Orbital cycles, differential subsidence and internal factors controlling the high-frequency sequence architecture in a Sinemurian shallow carbonate platform (Mallorca Island, Spain). Sedimentary Geology, 407, 105729. DOI: https://doi.org/10.1016/j.sedgeo.2020.105729.

Simmons, G.F., 2016. Differential Equations with Applications and Historical Notes. Boca Raton, CRC Press, 740pp.

Simón, J.L, Arlegui1, L.E., Ezquerro, L., Lafuente, P., Liesa, C.L., Luzón, A., 2016. Enhanced palaeoseismic succession at the Concud Fault (Iberian Chain, Spain): new insights for seismic hazardassessment. Natural Hazards, 80, 1967-1993. DOI: https://doi.org/10.1007/s11069-015-2054-6

Soria, A.R., 1997. Estudio estratigráfico-sedimentológico y tectónico del Cretácico inferior en la parte occidental de la cuenca del Maestrazgo, subcuencas de Las Parras y Galve. La sedimentación en las cuencas marginales del surco ibérico durante el Cretácico Inferior y su control estructural. PhD Thesis. Zaragoza, Universidad de Zaragoza, 363pp.

Soria, A.R., Liesa, C.L., Meléndez, A., Meléndez, M.N., 2001. Sedimentación sintectónica de la Fm. El Castellar (Cretácico Inferior) en la Subcuenca de Galve (Cuenca Ibérica). Geotemas, 3, 257-260.

Soria, A.R., Muñoz, A., Liesa, C.L., Meléndez, A., Meléndez, M.N., Soto, R., 2008. Ciclicidad climática en una unidad lacustre cretácica: la Fm. Villanueva de Huerva en la Subcuenca de Aguilón (Cordillera Ibérica). Geotemas, 10, 1487-1490.

Soria, A.R., Muñoz, A., Liesa, C.L., Luzón, A., Meléndez, A., Meléndez, M.N., 2012. Climate-driven cyclicity in an Early Cretaceous synrift lacustrine series (Aguilón subbasin, NE Spain). Terra Nova, 24, 407-416. DOI: https://doi.org/10.1111/j.1365-3121.2012.01080.x

Soria, A.R., Liesa, C.L., Navarrete, R., Rodríguez-López, J.P., 2023. Sedimentology and stratigraphic architecture of Barremian synrift barrier island–estuarine depositional systems from blended field and drone-derived data. Sedimentology, 70, 1812-1855. DOI: https://doi.org/10.1111/sed.13097.

Stampfli, G.M., Borel, G.D., 2002. A plate tectonic model for the Paleozoic and Mesozoic constrained by dynamic plate boundaries and restored synthetic oceanic isochrons. Earth and Planetary Science Letters, 196, 17-33. DOI: https://doi.org/10.1016/S0012-821X(01)00588-X

Steenbrink, J., Hilgen, F.J., Krijgsman, W., Wijbrans, J.R., Meulenkamp, J.E., 2006. Late Miocene to Early Pliocene depositional history of the intramontane Florina–Ptolemais–Servia Basin, NW Greece: Interplay between orbital forcing and tectonics. Palaeogeography, Palaeoclimatology, Palaeoecology, 238(1-4), 151-178. DOI: https://doi.org/10.1016/j.palaeo.2006.03.023

Tang, Y., He, W., Wang, R., Ren, H., Jin, Z., Yang, Z., Zhang, Y., 2023. Cyclostratigraphy of Lower Permian alkaline lacustrine deposits in the Mahu Sag, Junggar basin and its stratigraphic implication. Frontiers in Earth Science, 11, 1232418. DOI: https://doi.org/10.3389/feart.2023.1232418

Tian, F., Wang, Y., Liu, J., Tang, W., Jiang, N., 2017. Late Holocene climate change inferred from a lacustrine sedimentary sequence in southern Inner Mongolia, China. Quaternary International, 452, 22-32. DOI: https://doi.org/10.1016/j.quaint.2017.01.029

Tugend, J., Manatschal, G., Kusznir, N.J., 2015. Spatial and temporal evolution of hyperextended rift systems: Implication for the nature, kinematics, and timing of the Iberian-European plate boundary. Geology, 43, 15-18. DOI: https://doi.org/10.1130/G36072.1

Valero, L., Garcés, M., Cabrera, L., Costa, E., Sáez, A., 2014. 20 Myr of eccentricity paced lacustrine cycles in the Cenozoic Ebro Basin. Earth and Planetary Science Letters, 408, 183-193. DOI: https://doi.org/10.1016/j.epsl.2014.10.007

Vickers, M.L., Price, G.D., Jerrett, R.M., Sutton, M., Watkinson, M.P., FitzPatrick, M., 2019. The duration and magnitude of Cretaceous cold events: Evidence from the northern high latitudes. Geological Society of America Bulletin, 131, 1979-1994. DOI: https://doi.org/10.1130/B35074.1

Vissers, R.L.M., Meijer, P.Th., 2012. Mesozoic rotation of Iberia: Subduction in the Pyrenees? Earth-Science Reviews, 110, 93-110. DOI: https://doi.org/10.1016/j.earscirev.2011.11.001

Walzer, U., Hendel, R., 2023. Natural climate change and glaciations. Earth-Science Reviews, 241, 104435. DOI: https://doi.org/10.1016/j.earscirev.2023.104435

