Multi-view gait recognition on curved trajectories
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ABSTRACT

Appearance changes due to viewing angle changes cause dif-
ficulties for most of the gait recognition methods. In this
paper, we propose a new approach for multi-view recogni-
tion, which allows to recognize people walking on curved
paths. The recognition is based on 3D angular analysis of
the movement of the walking human. A coarse-to-fine gait
signature represents local variations on the angular mea-
surements along time. A Support Vector Machine is used
for classifying, and a sliding temporal window for majority
vote policy is used to smooth and reinforce the classification
results. The proposed approach has been experimentally
validated on the publicly available “Kyushu University 4D
Gait Database”. The results show that this new approach
achieves promising results in the problem of gait recognition
on curved paths.
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Researches on human gait as a biometric feature for iden-
tification have received a lot of attention due to the advan-
tage that it can operate from a distance and can be applied
discreetly without needing the active participation of the ob-
served individual [7]. However, gait recognition performance
is significantly affected by changes in various covariate con-
ditions such as clothing [6], camera viewpoint [12, 9], load
carrying [16], and walking speed [18].

According to camera viewpoint, the previous work can
be categorized into two approaches: view-dependent and
view-independent approaches. View-dependent approaches
assume that the viewpoint will not change while walking
[13, 2, 5, 17]. In such methods, a change in the appear-
ance, caused by a viewpoint change, adversely affects to the
recognition [19]. For example, when a subject walks along a
curved trajectory, the observation angle between the walking
direction of the subject and the camera optical axis is grad-
ually changed at all frames during a gait cycle. Fig. 1 shows
this problem and the influence of a curved path on the sil-
houette appearance. On the contrary, the view-independent
approaches aim to recognize people under different viewing
angles. However, some of them do not allow curved trajec-
tories or direction changes during walking.

This paper presents a new approach for multi-view gait
recognition which allows to identify people walking along
both curved and straight paths. Some potential applications
of this work is smart video surveillance (e.g. bank offices,
government facilities, or underground stations) and access
control or monitoring in special or restricted areas (e.g. mil-
itary bases or medical isolation zones where subjects wear
special clothing that does not allow to show the face or use
the fingerprint).

The rest of the paper is structured as follows. After pre-
senting in Section 2 the related work, we describe our pro-
posed framework for gait recognition in Section 3. Section
4 is devoted to the experimental results. And, finally, we
conclude this paper in Section 5.
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Figure 1: In a curved path, the observation angle
between the walking direction of the subject and op-
tical axis of the camera is gradually changed, which
affects the silhouette appearance.

2. RELATED WORK

Appearance changes due to viewing angle changes cause
difficulties for most of the gait recognition methods. This
situation cannot be easily avoided in practical applications.
There are three major approach categories to sort out this
problem, namely: (1) approaches that construct 3D gait
information through multiple calibrated cameras; (2) ap-
proaches that extract gait features which are invariant to
viewing angle changes; (3) approaches whose performance
relies on learning mapping/projection relationship of gaits
under various viewing angles [12].

Approaches of the first category are represented by [1, 9].
The approach of Bodor et al. [1] tries to classify the motion
of a human in a view-independent way, but it also has two
drawbacks. On the one hand it considers only straight paths
to estimate the position and orientation of a virtual camera.
Tests were performed only on straight path motions. On
the other hand, not all the 3D information available in the
VH is used, because feature images are extracted from 2D
images rendered only from a single view.

In [9], an observation angle at each frame of a gait se-
quence is estimated from the walking direction, by fitting a
2D polynomial curve to the foot points. Virtual images are
synthesized from a 3D model, so that the observation angle
of a synthesized image is the same that the observation angle
for the real image of the subject, which is identified by us-
ing affine moment invariants extracted from images as gait
features. The advantage of this method is that the setup
assumes multiple cameras for training, but only one camera
for testing. However, as in the above two works, despite 3D
models are used, descriptors are computed from silhouettes
and they based on 2D information, so that 3D information
is discarded.

