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Abstract Gait as biometrics has been widely used for
human identification. However, direction changes cause dif-
ficulties for most of the gait-recognition systems, due to
appearance changes. This study presents an efficient multi-
view gait-recognition method that allows curved trajectories
on completely unconstrained paths for indoor environments.
Our method is based on volumetric reconstructions of
humans, aligned along their way. A new gait descriptor,
termed as gait entropy volume (GEnV), is also proposed.
GEnV focuses on capturing 3D dynamical information
of walking humans through the concept of entropy. Our
approach does not require the sequence to be split into gait
cycles. A GEnV-based signature is computed on the basis of
the previous 3D gait volumes. Each signature is classified
by a support vector machine, and a majority voting policy is
used to smooth and reinforce the classifications results. The
proposed approach is experimentally validated on the “AVA
Multi-View Gait Dataset (AVAMVG)” and on the “Kyushu
University 4DGait Database (KY4D)”. The results show that
this new approach achieves promising results in the problem
of gait recognition on unconstrained paths.
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1 Introduction

Biometrics is the science that deals with the identification
of individuals from an anatomical and behavioural point of
view. Some of the current biometric methods use face, voice,
iris or fingerprint for human recognitiondue to its universality
and uniqueness [4].

The gait is a human feature that contains information about
the physical and psychological state of the person. What
is especially interesting is that each individual describes an
unique gait pattern, whichmeans it can be used as a biometric
indicator [10]. Gait as biometric feature for identification can
be applied discreetly without needing the active participation
of the individuals.

Previous studies on gait recognition have been clas-
sified into two categories: model-based approaches and
appearance-based approaches. The model-based methods
represent gait using the parameters of a body configuration
model which is estimated over time, whereas appearance-
based approaches characterize the human gait pattern by a
compact representation,without having to develop anymodel
for feature extraction and having practical application even
with low quality images where the colour and texture infor-
mation is lost.

In addition, regarding viewing angle, the previous work
can be categorized into two approaches: view-dependent
and view-independent approaches. The view-dependent
approaches assume that will not happen any appearance
change during walking. In such methods, a change in the
appearance, caused by a viewing angle change,will adversely
affect to the performance [41]. For example, when a sub-
ject walks along a curved trajectory, the observation angle
between the walking direction of the subject and the camera
optical axis is gradually changed at all frames in one gait
cycle. This is shown in Fig. 1.
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Fig. 1 In a curved path, the observation angle between the walking
direction of the subject and optical axis of the camera is gradually
changed, which affects the silhouette appearance

While most of appearance-based approaches are view-
dependent, the model-based approaches are generally invari-
ant to rotational effects and slight variations in the viewpoint.
However, they are characterized by complex searching and
mapping processes, which increase the computational cost.

This paper presents an efficient view-independent and
appearance-basedmethod to recognize people walking along
curved trajectories on completely unconstrained paths. We
also propose a gait descriptor which focuses on capturing
the maximum amount of dynamical gait information in a 3D
sense.

Somepotential applications of thiswork are access control
in special or restricted areas (e.g. military bases and govern-
mental facilities) or smart video surveillance where subjects
do not know they are being monitored (e.g. bank offices). It
also could be used for staff identification on laboratories or
medical isolation zones where subjects wear special clothes
that do not allow them to show the face or use the fingerprint
(e.g. protective clothing for viral diseases).

This article is organized as follows. Section 2 describes
works related to the topic of gait recognition. Section 3
explain the details of the proposed algorithm, gait descriptor
and derived signatures. An analysis of the proposed method
and the performance is given in Sect. 4. Finally, we conclude
this paper in Sect. 5.

2 Related work

2.1 View-dependent approaches

One of the earliest view-dependent approaches can be seen
in [25], where the outer contour of the binarized silhouette

from a lateral view is used to build a descriptor which con-
tains both structural features and dynamic aspects of gait. The
contours of silhouettes have also been used directly [18,40],
and through their Fourier descriptors [29,33]. In [8], hid-
den Markov models have been trained from feature vectors
derived from binary silhouettes.

