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Direction changes cause difficulties for most of the gait recognition systems, due to appearance changes.
We propose a new approach for multi-view gait recognition, which focuses on recognizing people walk-
ing on unconstrained (curved and straight) paths. To this effect, we present a new rotation invariant gait
descriptor which is based on 3D angular analysis of the movement of the subject. Our method does not
require the sequence to be split into gait cycles, and is able to provide a response before processing the
whole sequence. A Support Vector Machine is used for classifying, and a sliding temporal window with
majority vote policy is used to reinforce the classification results. The proposed approach has been exper-
imentally validated on ‘‘AVA Multi-View Dataset” and ‘‘Kyushu University 4D Gait Database” and com-
pared with related state-of-art work. Experimental results demonstrate the effectiveness of this
approach in the problem of gait recognition on unconstrained paths.

� 2016 Elsevier Inc. All rights reserved.
1. Introduction

Research on human gait as a biometric feature for identification
has received a lot of attention due to the apparent advantage that it
can operate at a distance and can be applied discreetly without
needing the active participation of the subject [1]. However, gait
recognition performance is significantly affected by changes in var-
ious covariate conditions such as clothing [2], camera viewpoint
[3,4], load carrying [5], and walking speed [6].

According to camera viewpoint, the previous work can be cate-
gorized into two approaches: view-dependent and view-
independent approaches. View-dependent approaches assume that
the viewpoint does not change while walking. In such methods, a
change in the appearance, caused by a viewpoint change, will
adversely affect to the recognition [7]. For example, when a subject
walks along a curved trajectory, the observation angle between the
walking direction of the subject and the camera optical axis is
gradually changed during the gait cycle. Fig. 1 shows the influence
of a curved path on the silhouette appearance. On the contrary, the
view-independent approaches aim to recognize people under dif-
ferent viewing angles. However, some of them do not allow curved
trajectories or direction changes during walking.

This paper presents a new approach to recognize people walk-
ing along curved trajectories on unconstrained paths. Some poten-
tial applications of this work are access control in special or
restricted areas (e.g. military bases, governmental facilities) or
smart video surveillance (e.g. bank offices). This work also can be
used for staff identification on laboratories or medical isolation
zones where subjects wear special clothes that do not allow them
to show the face or use the fingerprint (e.g. protective clothing for
viral diseases).

The rest of the paper is structured as follows. Section 2 presents
the most relevant works related to ours, making a clear distinction
between view-dependent and view-independent methods. Sec-
tion 3 presents a new rotation invariant gait descriptor. Section 4
shows the details of our gait recognition method. An analysis of
the performance is given in Section 5. Finally, we conclude this
paper in Section 6.
2. Related work

2.1. View-dependent approaches

One of the earliest view-dependent approaches can be seen in
[8], where it is used the width of the outer contour of the binarized
silhouette from a side view, to build a descriptor which contains
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Fig. 1. In a curved path, the observation angle between the walking direction of the
subject and optical axis of the camera is gradually changed, which affects the
silhouette appearance.
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both structural features and dynamic aspects of gait. Feature vec-
tors derived from binary silhouettes have been also used to train
Hidden Markov Models [9]. The contours of silhouettes have also
been used [10,11].

In addition, in [12] it is presented a gait recognition method
which analyses the shape of the silhouette using Procrustes Shape
Analysis and Elliptic Fourier Descriptors. In [13] it is proposed a
gait representation called Gait Energy Image (GEI), which is the
average of all silhouette images for a single gait cycle.

Based on the idea of GEI, Depth Energy Image (DEI) was defined
in [14], which is simply the average of the depth silhouettes taken
along a gait cycle, over the front view. GEI is also extended in [15]
to consider depth information from the side view, by means of a
new feature called Depth Gradient Histogram Energy Image
(DGHEI). In [16] a time-sliced averaged motion history image
(TAMHI) alongside the histograms of oriented gradients (HOG) to
generate gait signatures.

In [17] it is presented the Gait Energy Volume (GEV), a binary
voxel-discretized volume which is spatially aligned and averaged
over a gait cycle. The authors apply the GEV on partial reconstruc-
tions obtainedwithdepth sensors fromthe front viewof the individ-
ual. Anextendedwork fromGEV [17] that combines the frontal-view
depth gait image and side-view 2D gait silhouette by means of a
back-filling technique is presented in [18]. In [19], the depth and
RGB frames from Kinect are register to obtain smooth silhouette
shape along with depth information. A partial volume reconstruc-
tion of the frontal surface of each silhouette is done and the Pose
Depth Volume (PDV) feature is derived from this volumetric model.

The performance of the above methods depends on the view-
point. As was stated above, appearance changes due to viewing
angle changes cause difficulties for most of the gait recognition
methods, and this situation cannot be easily avoided in practical
applications.
2.2. View-independent approaches

There are three major approach categories to sort out this prob-
lem [3], namely: (1) approaches that construct 3D gait information
through multiple calibrated cameras; (2) approaches that extract
gait features which are invariant to viewing angle changes; (3)
approaches whose performance relies on learning mapping/projec-
tion relationship of gaits under various viewing angles.