Approaches of the second category extract gait features
which are invariant to viewing angle change. In [10], a
method based on homography to compute view-normalized
trajectories of body parts obtained from monocular video
sequences was proposed. But this method efficiently works
only for a limited range of views. Planar homography has
also been used to reduce the dependency between the mo-

tion direction and the camera optical axis [11], however
this method seems not to be applicable when the person
is walking nearly parallel to the optical axis. In [4] view-
invariant features are extracted from GEI. Only parts of gait
sequences that overlap between views are selected for gait
matching, but this approach cannot cope with large view
angle changes under which gait sequences of different views
can have little overlap.

A self-calibrating view-independent gait recognition based
on model-based gait features is proposed in [3]. The poses of
the lower limbs are estimated based on markerless motion es-
timation. Then, they are reconstructed in the sagittal plane
using viewpoint rectification. This method has two main
drawbacks that are worth mentioning: 1) the estimation of
the poses of the limbs is not robust from markerless motion;
2) it is not applicable for frontal view because the poses of
the limbs become untraceable; and 3) this method assume
that subjects walk along a straight line segment.

The approaches of the third category rely on learning
mapping/projection relationship of gaits under various view-
ing angles. The trained relationship may normalize gait
features from different viewing angles into shared feature
spaces. An example from this category can be read in [14],
where LDA-subspaces are learned to extract discriminative
information from gait features under each viewing angle.

A View Transformation Model (VITM) was introduced by
[15] to transform gait features from different views into the
same view. The method of Makihara et al. [15] creates
a VTM based on frequency-domain gait features, obtained
through Fourier Transformation. A sparse-regression-based
VTM for gait recognition under various views is also pro-
posed in [12]. However, this method cannot deal with changes
in the direction of motion and cannot be applied to recognize
people walking on curved trajectories.

Although methods of the third category have better abil-
ity to cope with large view angle changes compared to other
works, some common challenges are the following [12]: (1)
performance of gait recognition decreases as the viewing
angle increases; (2) since the methods rely on supervised
learning, it will be difficult for recognizing gait under un-
trained /unknown viewing angles, (3) these methods implic-
itly assume that people walk along straight paths and that
their walking direction does not change during a single gait
cycle (i.e., that people do not walk along curved trajecto-
ries).

Most of the view independent methods restrict the view
angle change to a few angles, and they do not take into ac-
count curved trajectories. However, people sometimes walk
on curved trajectories so as to turn a corner or to avoid an
obstacle.

3. PROPOSED FRAMEWORK

This work presents a method to recognize walking hu-
mans independently of the viewpoint and regardless direc-
tion changes on curved trajectories. Our approach aims to
extract 3D dynamical information of gait. The body human
region is vertically divided into 3D stacked areas of the same
size called slices and then we compute the centroid of each
slice. The gait feature is composed by a set of acute angles
between the line joining each pair of consecutive centroids
and the z-axis (z-axis extends up) in R®.

The proposed algorithm consists of four steps that predict
the identity of a walking human a time ¢. Following are



Figure 2: The principal axis of the silhouettes is
back-projected to get a plane. Then, the location
of the individual in the scene is determined by the
intersection between the line of intersection of the
two planes and the floor plane.

Figure 3: The centroid C}, is obtained by finding the
point closest to the set of rays {L;, | 0 <i < N}. See
main text for further details.

described these steps in detail.
3.1 Tracking

We assume a set of NV calibrated cameras. Since cameras
have been calibrated, the internal and external camera pa-
rameters are known. We also assume the floor to be flat and
its position in 3D space to be known.

The first step of our algorithm is to determine the loca-
tion of the individual in the scene. For that, we start by
obtaining the principal axis of the silhouette for each cam-
era view ¢ by Principal Component Analysis. Next, for each
view, we back-project this line in order to get the plane
m; € {mo,m1,...,TN—1}, as Fig. 2 shows.

It is assumed a function f: R® — R3 to map from cam-
era local coordinates to scene world coordinates. Then we

map each plane 7; from local camera coordinates to scene
world coordinates. Let us denote r;; as the intersection
line between the planes m; and 7;, where 0 < ¢ < N and
0<j<N.