In addition, in [9] it is presented a gait-recognition
method which combines spatio-temporal motion character-
istics, statistical and physical parameters of a person for its
classification. This is carried out by analysing the shape of
the silhouette using Procrustes shape analysis and elliptic
Fourier descriptors. In [15] it is proposed a gait represen-
tation called gait energy image (GEI), which key idea is to
compute the average of all silhouette images for a single gait
cycle.

Based on the idea of GEI, depth energy image [35] con-
sists in the average of frontal depth silhouettes for a gait
cycle. In [17], a new feature called depth gradient histogram
energy image is proposed to extend GEI by including depth
information.

In [37] it is presented the gait energy volume (GEV),
which is an average voxel-discretized volume. The authors
apply GEV on partial reconstructions obtained with depth
sensors from the front view of the individual. The front view
depth gait image and the side view 2D gait silhouette is com-
bined by means of a back-filling technique in [38]. The front
view depth image is also captured in [7].

A work closely related to our approach was presented in
[1], in which the gait entropy image (GEnI) is presented.
GEnI encodes in a single image, the randomness of pixel val-
ues in the silhouette images over a complete gait cycle. More
specifically, considering the intensity value of the silhouettes
at a fixed pixel location as a discrete randomvariable, entropy
measures the uncertainty associated with the random vari-
able over a complete gait cycle. Dynamic body areas which
undergo consistent relative motion during a gait cycle (e.g.
leg, arms) lead to high gait entropy values, whereas those
areas that remain static (e.g. torso) give rise to low values.

A human silhouette is extracted from the side view of the
gait sequence. After applying size normalization and hori-
zontal alignment to each silhouette image, gait cycles are
segmented by estimating the gait frequency using a maxi-
mum entropy estimation technique. GEnI is defined as:

GEnI(x, y) = −
K∑

k=1

pk(x, y)log2 pk(x, y), (1)

where x , y are the pixel coordinates and pk(x, y) is the
probability of the pixel (x, y) for the label k ∈ K . The sil-
houettes are binary images, and therefore K : {0, 1}, so that
p1(x, y) = 1

T

∑T
t=1 I (x, y), and p0(x, y) = 1 − p1(x, y),

where T is the length of the gait cycle and I is the binary
image.
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Fig. 2 Several examples of GEnI, computed over a gait cycle. The gray level represents the entropy value in a pixel. As can be seen, legs and arms
have high gait entropy value, whereas static areas as torso have low values of entropy

In [2], the use of the GEnI descriptor is proposed to dis-
tinguish the dynamic and static areas of a GEI by measuring
Shannon entropy at each pixel location. The authors use the
GEnI to perform a feature selection, based on the relevance
of gait features extracted from GEI, instead of using GEnI as
gait descriptor directly as in [1].

These approaches [1,2] have some drawbacks that are
worth mentioning. Firstly, they are based on computing
entropy over the side view of the gait sequence. However,
some people tend to swing their arms from side to side while
walking, and they often rotate their torso slightly. This fact
lead us to think that some dynamic and structural information
of the individual is lost when GEI or GEnI is only computed
over the side view of the gait sequence, because by just using
a single 2D image view, a large part of 3D gait information is
discarded. Figure 2 shows the GEnI, computed over several
gait cycles.

Secondly, these approaches implicitly assume that people
walk along a straight line and their walking direction does not
change during one gait cycle. However, in real-life situations
people walk on curved trajectories in order to turn a corner
or to avoid an obstacle. When the subject is walking along
a curved path, the viewing angle change causes a decrease
in the performance for most single-view-based conventional
methods, due to appearance changes.

2.2 View-independent approaches

Appearance changes due to viewing angle changes cause dif-
ficulties for most of the appearance-based gait-recognition
methods. This situation cannot be easily avoided in practical
applications. There are three major approach categories to
sort out this problem, namely: (1) approaches that construct
3D gait information through multiple calibrated cameras; (2)
approaches that extract gait features which are invariant to
viewing angle changes; (3) approaches whose performance

relies on learning mapping/projection relationship of gaits
under various viewing angles [27].