Approaches of the first category are represented by [4,20–22].
In [21], a 3D approximation of a Visual Hull (VH) [23] is used to
design a multi-modal and model-based gait recognition approach.
Seely et al. [20] proposed an appearance-based approach which
uses 3D volumetric data to synthesize silhouettes from a fixed
viewpoint relative to the subject. The resulting silhouettes are then
passed to a standard 2D gait analysis technique, such as the aver-
age silhouette.

Another approach that applies image-based rendering on a 3D
VH model to reconstruct gait features under a required viewing
angle is presented in [22]. This approach tries to classify the
motion of a human in a view-independent way, but it has two
drawbacks. On the one hand it considers only straight paths to esti-
mate the position and orientation of a virtual camera. Tests were
performed only on straight path motions. On the other hand, not
all the 3D information available in the VH is used, because feature
images are extracted from 2D images rendered only from a single
view.

In [4], an observation angle at each frame of a gait sequence is
estimated from the walking direction, by fitting a 2D polynomial
curve to the foot points. Virtual images are synthesized from a
3D model, so that the observation angle of a synthesized image
is the same that the observation angle for the real image of the sub-
ject, which is identified by using affine moment invariants
extracted from images as gait features. The advantage of this
method is that the setup assumes multiple cameras for training,
but only one camera for testing. However, this approach requires
to split the sequence into gait cycles and assumes that the gait
phase of the first frame of a gait cycle of a subject is the same for
each person in the database. Besides, shadows on the floor compli-
cate the estimation of the foot points in silhouette images.

In the above four works, despite 3D models are used, the gait
recognition scheme is based on silhouette analysis, what restricts
a large amount of discriminant information because the recogni-
tion relies on single view silhouette analysis, instead of analyze
the 3D information.

Approaches of the second category extract gait features which
are invariant to viewing angle change. In [24], it is described a
method to generate a canonical view of gait from any arbitrary
view. This method can work with a single calibrated camera but
the synthesis of a canonical view is only feasible from a limited
number of initial views. The performance is significantly dropped
when the angle between image plane and sagittal plane is large.

In [25], a method based on homography to compute view-
normalized trajectories of body parts obtained from monocular
video sequences was proposed. But this method efficiently works
only for a limited range of views. Planar homography has also been
used to reduce the dependency between the motion direction and
the camera optical axis [26], however this method seems not to be
applicable when the person is walking nearly parallel to the optical
axis. In [27] view-invariant features are extracted from GEI. Only
parts of gait sequences that overlap between views are selected
for gait matching, but this approach cannot cope with large view
angle changes under which gait sequences of different views can
have little overlap. Neither it can be applied to recognize people
walking on curved trajectories.

A self-calibrating view-independent gait recognition based on
model-based gait features is proposed in [28]. The poses of the
lower limbs are estimated based on markerless motion estimation.
Then, they are reconstructed in the sagittal plane using viewpoint
rectification. This method has two main drawbacks that are worth
mentioning: (1) the estimation of the poses of the limbs is not



Fig. 2. The reconstructed model is divided into 3D stacked areas of the same size called slices (regions within dotted lines). Centroids are computed on each slice (red points).
The gait feature is composed by a set of inner angles between the line joining each pair of consecutive centroids (red line) and the z-axis in R3. Best viewed in color. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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robust from markerless motion; (2) it is not applicable for frontal
view because the poses of the limbs become untraceable; and (3)
it is assumed that subjects walk along a straight line segment.

In [29] is proposed the use of motion descriptors based on den-
sely sampled short-term trajectories. This method is able to recog-
nize people in curved trajectories with promising results.

The approaches of the third category rely on learning mapping/
projection relationship of gaits under various viewing angles. The
trained relationship may normalize gait features from different
viewing angles into shared feature spaces. An example from this
category can be read in [30], where LDA-subspaces are learned to
extract discriminative information from gait features under each
viewing angle.

A View Transformation Model (VTM) was introduced by [31] to
transform gait features from different views into the same view.
The method of Makihara et al. [31] creates a VTM based on
frequency-domain gait features, obtained through Fourier Trans-
formation. To improve the performance of this method, Kusakunni-
ran et al. [32] created a VTM based on GEI optimized by linear
discriminant analysis. A sparse-regression-based VTM for gait
recognition under various views is also proposed in [3]. However,
this method cannot deal with changes in the direction of motion.
Neither it can be applied to recognize people walking on curved
trajectories.

Although methods of the third category have better ability to
cope with large view angle changes compared to other works,
some common challenges are the following [3]: (1) performance
of gait recognition decreases as the viewing angle increases; (2)
since the methods rely on supervised learning, it is difficult to rec-
ognize gait under untrained/unknown viewing angles, (3) these
methods implicitly assume that people walk along straight paths
and that their walking direction does not change during a gait cycle
(i.e., that people do not walk along curved trajectories).

Most of the view independent methods restrict the view angle
change to a few angles, and they do not take into account curved
trajectories. However, people sometimes walk on curved trajecto-
ries so as to turn a corner or to avoid an obstacle.
3. Proposed descriptor

This work presents a method to recognize humans walking on
unconstrained paths, even with curved or straight trajectories,
and regardless direction changes. Thus, we propose a new gait
descriptor that is able to cope with rotation changes, while pre-
serving enough discriminatory information from the gait. In con-
trast to other related works, which discard a significant part of
3D information by computing the gait descriptors just from 2D
images, our descriptor focuses on capturing 3D dynamical informa-
tion of gait.

