Handwritten Digit Recognition by Fourier-Packet Descriptors
Article Sidebar
Main Article Content
Vincent Berthiaume
Laboratory for Imagery, Vision and Artificial Intelligence (Montreal, Canadà)
Mohamed Cheriet
Synchromedia Laboratory for Multimedia Communication in Telepresence (Montreal, Canadà)
Any statistical pattern recognition system includes a feature extraction component. For character patterns, several feature families have been tested, such as the Fourier-Wavelet Descriptors. We are proposing here a generalization of this family: the Fourier-Packet Descriptors. We have selected sets of these features and tested them on handwritten digits: the error rate was 1. 55% with a polynomial classifier for a 70 features set and 1. 97% with a discriminative learning quadratic discriminant function for a 40 features set.
Article Details
Com citar
Berthiaume, Vincent; Cheriet, Mohamed. «Handwritten Digit Recognition by Fourier-Packet Descriptors». ELCVIA: electronic letters on computer vision and image analysis, 2012, vol.VOL 11, núm. 1, p. 68-76, https://raco.cat/index.php/ELCVIA/article/view/280897.
Articles més llegits del mateix autor/a
- Ezzedine Ben Braiek, Mohamed Cheriet, Vincent Doré, SKCS-A Separable Kernel Family with Compact Support to improve visual segmentation of handwritten data , ELCVIA: electronic letters on computer vision and image analysis: 2005: Vol.: 5 Núm.: 1
- Mounir Sayadi, Samir Sakrani, Farhat Fnaiech, Mohamed Cheriet, Gray-level Texture Characterization Based on a New Adaptive , ELCVIA: electronic letters on computer vision and image analysis: 2008: Vol.: 7 Núm.: 1
- Jonathan Milgram, Robert Sabourin, Mohamed Cheriet, Combining Model-based and Discriminative Approaches in a Modular Two-stage Classification System: Application to Isolated Handwritten Digit Recognition , ELCVIA: electronic letters on computer vision and image analysis: 2005: Vol.: 5 Núm.: 2 Special Issue on Document Analysis