We denote F' as a set of candidate foot points, obtained
by intersecting the lines 7; ; with the floor plane, without
repetition, so that the cardinality of the set is |F| = (2’)
Finally, the location of the individual is denoted by:

|F|

1
P:FI;E. (1)

3.2 Descriptor generation

Given a foot point P : (Py, Py,0), the 3D scene is verti-
cally divided into H € NT parts, called slices. Let us denote
p"" and p¥ as the projections on the image view i of the
3D points (Py, Py, hZ) and (P, Py, (h+ 1) Z) respectively,
where Z is the total height of the 3D scene. We compute
the 2D centroid ¢;,, = {Z, §} on the bounding box enclosing
the pixels (0,p5"*") and (w, p5"), where w is the width of
the image.

Then, using the 2D centroid ¢; » and the calibration data
for the view ¢, we can backproject the ray L;n passing
through the image view point ¢;,. In order to obtain an ap-
proximation of the 3D centroid C}, of the slice h in the scene,
we find the point closest to the set of rays {L;» |0 < i < N}.
We propose to solve it by minimizing the sum of squared dis-
tances.

Next we define the angle between the normal vector to the
floor plane (Z = (0,0,1)) and the vector joining each pair
of consecutive centroids as:

. =
Z - ChChia
i

ap, = arccos (
CrnCri1

Br = min{an, 180 — an}, (3)

—

where Cj,Ch41 is the vector connecting the C}, and Ch41

centroids. Thus, for each instant ¢, our descriptor is a tuple
of angular measurements that we can define as:

D = (Beo,t), Bi,eys - Blr—2,1))- (4)

If the slice h is empty (e.g. slices above the head) or
{Lin}| < 2, Ch cannot be estimated. In such cases, to
preserve the height of the subject as feature, we set j,,: = 0.
Fig. 3 shows the descriptor generation process.

3.3 Signature update

The first step of our classification system is the generation
of the gait descriptor D g ;) at time t. Then, the gait signa-
ture can be built as a time series of gait descriptors obtained
from the 3D reconstructed gait sequence.

In order to combine different description levels, we propose
a coarse-to-fine refinement. We define the number of levels
as:

0<1< [log, H], (5)

so that the first level descriptor contains features extracted
from the scene divided into 2 slices, the second level descrip-
tor contains features extracted from the scene divided into
H = 22 slices, and so on until we have divided the scene into



H = 2! slices. We can now concatenate the level descriptors
to represent our coarse-to-fine descriptor as:

@(l,t) == (D(Q,t), D(22,t)7 ceey D(Ql,t))' (6)

The gait signature is a temporal pattern of gait, a sample
that feeds a classifier producing a class label corresponding
to the identity of a particular person. Our signature is up-
dated at every moment of the walking, and it allows to take
place a synchronous classifying process. Thus, we define the
gait signature ¢ on a sliding temporal window of size L. Let
us denote ¥ as:

Gupy = (Dat—r+1) - Dae—-1), Da ), (7)

which consists of a concatenation of L consecutive descrip-
tors. In other words, our gait signature is updated at each
instant of the gait by concatenating successive gait descrip-
tors into a sliding temporal window of size L.

Our gait signature has several advantages that are worth
mentioning. First, the gait phase of the first frame of a
gait sequence of a subject does not have to be the same for
each person in the database. Second, it does not require
the sequence to be split into gait cycles, and therefore it is
not necessary to estimate the gait period. This makes our
method less restrictive compared to other techniques from
the literature such as [12, 9] among others.

3.4 C(lassification

The gait signature ¢(; ;) is in fact the feature vector used
for classification. Each feature vector is assigned to a class
label that corresponds to one of the person in the database.

We adopt the subspace Component and Discriminant Anal-
ysis, based on Principal Component Analysis (PCA) and
Linear Discriminant Analysis (LDA), which seeks to project
the original features to a subspace of lower dimensionality
so that the best data representation and class separability
can be achieved simultaneously [8]. Then we use a Support
Vector Machine (SVM) for training and classification.