Let us assume that a workspace can be divided into N cubes of
the same size (called voxels). This workspace contains information
about the occupation, and can be denoted by:

V ¼ fv iji ¼ ðix; iy; izÞg j i 2 N3 ð1Þ
where 0 6 ix < Nx; 0 6 iy < Ny; 0 6 iz < Nz; i ¼ ðix; iy; izÞ represents
the voxel in Cartesian coordinates and v i 2 f1;0g depending on
whether the voxel is occupied or empty. We assume a function
f : N3 # R3 to map from voxel coordinates to scene coordinates.
For the sake of simplicity, we also assume that the reference system
of the monitored area is placed at the floor plane, in the center of
the volume. Therefore, x- and y-axis are on that plane, whereas z-
axis extends up.

Then, the workspace is divided into H 2 Nþ horizontal slices, as
shown in Fig. 2. Let us also define a slice SðhÞ; 0 6 h < H as a subset
of voxels:

SðhÞ ¼ v i j v i 2 V ^ h
Nz

H

� �
6 iz < ðhþ 1ÞNz

H

� �� �
ð2Þ

where Nz is the number of voxels of the discretized area with
respect to the z-axis. The centroid Ch ¼ ð�x; �y;�zÞ of each slice SðhÞ
can be denoted by:

Ch ¼ 1
SðhÞj j

X
v i2SðhÞ

v if ðiÞ ð3Þ

where SðhÞj j ¼ Nx � Ny � Nz
H represents the number of voxels of the

slice SðhÞ. Next, we define the acute angle bh between the normal

vector to the floor plane (~Z ¼ ð0;0;1Þ) and the vector joining each
pair of consecutive centroids as:

ah ¼ arccos
~Z � ChChþ1
����!

k Ch
�!kkChþ1

��!k

 !
; 0 6 h < H � 2; ð4Þ

bh ¼ minfah;180� ahg; ð5Þ



Fig. 3. Pipeline of our approach.
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where ChChþ1
����!

is the vector connecting the Ch and Chþ1 centroids.
Thus, for each instant t, our descriptor is a tuple of angular measure-
ments that we can define as:

DH;t ¼ ðbð0;tÞ; bð1;tÞ; . . . ;bðH�2;tÞÞ: ð6Þ
In addition, to preserve the height of the subject as feature, if

the slice is empty (e.g. partitions above the head), then the centroid
corresponds to the center of the slice (i.e., the slice is considered
fully occupied before computing its centroid).

The angular measurements are calculated on vectors in R3. We
can say that our descriptor is rotation invariant and, therefore, the
features extracted do not depend on the walking direction. Fur-
thermore, even though is possible that two different subjects
may have similar structure, differences on the dynamic of move-
ment should help to differentiate them.
4. Proposed framework

Series of 3D occupation volumes are generated frommulti-view
video sequences at a rate of a 3D volume per time. Once a person
has entered into the scene, our rotation invariant gait descriptor is
computed on each volume. Because of the invariant properties of
our gait descriptor, the direction of walking has no adverse effect
on the recognition. The gait signature is updated at time on the
basis of the previous gait descriptors.

The proposed algorithm consists of five steps which predict the
identity of a walking human at time t. Following are described
these steps in detail.

1. Silhouette extraction of each camera’s view by a background
subtraction technique [33].

2. 3D reconstruction from silhouettes captured from several view-
points, by a Shape from Silhouette algorithm (SfS) [34].

3. Person detection.
4. Coarse-to-fine descriptor generation and gait signature update.
5. Classification of gait signature by a machine learning algorithm.

The aim of the first three stages of the algorithm is to generate a
3D volume with occupancy information of the person at time t. On
the other hand, the last two stages of the algorithms perform the
feature extraction, signature generation and gait classification.
The pipeline of our approach is shown in Fig. 3.

4.1. Feature extraction on reconstructed gait volumes

As previously indicated, we compute a 3D reconstruction for
each frame of a gait sequence. In order to do this, we need to obtain
silhouettes from multiple calibrated cameras. Then, when the indi-
vidual has been detected, we extract features from the gait volume
and use them to update the gait signature.

4.1.1. Silhouette extraction
The first step of our pipeline consists in obtaining the silhou-

ettes of the walking subject. For this, we use a statistical approach
for real-time robust background subtraction presented by Hor-
prasert et al. in [33]. This approach is able to cope with local and
global perturbations, such as illumination changes, casted shadows
and highlights in controlled environments on static backgrounds.

Several silhouettes obtained by this algorithm are shown in
Fig. 6. As it can be seen, despite the use of an advanced background
subtraction technique, the silhouette is not perfectly defined. We
should note that the performance of the recognition method also
rely on the consistency of the silhouettes images, and therefore,
of the 3D reconstructions.

After the background subtraction, we carry out a filtering
through morphological operations as opening and closing. We do
not do any other post-process operation.