Approaches of the first category are represented by
[3,21,36]. In [36], a polyhedral and surface-mapped 3D
approximation of the visual hull [28] (VH) is used to design a
multi-modal recognition approach, that combines both face
and gait recognition. Although a polyhedral VH model is
computed, the gait-recognition scheme is based on silhouette
analysis, which does not take advantage of all the available
information because the recognition is based on single view
silhouette analysis, instead of exploiting the 3D model.

Another approach that applies image-based rendering on
VHmodels to reconstruct gait features under a required view-
ing angle is presented in [3]. This approach tries to classify
the motion of a human in a view-independent way, but it has
two drawbacks. On the one hand, the position and orientation
of a virtual camera is estimated from a straight path. Tests
were performed only on straight path motions. On the other
hand, not all the 3D information contained in the VH is used,
because the features are extracted from 2D images rendered
only from a single view.

In [21], an observation angle is estimated from thewalking
direction, by fitting a 2D polynomial curve to the foot points.
Virtual images are synthesized from 3D models, so that the
observation angle of a synthesized image is the same that the
observation angle for the real image of the subject, which is
identified by using affine moment invariants extracted from
images as gait features. Themain advantage of this method is
that the setup assumesmultiple cameras for training, but only
one camera for testing. It is able to recognize people walking
on curved paths. However, as in the above twoworks, despite
3D models are used, features are extracted from 2D images,
so that, the amount of available information is restricted. On
the other hand, shadows on the floor complicate the estima-
tion of the foot points in silhouette images.

Approaches of the second category extract gait features
which are invariant to viewing angle change. [24] described
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a method to generate a canonical view of gait from any arbi-
trary view. The main disadvantage of this method is that the
performance is significantly droppedwhen the angle between
image plane and sagittal plane is large. Besides, the synthesis
of a canonical view is only feasible from a limited number
of initial views.

In [22], a method based on homography to compute
view-normalized trajectories of body parts obtained from
monocular video sequences was proposed. However, this
method efficiently works only for a limited range of views.
Planar homography has also been used to reduce the depen-
dency between the motion direction and the camera optical
axis [23], but thismethod seems not to be applicablewhen the
person is walking nearly parallel to the optical axis. In [16]
view-invariant features are extracted from GEI. Only parts
of gait sequences that overlap between views are selected for
gait matching, but this approach cannot cope with large view
angle changes under which gait sequences of different views
can have little overlap.

A self-calibrating view-independent gait recognition
based on model-based gait features is proposed in [13]. The
poses of the lower limbs are estimated based on markerless
motion estimation. Then, they are reconstructed in the sagit-
tal plane using viewpoint rectification. This method has two
main drawbacks that are worth mentioning: (1) the estima-
tion of the poses of the limbs is not robust from markerless
motion; (2) it is not applicable for frontal view because the
poses of the limbs become untraceable; and (3) this method
assumes that subjects walk along a straight line segment.

In [6] is proposed the use of motion descriptors based on
densely sampled short-term trajectories. This method is able
to recognize people in curved trajectories with promising
results.

The approaches of the third category rely on learningmap-
ping/projection relationship of gaits under various viewing
angles. The trained relationship may normalize gait features
from different viewing angles into shared feature spaces. An
example from this category can be read in [30], where LDA-
subspaces are learned to extract discriminative information
from gait features under each viewing angle.

A view transformation model (VTM) was introduced by
[32] to transform gait features from different views into the
same view. The method of Makihara et al. [32] creates a
VTM based on frequency-domain gait features, obtained
through Fourier transformation. To improve the performance
of this method, Kusakunniran et al. [26] created a VTM
based on GEI optimized by linear discriminant analysis
(LDA). A sparse-regression-based VTM for gait recogni-
tion under various views is also proposed in [27]. However,
this method cannot cope with changes in the direction of
motion.