The gait signature is based on the L previous volumes,
and a possibly different class label can be produced for each
new gait signature at each time. In order to smooth and re-
inforce the results over time, we use a majority vote policy
over a sliding temporal window of size W. Our recogni-
tion algorithm provides the identity of the person as soon as
possible. However, as the gait signature information is com-
puted on L previous volumes, the use of this window causes
a delay of L 4+ (W — 1) frames in obtaining the identity.

4. OVERVIEW OF THE EXPERIMENTS

In order to validate our approach, we carry out diverse
experiments on the publicly available “Kyushu University
4D Gait Database” [9]. With these experiments we try to
answer, among others, the following questions:

e Is our descriptor a valid approach to recognize walk-
ing humans independently of the viewpoint, even with
curved trajectories?

e What level of refinement for our coarse-to-fine gait
descriptor is required to achieve the best recognition
rate?

e What is the influence of the sliding temporal window
for majority voting policy on the recognition rate?

e How many cameras are needed to achieve good perfor-
mance?

4.1 Dataset description

“Kyushu University 4D Gait Database” (KY4D) ' [9], it
is composed of sequential 3D models and image sequences
of 42 subjects walking along four straight and two curved
trajectories. The sequences were recorded by 16 cameras, at
a resolution of 1032 x 776 pixels. The studio setup is shown
in Figure 4. Despite 3D models are available, we do not
use them, because this work relies on camera calibration for

getting 3D information.
Camera ID
—— O »00000
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Figure 4: Experimental setup of KY4D.

As can be seen in Figure 4, KY4D gait sequences are cap-
tured by 16 cameras forming rings at two heights. The lower
level comprises the cameras {7451527, 7172435, 7121059,
7451462, 7451476, 7340706, 7451471, 7230135}, whereas the
upper level comprises the cameras {7451465, 7340709, 7340697,
7451466, 7451477, 7340692, 7451468, 7340700}.

4.2 Experimental results

Next we need to determine the value of several parameters
of our method. According to the length of the gait signature,
we set to L = 20 the number of frames where our descriptor
is computed, because this value roughly matches with the
average length of a gait cycle. Regarding the number of
levels (see Section 3.3), we tested I from 1 (2 slices) to 6 (2°
slices).

We use a leave-one-out cross-validation strategy. Thus,
each fold is composed by 42 sequences (one sequence per
actor) for testing and by the remaining five sequences of
each actor (i.e. 42 X 5 sequences) for training. We use a C-
SVC SVM with Radial Basis Function (RBF) kernel, since
we obtained better results than with linear, polynomial, or
sigmoid kernel. So, we have to adjust the parameter C and
the gamma value for the RBF kernel. To make the choice
of these parameters independent of the sequence test data,
we cross-validate the SVM parameters on the training set.
Note that curved paths are sometimes longer than straight
paths. Moreover, some subjects walk faster than others and
therefore cause a greater number of votes. To cope with this
issue, we normalize by class the results of each trajectory.

'"Publicly  available at: http://robotics.ait.kyushu-
u.ac.jp/research-e.php?content=db




Straight paths Curved paths

[ Experiment tI ] t2 [ t3 [ t4 t5 ] t6 AVG ]
upper-432-PCA-W=1 44.63 51.80 | 46.78 | 48.13 28.74 58.45 46.42
upper-432-PCA-W=120 70.73 | 78.04 | 82.92 | 87.80 | 54.34 | 85.00 | 76.47

upper-432-PCA+LDA-W=1 49.85 | 57.07 | 51.12 | 52.68 | 29.70 | 56.05 | 49,41
upper-432-PCA+LDA-W=120 | 80.48 | 80.48 | 90.24 | 82.92 | 52.17 | 72.50 | 76,46

lower-%32-PCA-W=1 84.86 | 87.73 | 88.97 | 89.49 | 52.24 | 78.02 | 80.21
lower-432-PCA-W=120 95.12 100 100 100 97.82 100 | 98.82
lower-432-PCA+LDA-W=1 88.24 | 89.82 | 89.10 | 90.30 | 52.42 | 78.52 | 81.40

lower-432-PCA+LDA-W=120 | 97.56 | 100 100 100 91.30 | 97.50 | 97.72

Table 2: Correct classification rate on KY4D [%]. Each column corresponds to a test trajectory, using the
remaining trajectories as training set. Each row corresponds to a different configuration of the gait descriptor.
Each entry contains the percentage of correct recognition for each tuple trajectory-setup.