4.1.2. 3D reconstruction
Since our method computes the gait descriptor from a 3D occu-

pation volume, it requires a 3D reconstruction procedure, such as
the Shape from Silhouette (SfS) standard algorithm. We assume a
three-dimensional work area that is divided into cubes of the same
volume called voxels. Let us assume that there is a set of cameras
placed at known locations and that we have the silhouettes of the
foreground objects, obtained by a background subtraction method.
As described in more detail in [34], SfS method examine voxel pro-
jections in the foreground images in order to determine whether
they belong to the shape of objects or not. Each voxel is projected
in all the foreground images and if its projection lays completely
into a silhouette in all the foreground images, then it is considered



Fig. 4. Example of reconstructed segment of a gait sequence, sampled at 2 Hz,
where each point represents a squared voxel. The time instant is represented by
different colors. Best viewed in color. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)
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occupied. However, if the voxel projects in a background region in
any of the images, it is considered unoccupied. Finally, if the voxel
projects partially in a foreground region, it is considered to belong
to an edge and a decision must be made. We base this decision on
the area of the projected voxel that lays into the silhouette. In the
end, the result is a Boolean decision (0,1) indicating whether the
region of the space represented by the voxel is empty or occupied.
Fig. 4 shows the 3D reconstruction of a fragment belonging to a
gait sequence.

In order to get a 3D reconstruction through SfS, calibration
information for a multi-camera setup is also required. A classical
black-white chessboard based technique [35] (OpenCV) can be
used to get the intrinsics of each camera. For the extrinsics, we rec-
ommend Aruco library [36] whose detection of boards (several
markers arranged in a grid) have two main advantages. First, since
there is more than one marker, it is less likely to lose them all at
the same time. Second, the more markers detected, the more
points available for computing the camera extrinsics. Calibrating
a multi-camera setup is a simple task that can be done in a few
minutes using the above referenced techniques. To minimize the
computational time, SfS could take advantage of the power of
Graphics Processing Units (GPU), as it was proved in [37,38].

4.1.3. Person detection
It is assumed that although there is only one person in the

scene, reconstructed shadows as well as noise can coexist, due to
a poor segmentation. Because of this, it is required to detect
whether the subject has fully entered into the scene, and track it.
To detect the person, we use a threshold g, which refers to the
number of occupied voxels corresponding to the size of a person.
The volume belonging to a person is that which has a number of
occupied voxels greater than g. This threshold is experimentally
fixed in Section 5.

In addition to this, we consider that the subject has fully
entered into the scene when the contour of the ground marginal
distribution of occupied voxels Pz is separated by at least one voxel
from the scene boundaries. So, let us define the ground marginal
distribution of occupied voxels as the integral over the z-axis:

Pzðx; yÞ ¼ 1
Nz

XNz�1

iz¼0

v ðx;y;izÞ: ð7Þ
4.2. Gait identification

We next describe the steps employed by our system to extract
the gait features, generate the gait signature and provide the name
of the person.

4.2.1. Descriptor generation and gait signature update
The first step of our classification system is the generation of the

gait descriptor DðH;tÞ at time t. The gait descriptor can be computed
on a detected gait volume as was described in Section 3. Then, the
gait signature can be built as a time series of gait descriptors
obtained from the 3D reconstructed gait sequence.

In order to combine different description levels, we propose a
coarse-to-fine refinement. We define the number of levels as:

0 < l 6 blog2Hc; ð8Þ
so that the first level descriptor contains features extracted from a
volume divided into 2 slices, the second level descriptor contains
features extracted from a volume divided into H ¼ 22 slices, and

so on until we have divided the volume into H ¼ 2l slices. We can
now concatenate the level descriptors to represent our coarse-to-
fine descriptor as:

Dðl;tÞ ¼ ðDð2;tÞ;Dð22 ;tÞ; . . . ;Dð2l ;tÞÞ: ð9Þ
The gait signature is a temporal pattern of gait, a sample that

feeds a classifier producing a class label corresponding to the iden-
tity of a particular person. Our signature is updated at every
moment of the walking, and it allows to take place a synchronous
classifying process. Thus, we define the gait signature G on a slid-
ing temporal window of size L. Let us denote G as:

Gðl;tÞ ¼ ðDðl;t�Lþ1Þ; . . . ;Dðl;t�1Þ;Dðl;tÞÞ; ð10Þ
which consist of a concatenation of L consecutive descriptors. In
other words, our gait signature is updated at each instant of the gait
by concatenating successive gait descriptors into a sliding temporal
window of size L.

Our gait signature preserves the temporal consistency and has
several advantages that are worth mentioning. First, the gait phase
of the first frame of a gait sequence of a subject does not have to be
the same for each person in the database. Second, it does not
require the sequence to be split into gait cycles, and therefore it
is not necessary to estimate the gait period. This makes our method
less restrictive compared to other techniques from the literature
such as [3,4,39] among others.

4.2.2. Classification
The gait signature Gðl;tÞ is in fact the feature vector used for clas-

sification. Each feature vector is assigned to a class label that cor-
responds to one of the person in the database. This idea is well
known as multi-class classification system.