Although methods of the third category have better abil-
ity to cope with large view angle changes compared to

other works, some common challenges are the following
[27]: (1) performance of gait recognition decreases as the
viewing angle increases; (2) since the methods rely on
supervised learning, it will be difficult for recognizing gait
under untrained/unknown viewing angles; (3) these methods
implicitly assume that people walk along straight paths and
that their walking direction does not change during a single
gait cycle (i.e. that people do not walk along curved trajec-
tories). However, people often walk on curved trajectories in
order to turn a corner or to avoid an obstacle.

3 Proposed method

This paper proposes a method to recognize people walk-
ing on unconstrained paths, even if they walk along curved
trajectories or change direction. The gait descriptors are
extracted from 3D aligned human reconstructions, so that
a greater amount information is analysed in contrast to other
related work, which compute the gait descriptors just from
2D images, discarding a significant part of the 3D gait infor-
mation.

In gait recognition, the dynamic of the information is very
useful, because it represents temporal transitions in human
behaviour. We propose to use the dynamic of information
about the relative motion on aligned 3D gait reconstructions
by measuring entropy at each voxel location.

Some entropy-based algorithms [1,2] split the gait
sequence into gait cycles, and to do this, the sequence has to
be analysed from the beginning to the end in order to obtain
the gait frequency. However, our gait-recognition algorithm
provides the name for the person as soon as possible with-
out splitting the gait sequence into gait cycles nor computing
the whole gait sequence before providing a response, what
makes ourmethod less restrictive thanmany other techniques
described in the literature.

Besides, some of thesemethods use single lateral cameras.
However, by using a single lateral camera, the individual
would leaves the field of view very soon, so the length of the
gait sequence is restricted. Since 3D gait volumes are centred
with respect to a global reference system and aligned along
their way, we can get more images from the volumes along
a sequence.

The proposed recognition algorithm is shown in Fig. 3.
The algorithmconsists of five steps that are carried out at each
time t . Entropy is computed on a sliding temporal window
of size L . These steps are exposed in detail in this section:

1. Silhouette extraction of each camera’s view by a back-
ground subtraction technique [19].

2. 3D reconstruction from silhouettes captured from sev-
eral viewpoints, by shape from silhouette (SfS) algorithm
[11].
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Fig. 3 Steps of our gait-recognition algorithm at time t . S1, S2 and Sn
represent human silhouettes extracted from the input frames, whereas
V , V ∗, and G represent a reconstructed 3D scene, an aligned 3D human
volume, and a gait signature, respectively

3. Person detection and gait alignment.
4. Gait signature update.
5. Classification of gait signature by a machine learning

algorithm whose output is the identity of a person known
by the multi-class classification system.

The aim of the first three steps of the algorithm is to gener-
ate a 3D volume with occupancy information of the person at
time t . In addition, the last two steps of the algorithm perform
the signature update and the gait classification.

3.1 3D reconstruction, detection and alignment

Our method starts by computing a 3D reconstruction of the
individual. To do this, we need the silhouettes from multi-
ple calibrated cameras. Calibrating a multi-camera setup is a
simple process that can be done in a few minutes.

After the 3D reconstruction, the gait volumes are aligned
and centred with respect to a global reference system, so
that the generation of the descriptors can be done as if the

person had walked on a treadmill in a certain direction. In
the following we explain these steps.

3.1.1 Silhouette extraction

As we have a static background, we use Horprasert’s algo-
rithm [19] to obtain silhouettes of the walking humans.
Horprasert’s algorithm is able to deal with local and global
perturbations, such as illumination changes, shadows and
lightening in controlled environments. This algorithm is able
to detectmovingobjects on colour images, in a scene thatmay
also contain shadows. After this, we filter the noise of binary
images through morphological operations such as opening
and closing.

3.1.2 3D reconstruction

Since our method generates the gait descriptors from 3D
occupation volumes, a 3D reconstruction procedure, such
as the SfS standard algorithm is required.

We assume a three-dimensional work area that is divided
into cubes of the same size called voxels. Let us also assume
that there is a set of cameras placed at known locations
and that we have the silhouettes of the foreground objects,
obtained by a background subtraction method.