Wang, Y., Deng, T., Flynn, L., Wang, X., Yin, A., Xu, Y., Parker, W., Lochner, E., Zhang, Ch., Biasatti, D., 2012. Late Neogene environmental changes in the central Himalaya related to tectonic uplift and orbital forcing. Journal of Asian Earth Sciences, 44, 62-76. DOI: https://doi.org/10.1016/j.jseaes.2011.05.020

Wang, Y., Huang, C., Sun, B., Quan, C., Wu, J., Lin, Z., 2014. Paleo-CO2 variation trends and the Cretaceous greenhouse climate. Earth-Science Reviews, 129, 136-147. DOI: https://doi.org/10.1016/j.earscirev.2013.11.001

Wang, T., He, S., Zhang, Q., Ding, L., Farnsworth, A., Cai, F., Wang, C., Xie, J., Li, G., Sheng, J., Yue, Y., 2023. Ice Sheet Expansion in the Cretaceous Greenhouse World. Fundamental Research, 1-9. DOI: https://doi.org/10.1016/j.fmre.2023.05.005

Wei, W., Lu, Y., Xing, F., Liu, Z., Pan, L., Algeo, T.J., 2017. Sedimentary facies associations and sequence stratigraphy of source and reservoir rocks of the lacustrine Eocene Niubao Formation (Lunpola Basin, central Tibet). Marine and Petroleum Geology, 86, 1273-1290. DOI: https://doi.org/10.1016/j.marpetgeo.2017.07.032

Wei, Z., Zhong, W., Shang, S., Ye, S., Tang, X., Xiaowen, T., Xue, J., Jibin, X., Jun, O., Smol, J.P., 2018. Lacustrine mineral magnetic record of postglacial environmental changes from Dahu Swamp, southern China. Global and Planetary Change, 170, 62-75. DOI: https://doi.org/10.1016/j.gloplacha.2018.08.010

Wei, X., Yan, D., Luo, P., Jiang, P., Wang, H., Zhou, J., Cong, F., Yang, X., Niu, X., Li, T., Liu, L., Liu, E., 2020. Astronomically forced climate cooling across the Eocene–Oligocene transition in the Pearl river Mouth basin, northern South China Sea. Palaeogeography, Palaeoclimatology, Palaeoecology, 558, 109945. DOI: https://doi.org/10.1016/j.palaeo.2020.109945

Wei, R., Zhang, R., Li, M., Wang, X., Jin, Z., 2023. Obliquity forcing of lake-level changes and organic carbon burial during the Late Paleozoic Ice Age. Global and Planetary Change, 223, 104092. DOI: https://doi.org/10.1016/j.gloplacha.2023.104092.

Woolway, R.I., Kraemer, B.M., Lenters, J.D., Merchant, C.J., O’Reilly, C.M., Sharma, S., 2020. Global lake responses to climate change. Nature Reviews Earth & Environment, 1, 388-403. DOI: https://doi./10.1038/s43017-020-0067-5

Wright, V.P., Marriott, S.B., 1993. The sequence stratigraphy of fluvial depositional systems: the role of floodplain sediment storage. Sedimentary Geology, 86, 203-210. DOI: https://doi.org/10.1016/0037-0738(93)90022-W

Xu, T.-Y., Peng, J., Yu, L.-D., Han, H.-D., Yang, Y.-M., Zeng, Y., Wang, Y.B., 2023. The control of astronomical cycles on lacustrine fine-grained event Sedimentation—A case study of the Chunshang sub-member of the upper Es4 in the Dongying Sag. Petroleum Science, 20(3), 1395-1410. DOI: https://doi.org/10.1016/j.petsci.2022.11.023

Yuste, A., Bauluz, B., Mayayo, M.J., 2015. Genesis and mineral transformations in Lower Cretaceous karst bauxites (NE Spain): climatic influence and superimposed processes. Geological Journal, 50(6), 839-857. DOI: https://doi.org/10.1002/gj.2604

Zavala, C., Liu, H., Li, X., Arcuri, M., Di Meglio, M., Zorzano, A., Otharán, G., Hao, B., Wang, Y., 2022. Lacustrine sequence stratigraphy: New insights from the study of the Yanchang Formation (Middle-Late Triassic), Ordos Basin, China. In: Renchao Yang, A.J., Van Loon, T. (eds.). The Ordos Basin. Sedimentological Research for Hydrocarbons Exploration, 309-335. DOI: https://doi.org/10.1016/B978-0-323-85264-7.00012-6

Zhong, W., Cao, J., Xue, J., Ouyang, J., 2015. A 15,400-year record of climate variation from a subalpine lacustrine sedimentary sequence in the western Nanling Mountains in South China. Quaternary Research, 84(2), 246-254. DOI: https://doi.org/10.1016/j.yqres.2015.06.002

Zhong, Q., Zhang, J.G., Tang, D., Jiang, J.H., Shen, J.J., Cai, M.X., Li, P.X., 2022. Research status of lacustrine mudrock deposition constrained from astronomical forcing. Journal of Palaeogeography, 11(3), 315-331. DOI: https://doi.org/10.1016/j.jop.2022.05.003

Ziegler, A.M., Raymond, A.L., Gierlowski, T.C., Horrell, M.A., Rowley, D.B., Lottes, A.L., 1987. Coal, climate and terrestrial productivity: the present and early Cretaceous compared. London, Geological Society, 32(1, Special Publications), 25-49. DOI: https://doi.org/10.1144/GSL.SP.1987.032.01.04