We adopt the subspace Component and Discriminant Analysis,
based on Principal Component Analysis (PCA) and Linear Discrim-
inant Analysis (LDA), which seeks to project the original features to
a subspace of lower dimensionality so that the best data represen-
tation and class separability can be achieved simultaneously [40].
Then we use a Support Vector Machine (SVM) [41] for training
and classification.

The gait signature is based on the L previous volumes, and a
possibly different class label can be produced for each new gait sig-
nature at each time. In order to smooth and reinforce the results
over time, we use a majority vote policy over a sliding temporal
window of size W. Our recognition algorithm provides the identity
of the person as soon as possible. However, as the gait signature
information is computed on L previous volumes, the use of this
window causes a delay of Lþ ðW � 1Þ frames in obtaining the



Fig. 5. Majority vote policy over a sliding temporal window. In the example, the
size of the signature is set to L = 4, and the size of the voting window is set toW = 3.
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identity. The majority voting system over a sliding temporal win-
dow is represented in Fig. 5.
Fig. 6. Workspace setup used by AVAMVG dataset, where fc1; . . . ; c6g represent the
set of cameras of the multiview dataset and ft1; . . . ; t9g represent the different
trajectories followed by each actor of the dataset.
5. Experiments and discussion

In order to validate our approach, we carry out diverse experi-
ments on two publicly available datasets: the ‘‘AVA Multi-View
Dataset for Gait Recognition” [42] and the ‘‘Kyushu University 4D
Gait Database” [4]. In this section we try to answer, among others,
the following questions:

� Is our descriptor a valid approach to recognize walking humans
independently of the viewpoint? Is our proposal effective on
curved trajectories?

� What level of refinement for our coarse-to-fine gait descriptor is
required to achieve the best recognition rate?

� What is the effect of using PCA and PCA + LDA-based dimen-
sionality reduction on the recognition performance?

� What is the influence of the sliding temporal window for major-
ity voting policy on the recognition rate?

� How many cameras are needed to achieve good performance?
� Can the proposed model generalize well on unrestricted walk-
ing trajectories compared to other related works?

5.1. Datasets description

The first dataset where we perform our experiments is the ‘‘AVA
Multi-View Dataset for Gait Recognition” (AVAMVG)2 [42]. In
AVAMVG, 20 subjects perform 9 walking trajectories in an indoor
environment. Each trajectory is recorded by 6 color cameras placed
around a room that is crossed by the subjects during the perfor-
mance, according to the scheme of Fig. 6.

The video sequences of AVAMVG have a resolution of
640� 480 pixels, and were recorded at a rate of 25 frames per sec-
ond. For each actor, 9 gait sequences are captured in several trajec-
tories as described in the figure by ft1; . . . ; t9g. Of these
trajectories, 3 are straight (ft1; . . . ; t3g) and 6 are curved
(ft4; . . . ; t9g). An example of this dataset is shown in Fig. 7, in
which several subjects walk along different paths, from multiple
viewpoints.

‘‘Kyushu University 4D Gait Database” (KY4D)3 [4], it is com-
posed of sequential 3D models and image sequences of 42 subjects
walking along four straight and two curved trajectories. The
sequences were recorded by 16 cameras, at a resolution of
1032� 776 pixels. Although the KY4D Gait Database also provide
sequential 3D models of subjects, we have reconstructed them with
2 Publicly available at: http://www.uco.es/investiga/grupos/ava/node/41.
3 Publicly available at: http://robotics.ait.kyushu-u.ac.jp/research-e.php?content=

db.
the same SfS method and resolution parameters used for the
AVAMVG models. The intrinsics and extrinsics camera parameters
are available for both databases. The camera setup of KY4D is shown
in Fig. 8.

The aim of our approach is to recognize people walking on
unconstrained paths, therefore we need databases containing
video sequences of people walking on various types of trajectories,
including curved paths. There are other publicly available gait
databases [43], such as the ‘‘CASIA Dataset B” [44], the ‘‘CMU
Motion of Body (MoBo)” [45], which are for changes on camera
viewpoint and that include 2D gait images captured by multiple
cameras. However, since these databases do not include people
walking on curved trajectories, our approach cannot be tested on
them.
5.2. Experimental results

This section explains the experimentation carried out to test our
proposal. First of all, we need to determine the value of several
parameters of our method. Thus, considering the 3D reconstruction
stage, thefirst relevant parameter is the voxel size.We tested several
voxel sizes, i.e. 0:015 m (3:3� 10�6 m3), 0.03 m (2:7� 10�5 m3),
0.06 m (21:6� 10�5 m3), 0.09 m (72:9� 10�5 m3) and 0.12 m
(172:8� 10�5 m3) of voxel side. Table 1 shows the influence of the
voxel size on the recognition rate. Thebest results for bothdatabases
were found with a voxel side of 0.03 m (2:7� 10�5 m3).

The average corporal volume for humans is 66:4L ¼ 6:64�
10�2 m3 measured by the water displacement method in 521 peo-
ple aged 17–51 years [46]. Using a voxel size of 2:7� 10�5 m3, the
number of voxels belonging to a person in a 3D volume should be
about 2459. Thus, with a value of g > 1� 103 (see Section 4.1.3)
the system should be able to efficiently detect when a person is
in the scene.