As described in more detail in [11], SfS method examine
voxel projections in the foreground images in order to deter-
mine whether they belong to the shape of objects or not. Each
voxel is projected in all the foreground images and if its pro-
jection lays completely into a silhouette in all the foreground
images, then it is considered occupied. However, if the voxel
projects in a background region in any of the images, it is con-
sidered unoccupied. Finally, if the voxel projects partially in
a foreground region, it is considered to belong to an edge
and a decision must be made. We base this decision on the
area of the projected voxel that lays into the silhouette. This
procedure requires calibration parameters, such as the cam-
eramatrix, distortion coefficients (intrinsic parameters), pose
and orientation (extrinsic parameters) of each camera.

At the end, the result is a Boolean decision (0, 1) indicat-
ing whether the region of the space represented by the voxel
is empty or occupied. Figure 4 shows the 3D reconstruction
of a gait sequence.

3.1.3 Volume detection and alignment

Since we have a Vt reconstructed volume of a person in an
instant t along the way, it is required a mechanism of detec-
tion and alignment to achieve the independence which refers
to the point of view. So that the individual can walk freely in
the scene without the orientation and direction of its motion
can affect to the subsequent generation of gait descriptors.
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Fig. 4 Example of reconstructed gait sequence, sampled at 2Hz,where
each point represents the centre of a squared voxel. The time instant is
represented by different colours (colour figure online)

For this purpose, a 3D reconstructionof the scene is carried
out at time t , and then the volume belonging to a person has
to be detected. Although there is only one individual in the
scene, we assume that reconstructed shadows aswell as noise
can coexist, due to poor segmentation results.

By obtaining the groundmarginal distribution of occupied
voxels (ground projection of the volume), we detect the vol-
ume belonging to a person as that which has a greater volume
than a certain threshold θ , and its volume has fully entered
into the workspace.

When the volume of a person has been detected, the cen-
troid p of the ground region corresponding to the detected
volume is calculated and used to estimate the trajectory,
which is determined by the displacement vector, defined as:

vt = pt − pt−1, (2)

where t is the current time, pt is the current position of the
centroid, and pt−1 is the last known position. The angle of
the displacement vector is calculated using the expression:

αt = arctan
vty

vtx
. (3)

Ground projections of the individual can be seen in Fig. 5,
where the principal axis and displacement vector are repre-
sented at several moments of the gait sequence.

The angle of the displacement vector is used to construct a
rotation matrix, which is applied to align the gait volume by
changing the coordinate system, rotating it about the vertical
axis. Then, to reduce the workspace where the descriptor
will be computed, the aligned gait volume is translated into a
bounding-box of average human’s size, so that theworkspace
where the descriptor will be computed is reduced.

Although we assume a constant walking speed, the indi-
vidual could vary moderately the walking speed at certain

Fig. 5 Displacement vector (red line) of the individual is computed
at each time. The principal axis (blue line) is perpendicular to the dis-
placement vector (colour figure online)

times of the sequence. It could happen, for example, when
the individual is depicting a closed curved path.

If the walking speed of the individual is very slow in an
instant t , |vt | will be too small, which could result in a noisy
estimation of the angle αt . To attenuate this noise, and thus
smooth the path, we propose a weighted average of the dis-
placement vector angle as follows:

ᾱt = αt · β + ᾱt−1 · (1 − β), (4)

where

β = ||vt ||
maxi=0...t {||vi ||} . (5)

The person may be in some of these states of motion:

• Constant speed: if the speed of the individual is constant
(and it is the maximum speed known) then β = 1.

• Acceleration: if the individual is increasing the walking
speed, then β � 1, so we give more importance to the
current path angle. This case is similar to the constant
speed.

• Deceleration: if the individual is slowing its motion, the
modulus of the displacement vector may not be large
enough, causing oscillations in the angle. In this case it
would be ideal to give less importance to the current path
angle. Therefore, it must be that β � 0.