[1 ] PCA | PCAFLDA |

I 5.99 N.A

2 | 31.54 32.92

3 | 56.98 56.38 100
4| 74.75 74.68

5| 80.21 81.40

6 | 79.56 80.69 s Br

90 |
Table 1: Correct classification rate [%] on the lower

set of cameras for several values of the parameter /.
The size of the sliding temporal window for majority
voting is set to W = 1. Best result is marked in bold.

85

Correct classification rate [%)

80 ff 4
lower-%32-PCA+LDA —l—
In order to achieve the best data representation and class - L lower-%2-PCA
separability simultaneously, we apply PCA+LDA to the train- 5 15 2 35 45 55 65 75 85 95 105 115 125
ing and test data (see Section 3.4). With regard to PCA, we Size of the sliding temporal window for majority vote

only retain 95% of the variance. In the classification step, we
tested several SVM kernels, and finally we selected a C-SVC
SVM with Radial Basis Function since we obtained better
results than with linear, polynomial, or sigmoid kernels.

The recognition rate on the lower set of cameras for several
values of the parameter [ is shown in Table 1. It also shows
the effect of the dimensionality reduction on the recogni-
tion rate. In this experiment, for the sake of simplicity,
we disabled the sliding temporal window for majority vot-
ing (W = 1). We obtained the best results with | = 5
and PCA+LDA. Besides the recognition rate, the number
of features is considerably lower with PCA+LDA than with
PCA.

We next conducted experiments in which we applied the
sliding temporal window for majority voting policy. As can
be seen in Figure 5, the use of a majority voting policy over
a sliding temporal window significantly improves the perfor-
mance of our method. However, the performance obtained
with the lower set of cameras is greater than with the upper
set (see Section 4.1). This may be caused by the tilt of the
upper set of cameras. Further analysis of this issue is left as | |
for a future study. The size of the window is limited by the lower-#,-PCA+LDA-W=120. ——
number of available gait signatures for each sequence. 0 ‘ ‘ lower- % POAFLDA-W=1

The results of Table 2 shows detailed results for the leave- 2 3 4 5 6 7 8
one-out experiment, with | = 5. We show the effect of ap- Number of cameras
plying the sliding temporal window for majority voting com-
pared with W = 1 (disabled window). As can be seen, we
have obtained better results with the lower set of cameras
than with the upper set. This could be due to the tilt of the
cameras. This issue is left for a future study.

In order to determine the number of cameras that should

Figure 5: Performance of our descriptor on the
lower level of cameras of KY4D database for dif-
ferent lengths of the majority voting window.

100 T T T T T

95 1

90 4

80 ¢ ,

Correct classification rate %)
joel
&
T
.

Figure 6: Performance of our descriptor for an in-
creasing number of cameras.



be employed and its effect on the performance, we have
designed a leave-one-out cross validation experiment. We
selected the signature configuration that achieved the best
performance in the previous experiments and then we tested
it with a variable number of cameras of the lower set in the
range 2 to 8. As can be seen in Figure 6, with just 2 cali-
brated cameras, our method is able to correctly classify up
to 95% of individuals, independently of the path, even with
curved trajectories. This is because at least two rays are
needed (|{L;,r}| < 2) to obtain the intersection Cp.

S.  CONCLUSIONS

This paper has proposed a new approach to recognize
walking humans independently of the viewpoint and regard-
less direction changes on curved trajectories. Our approach
allow people to walk freely in the scene, in contrast to others
view-independent approaches which restrict the view change
to a few angles.

A new rotation invariant gait descriptor has been pro-
posed to cope with rotation changes on curved trajectories,
while preserving enough discriminatory information from
the gait. Our descriptor focuses on capturing 3D dynam-
ical information of gait.

This approach does not require the sequence to be split
into gait cycles, and the results are smoothed and reinforced
over time by using a sliding temporal window for majority
voting policy. Experimental results show that our method
is able to reach a correct classification rate up to 95%.
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