With regards to the number of refinement levels (see Sec-
tion 4.2.1), l ¼ 6 is the maximum allowed with the above described

voxel size and scene resolution (note that 2l must be less than or

http://www.uco.es/investiga/grupos/ava/node/41
http://robotics.ait.kyushu-u.ac.jp/research-e.php?content=db
http://robotics.ait.kyushu-u.ac.jp/research-e.php?content=db


Fig. 7. Example of AVAMVG multiview dataset. People walking in different directions, from multiple points of view. Below the color images are shown their respective
silhouettes, which have been obtained by using the background subtraction algorithm of Horprasert et al. [33]. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

Fig. 8. Experimental setup of KY4D. Each camera is represented by a circle and a
number which shows the order in which it was selected to evaluate the
performance changes with respect to the number of cameras (see Section 5.2 for
further details).

Table 1
Correct classification rate [%] for both AVAMVG and KY4D datasets with different
voxel sizes and values for the parameter l. Best results are marked in bold. The
signature length is set to L ¼ 20 for KY4D and L ¼ 30 for AVAMVG. The size of the
sliding temporal window for majority voting is set to W ¼ 1 (see Section 4.2 for
further details).

Voxel side (m) l AVAMVG [42] KY4D [4]
PCA + LDA PCA + LDA

0.015 5 75.73 68.21
0.015 6 74.49 68.69
0.03 5 91.22 89.52
0.03 6 91.55 88.72
0.06 4 83.52 72.59
0.06 5 89.92 74.63
0.09 3 64.81 44.34
0.09 4 85.80 56.88
0.12 3 51.23 29.33
0.12 4 79.60 42.59
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equal to Nz). The length of the signature is set to L ¼ 20 and
L ¼ 30 for KY4D and AVAMVG respectively, because these values
roughly match with the average length of a gait cycle in these
databases.
We use a k-fold cross-validation strategy, where k corresponds
to the number of trajectories. On the one hand, the AVAMVG data-
set consists of 20 subjects performing 9 trajectories each, therefore
each fold is composed by a tuple formed by a set of 20 sequences
(one trajectory or sequence per actor) for testing, and by the
remaining eight trajectories of each actor for training, i.e. 20� 8
sequences for training and 20 sequences for test. It corresponds
to a 9-fold cross-validation. On the other hand, since the KY4D
dataset consists of 42 subjects and 6 trajectories, each fold is



Table 2
Correct classification rate [%] for both AVAMVG and KY4D datasets and several values
for the parameter l. We use a k-fold cross-validation strategy, where k corresponds to
the number of trajectories. The size of the sliding temporal window for majority
voting is set to W ¼ 1. The signature length is set to L ¼ 20 for KY4D and L ¼ 30 for
AVAMVG. The voxel side is set to 0:03 m. Best results are marked in bold. (See main
text for further details.)

l AVAMVG [42] KY4D [4]

PCA PCA + LDA PCA PCA + LDA

1 10.98 N.A 12.13 N.A
2 53.22 45.50 57.25 N.A
3 69.38 63.22 74.84 73.16
4 84.74 83.83 85.03 85.38
5 92.24 91.22 87.40 89.52
6 92.13 91.55 86.59 88.72

Table 3
Number of features [AVG] for both AVAMVG and KY4D datasets and several values for
the parameter l.

l Without Dim. Red. AVAMVG [42] KY4D [4]

PCA PCA + LDA PCA PCA + LDA

1 20 8.11 N.A 9.66 N.A
2 80 30.11 20 28.66 N.A
3 220 88.55 20 62.50 42
4 520 222.22 20 159.16 42
5 1140 550.77 20 394.00 42
6 2400 1277.22 20 911.50 42

Fig. 9. Performance of our descriptor on the AVAMVG database for different lengths
of the majority voting window.

Fig. 10. Performance of our descriptor on the KY4D database for different lengths of
the majority voting window.
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composed by 42 sequences (one sequence per actor) for testing
and by the remaining five sequences of each actor (i.e. 42� 5
sequences) for training. It corresponds to a 6-fold cross-validation.

We use a C-SVC SVM, which allows imperfect separation of
classes with penalty multiplier for outliers. We use Radial Basis
Function as SVM kernels, since we obtained better results than
with linear, polynomial, or sigmoid kernels. We set the same
weight to all classes. To make the choice of SVM parameters inde-
pendent of the sequence test data, we cross-validate the SVM
parameters on the training set. Note that curved paths are some-
times longer than straight paths. In addition, some subjects walk
faster than others and therefore cause a greater number of votes
on the confusion matrix. To cope with this issue, we normalize
by class the results of each trajectory.

In order to achieve the best data representation and class sepa-
rability simultaneously, we apply PCA + LDA to the training and
test data (see Section 4.2.2). Here we tested several SVM kernels,
and finally we selected a C-SVC SVM with Radial Basis Function
since we obtained better results than with linear, polynomial, or
sigmoid kernels. With regard to PCA, we only retain 95% of the
variance.