A method to decrease over time the denominator in
Eq. 5 should be applied if the gait sequence were too large.
The whole reconstructed gait sequence can be centred and
alignedwith respect to the same coordinate system. It is illus-
trated in Fig. 6.

3.2 Gait identification

The algorithm step that handles up the gait identification con-
sists of two basic steps, described below.
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Fig. 6 In the centre of the image, a 3D representation of GEnV com-
puted over L 3D-reconstructed and aligned volumes of an individual.
Voxels are represented as points. Intensity on gray level represent the
entropy value corresponding to that voxel. Marginal distributions of
GEnV are also shown

3.2.1 Descriptor generation

The first one is the generation of the gait descriptor. Our gait
descriptor is based on computing the entropy associated to
the voxel values of the 3D gait sequence.

Instead of using the Shannon’s logarithmic definition of
entropy, considered in [1,2], we use a definition of entropy
based on the exponential behaviour of information-gain, pro-
posed and justified by Pal and Pal [34].

To provide the name of the person at time t , without
computing the entire gait sequence, the probability of voxel
occupation has to be computed over a sliding temporal win-
dow of size L . Given an aligned gait volume V ∗

t , let us denote
the probability of voxel occupation (p1) at time t as:

p1(x, y, z) = 1

L

t∑

i=t−L

V ∗
i (x, y, z), (6)

and p0 as:

p0(x, y, z) = 1 − p1(x, y, z), (7)

where L refers to the number of previous volumes on which
the exponential entropy will be computed.

So that, the uncertainty associated with a voxel value over
the L previous volumes can be computed, at time t , as:

GEnV(x, y, z) = m

⎛

⎝
∑

k∈{0,1}
pk(x, y, z)e

(1−pk (x,y,z)) − 1

⎞

⎠ ,

(8)

where x , y and z are the voxel coordinates, and m is a nor-
malizing constant defined as m = 1/(e1−1/2 − 1).

Gait entropy volume (GEnV) gives an insight into the
information content of the gait sequence as the intensity value
at voxel location (x, y, z), which is proportional to its entropy
value.

Several candidate signatures can be proposed here. The
first approach suggest the use of the whole GEnV descriptor
as feature vector:

G GEnV = GEnV(x, y, z). (9)

However, its dimensionality is proportional to the size of
the voxelset, whichmight be too high (thousands of features).
In addition, we can use marginal distributions of the entropy
volume to reduce dimensionalitywithout loss of information.
GEnV and marginal distributions of it are shown in Fig. 6.

According to this, we propose the following candidate
signatures:

• G GEnV
F (z, y) = 1

Nx

∑Nx
x=0 GEnV(x, y, z),

• G GEnV
S (z, x) = 1

Ny

∑Ny
y=0 GEnV(x, y, z),

• G GEnV
T (x, y) = 1

Nz

∑Nz
z=0 GEnV(x, y, z).

The definition of the above signatures leads to think that
some of them might provide more information than others.
Hence, combinations of them can be used, in order to obtain
a more discriminative combined signature. Therefore, the
combined signature is defined as follows:

G GEnV
F⊕S⊕T = G GEnV

F ,G GEnV
S ,G GEnV

T , (10)

where ⊕ represents concatenation. So let us denote the set
of possible combinations as:

view : {S, F, T, S ⊕ F, S ⊕ T, F ⊕ T, S ⊕ F ⊕ T }. (11)

Similarly, since our algorithm carries out the alignment of
3D-reconstructed gait volumes, we can also compute GEnI
of Bashir et al. [1] on binarized marginal distributions (sil-
houettes) of V ∗

t . So, let us denote the following signatures,
which can also be combined:

• G GEnI
F , GEnI computed on binarized marginal distribu-

tions of V ∗ along the X -axis,
• G GEnI

S , GEnI computed on binarized marginal distribu-
tions of V ∗ along the Y -axis,
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• G GEnI
T , GEnI computed on binarized marginal distribu-

tions of V ∗ along the Z -axis.