Table 2 shows the recognition rate for several values of the
parameter l on AVAMVG and KY4D databases, with a voxel size
2:7� 10�5 m3. It also shows the effect of the dimensionality reduc-
tion on the recognition rate. In this experiment, for the sake of sim-
plicity, we disabled the sliding temporal window for majority
voting (W = 1). As can be seen, the best results are obtained with
high coarse-to-fine refinement level for the spatial division of the
human body region. These values correspond to H ¼ 64 for
AVAMVG and H ¼ 32 for KY4D. The average on number of features
can be seen in Table 3. As can be observed, the number of features
is considerably lower with PCA + LDA than with PCA. Therefore, if
the system can be trained off-line, LDA allows SVM to handle fea-
ture spaces of lower dimensionality, and the identity of the indi-
vidual could be given in less time.

We next conducted experiments in which we applied the slid-
ing temporal window for majority voting policy. We use a k-fold
cross-validation strategy where k is the number of trajectories,
similar to the first experiment. As can be seen in Figs. 9 and 10,
the use of a majority voting policy over a sliding temporal window
significantly improves the performance of our method, which is
close to achieving the perfect recognition. By using this approach,
the results are smoothed and reinforced over time. However, the
size of the window is limited by the number of available gait sig-
natures in each sequence.

The results of Tables 4 and 5 show detailed results of the k-fold
cross-validation experiment, which have been obtained by testing
on each trajectory and training on the remaining k� 1 trajectories.
It can be observed that our approach achieves good recognition
rates for both dataset, even with curved paths. In this experiment,
we have selected the optimal number of coarse-to-fine subdivi-
sions of the human body region that we found in the first experi-
ment for each database. Moreover, we have added the case
where the use of the sliding temporal window for majority voting
achieved the best results.

Our method does not require accurate models for feature
extraction. In order to determine the number of cameras that
should be employed and its effect on the performance, we have
designed a k-fold cross validation experiment where k refers to
the number of distinct trajectories. As in the others experiments,
to make the choice of SVM parameters independent of the
sequence test data, we cross-validate the SVM parameters on the



Table 4
Correct classification rate on AVAMVG [%]. Each column corresponds to a test trajectory, using the remaining trajectories as training set. Each row corresponds to a different
configuration of the gait descriptor. Each entry contains the percentage of correct recognition for each tuple trajectory-setup. Best results are marked in bold.

Experiment Straight paths Curved paths AVG

t1 t2 t3 t4 t5 t6 t7 t8 t9

G64-PCA-W = 1 97.53 90.68 98.02 93.38 79.98 92.11 92.30 91.76 93.45 92.13
G64-PCA-W = 35 100 100 100 99.58 98.73 100 99.74 100 99.34 99.71
G64-PCA + LDA-W = 1 94.84 88.47 97.43 93.57 83.85 91.56 92.29 91.56 90.45 91.55
G64-PCA + LDA-W = 32 99.47 98.52 100 99.64 98.55 99.55 99.77 98.93 99.75 99.35

Table 5
Correct classification rate on KY4D [%]. Each column corresponds to a test trajectory, using the remaining trajectories as training set. Each row corresponds to a different
configuration of the gait descriptor. Each entry contains the percentage of correct recognition for each tuple trajectory-setup. Best results are marked in bold.

Experiment Straight paths Curved paths AVG

t1 t2 t3 t4 t5 t6

G32-PCA-W = 1 93.12 97.55 96.44 96.16 54.25 86.86 87.39
G32-PCA-W = 130 97.56 100 100 100 90.24 100 97.96
G32-PCA + LDA-W = 1 94.98 98.62 99.10 97.22 58.09 89.09 89.51
G32-PCA + LDA-W = 99 97.56 100 100 100 100 100 99.59

Fig. 11. Performance of our descriptor on KY4D database for an increasing number
of cameras.

Table 6
Correct classification rate [%] on AVAMVG gait dataset. Each row corresponds to a
different method. The second column indicates the training trajectory. The third and
fourth columns indicate the tested trajectory. For the method of Iwashita et al., we set
K ¼ 5 and M ¼ 40 (see Section 4 of [4]). For the method of Castro et al., we selected
PFM + PCAL100 + PCAH256 + pyr and K ¼ 150 (see Section 3, Table II of [29]). For the
method of Seely et al. [20] we have used the side-on, front-on, top-down average
silhouettes (see Section 5 of [20]).

Method Training trajectories t4 t7 AVG

G64;W = 57, PCA + LDA straight {t1, t2, t3} 90.69 96.57 93.63
G64;W = 30, PCA + LDA straight {t1, t2, t3} 89.85 94.26 92.05
Castro et al. [29] straight {t1, t2, t3} 85.00 95.00 90.00
Seely et al. [20] straight {t1, t2, t3} 55.00 70.00 62.50
Iwashita et al. [4] straight {t1, t2, t3} 35.14 37.71 36.42

Table 7
Correct classification rate [%] on KY4D gait dataset. Each row corresponds to a
different method. The second column indicates the training trajectory. The third and
fourth columns indicate the tested trajectory. The results of the method of Iwashita
et al. are taken directly from [4]. The results of [29] has been obtained by combining
all the viewpoints of KY4D dataset by majority voting, PFM + PCAL150 + PCAH256
+ pyr and K ¼ 200 (see Section 3 of [29]). For the method of Seely et al. [20] we have
used the side-on, front-on, top-down average silhouettes (see Section 5 of [20]).