Finally, the total set of proposed signatures is represented
as:

G desc
view (12)

where desc : {GEnV,GEnI}.

3.2.2 Gait classification

The gait signature obtained at time t is the feature vector used
for recognition. Each of these feature vectors are assigned to
a class label that corresponds to one of the individuals in the
database. This idea iswell known asmulti-class classification
system.

We use a support vector machine (SVM) for training and
classification. SVM is a partial case of kernel-based methods
[5]. It maps feature vectors into a higher-dimensional space
using a kernel function and builds an optimal linear discrim-
inating function in this space or an optimal hyper-plane that
fits into the training data.

Our recognition algorithm provides the identity of the per-
son as soon as possible, and it does not require the sequence
to be split into gait cycles. Thismakes ourmethod less restric-
tive compared to other techniques of the literature. At each
new 3D volume, a class label is produced, based on the L
previous ones.

A majority vote policy over a sliding temporal window of
size W is used, in order to reinforce and smooth the results
over time, so that the use of this window causes a delay of
L + W frames in obtaining the identity of the subject. In the
subsequent volumes the system gives a response at the rate
of a label per new volume. The majority voting system over
a sliding temporal window is shown in Fig. 7.

t
1
t
2
t
3
t
4
t
5
t
6
t
7
t
8
t
9
t
10
t
11

t
n

t
12

L=4

L=4

vote at t
4

vote at t
5

vote at t
6

W=3 majority vote at t
6

L=4

L=4 vote at t
7

W=3 majority vote at t
7

Fig. 7 Majority vote policy over a sliding temporal window. In the
example, the size of the signature is set to L = 4, and the size of
the voting window is set to W = 3. This means that the probability
of occupation p1 (see Eq. 6) is calculated over the previous L = 4
volumes

Before training a SVM model, we adopt the subspace
component and discriminant analysis, based on principal
component analysis (PCA) and LDA, which seeks to project
the original features to a subspace of lower dimensionality
so that the best data representation and class separability can
be achieved simultaneously [20].

4 Experiments and discussion

In this section, we describe the datasets we have used, and
then we present the experiments conducted to evaluate the
proposed gait-recognition method and signatures.

4.1 Datasets description

In order to be used by our algorithm, the dataset must contain
2D gait images captured by multiple synchronized cameras,
which have to be calibrated.

Two synchronized multi-view datasets have been used to
perform our experiments, the AVA Multi-View Dataset for
Gait Recognition (AVAMVG)1 [31] and the Kyushu Univer-
sity 4D Gait Database (KY4D)2 [21].

In AVAMVG, 20 subjects perform 9 walking trajectories
in an indoor environment. Each trajectory is recorded by 6
synchronized IEEE-1394 FireFlyMV FFMV-03M2C colour
cameras placed around a room that is crossed by the subjects
during the performance, according to the distribution shown
in diagram of Fig. 8. The actors enter into the scene from
different entry points, which makes this dataset suitable to
test view-independent gait-recognitionmethods. Trajectories
{t1, . . . , t3} are straight while {t4, . . . , t9} are curved.

The video sequences of AVAMVG have a resolution of
640 × 480 pixels, and they were recorded at a rate of 25
frames per second. An example of this dataset is shown in
Fig. 9.

With respect to KY4D gait database, it is composed of
sequential 3D models and image sequences of 42 subjects
walking along four straight and two curved trajectories. The
sequences were recorded by 16 cameras, at a resolution of
1032 × 776 pixels. The setup is shown in Fig. 10. Although
KY4D gait database provides sequential 3D models of sub-
jects, we have reconstructed them with the same SfS method
and resolution parameters used for getting the AVAMVG
models.

As far as we know, there are others well-known multi-
camera databases, such as the CMUmotion of body database
[14] and CASIA Dataset B [42]. However, since these data-

1 Publicly available at: http://www.uco.es/investiga/grupos/ava/node/
41.
2 Publicly available at: http://robotics.ait.kyushu-u.ac.jp/research-e.
php?content=db.
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Fig. 8 Workspace setup of AVAMVGdataset, where {c1, . . . , c6} rep-
resent the set of cameras of the multi-view setup and {t1, . . . , t9}
represent the different trajectories performed by each actor

bases do not include information on camera parameters, 3D
models of walking people cannot be obtained. Moreover, in
the case of CASIA, videos are not synchronized [39]. There-
fore, we could not use these databases in the experiments of
the present study.