Method Training trajectories Curve 1 Curve 2 AVG

G64;W = 130, PCA + LDA straight {t1, t2, t3, t4} 68.29 77.50 72.89
G64;W = 20, PCA + LDA straight {t1, t2, t3, t4} 63.16 73.53 68.34
Iwashita et al. [4] straight {t1, t2, t3, t4} 61.90 71.40 66.65
Castro et al. [29] straight {t1, t2, t3, t4} 58.50 61.00 59.75
Seely et al. [20] straight {t1, t2, t3, t4} 19.51 35.00 27.25
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training set. We selected the signature configuration that achieved
the best performance in the previous experiments and then we
tested it with a set of KY4D models which have been reconstructed
using a number of cameras in the range 3–16. Fig. 9 shows the
order in which the cameras were selected. For a two-camera recon-
struction, we selected cameras 1 and 2. For a four-camera recon-
struction, we selected cameras 1, 2, 3 and 4, and so on. This
arrangement was motivated by the results exposed in the work
of Takahashi et al. [47]. As can be seen in Fig. 11, with just 4 cali-
brated cameras, our method is able to correctly classify nearly 99%
of individuals, independently of the path, even with curved
trajectories.
5.3. Comparison with related work

We have compared our method with the recently published
approaches of Iwashita et al. [4] and Castro et al. [29] because these
methods are able to recognize people walking on curved trajecto-
ries, and they are therefore closely related with our aim. We have
also compared with Seely et al. [20] because this method is an
appearance-based approach which uses 3D reconstructed models.
Since this method is not designed to cope with curved trajectories,
we have aligned the gait volumes along the path.

We show the results of these experiments in Tables 6 and 7. In
the case of the AVAMVG dataset, we trained with linear trajectories
{t1, t2, t3} (all in the same set), and tested on curved trajectories t4
and t7 (see corresponding columns). For the KY4D dataset, we
trained on linear trajectories {t1, t2, t3,t4} (all in the same set)
and tested on curved trajectories t5 and t6. The percentage of rel-
ative difference on the average results between our proposal and
the proposals of Iwashita et al. [4] and Castro et al. [29] is 8:56%
and 18:02% respectively for KY4D, and 61:10% and 3:87% respec-
tively for AVAMVG.

We have noticed a low performance of the method of Iwashita
et al. when it is trained with straight paths and tested with curves
of the AVAMVG dataset. In the AVAMVG dataset, depending on the



Fig. 12. Example of a curved gait cycle. We show several ground marginal distributions of occupied voxels (see Section 4.1.3). The velocity vector is represented by a red line,
the blue line represents the torso main axis, and the position of the head is represented by a green circle. We can note that in a curved trajectory, the person rotates his/her
torso and leans towards the walking direction. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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viewpoint and trajectory, people appear at diverse scales, even
showing partially occluded body parts. The method presented in
[4] is based on high accuracy adaptive virtual image synthesis. In
that method, affine moment invariants are used to describe the
shape properties of the synthesized silhouettes. However, as can
be seen in results of Table 6, it seems to decrease performance
when silhouettes are rendered from inaccurate and inconsistent
models (e.g., those that are reconstructed from poor segmentation
results (see Fig. 7)). The results of Table 6 demonstrate that our
method is robust against inaccurate and inconsistent models.

On the other hand, we know that on curved trajectories some
persons tend to lean towards to the turning direction. Furthermore,
some of them tend to rotate the torso and move the head towards
the walking direction. It is shown in Fig. 12, where the torso main
axis is drawn by a blue line, the velocity vector is drawn by a red
line, and the head is indicated by a circle. The first two images of
the top row and the last two images of the bottom row clearly
show the leaning of the individual when it is depicting a curved
trajectory. This could explain the low recognition rate obtained
when the method is trained just with straight paths and it is tested
with curved trajectories. As can be seen in Tables 6 and 7, the
recognition rates fall well below to the results of Tables 2, 4 and
5, when the system is trained with both curved and straight trajec-
tories. For these stated reasons, in order to identify people walking
on curved trajectories, we suggest training the system with both
straight and curved trajectories.
6. Conclusions

This paper has proposed a new gait recognition approach to
identify people independently of the path, and regardless direction
changes. In contrast to other view-independent approaches which
restrict the view change to a few angles and cannot cope with
curved trajectories, our approach allow people to walk freely in
the scene without adversely affecting to the recognition, even with
curved trajectories.

A new rotation invariant gait descriptor has been proposed to
cope with rotation changes on curved trajectories, while preserv-
ing enough discriminatory information from the gait. Our descrip-
tor focuses on capturing 3D dynamical information of gait, unlike
other related works which discard a significant part of 3D informa-
tion by computing the gait descriptors just from 2D images.

This approach does not require the sequence to be split into gait
cycles, because the gait signature is built on a sliding temporal
window. In addition, another sliding temporal window for
majority vote policy is used to smooth and reinforce the results
over time. The experiments have been conducted on two datasets,
and they have shown that our approach is able to reach a correct
classification rate close to 100%.

Despite of using 3D models, we have proved that our descriptor
does not require high-accurate reconstructions, and it efficiently
works with only four calibrated cameras.
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