4.2 Experimental setup

We describe below the different experiments performed to
test our gait-recognition method, 3D gait descriptors and
derived signatures.

Fig. 10 Experimental setup of KY4D

• ExperimentA: baseline.Weadopt the approach described
in [1] as baseline, which will be used to benchmark the
performance of our proposedmethod.Aswehave aligned
the 3D volumes, we can compute entropy on binarized
marginal distributions of the reconstructed volumes (sil-
houettes) and test GEnI independently of the trajectory,
even with curved paths. For this experiment, we use all
trajectories (linear and curved) of the AVAMVG and
KY4D databases. As it was described in [1], matching
based on minimal distances between GEnI descriptors
is carried out. Before matching, a PCA+LDA feature
reduction process is performed. We use a leave-one-out
cross-validation strategy for both databases.

• Experiment B: GEnV. The aim of this experiment is to
evaluate the performance obtained by using the G GEnV

signature. Since it dimensionality is very large (propor-
tional to the 3D reconstruction resolution), we also aim
to evaluate the impact of the dimensionality reduction
(PCA) and the effect of improving the class separability

Fig. 9 Example of AVAMVG dataset. People walking in different directions, from multiple points of view

123



1088 D. López-Fernández et al.

by preserving as much of the class discriminatory infor-
mation as possible (LDA), on final recognition perfor-
mance.WeuseSVManda leave-one-out cross-validation
strategy with all trajectories (linear and curved) for both
AVAMVG and KY4D databases.

• Experiment C: single signatures. In this experiment we
try to determine the most discriminative GEnV-based
single signature. We also aim to compare the obtained
performance by using single signatures based on the
GEnV, with the obtained performance by using single
signatures based on GEnI. As in the experiment B, we
also apply PCA+LDA in order to achieve the best data
representation and class separability simultaneously. We
use a SVM and leave-one-out cross-validation strategy
with all trajectories (linear and curved) of bothAVAMVG
and KY4D databases.

• Experiment D: combined signatures. The aim of this
experiment is to find out the most discriminative com-
bined GEnV signature. As in the Experiment C, we also
aim to compare the obtained performance by using com-
binedGEnVsignatureswith the performance obtained by
using combined GEnI signatures. We apply PCA+LDA,
SVM, and leave-one-out cross-validation strategy with
all trajectories (linear and curved) for both databases.

• Experiment E: majority vote policy over a sliding tem-
poral window. This experiment focuses on testing the
effect of the majority vote policy over a sliding tem-
poral window on the final performance. We select the
most discriminative signatures that were found out in the
experiment D and we test them on both databases.

• Experiment F: number of cameras. This experiment
focuses on determining the number of cameras which
are required in the reconstruction step to achieve a good
performance.

• Experiment G: training and testing with different camera
setup. This experiment aim to test the effect of training
and testing with different subsets of cameras.

• Experiment H: training on straight paths and testing
on curved paths. In this experiment, we use linear tra-
jectories for training and curved trajectories for testing.
We compare the best signatures found in the previous
experiments with some related methods that are able to
recognize people on curved trajectories.

Before conducting the experiments, we need to determine
the value of several basic parameters of our method. Thus,
considering the 3D reconstruction step, the first parameter
to be determined is the voxel size. We consider that a voxel
size of 0.27×10−4 m3 is enough to get a detailed 3D human
reconstruction.

The average corporal volume for humans is 66.4 l mea-
sured by the water displacement method in 521 people aged
between 17 and 51 years [12]. Using a voxel size of 2.7 cl,

the number of voxels belonging to a person in the 3D volume
should be about 2459. Thus, for θ > 1×103 (see Sect. 3.1.3)
the system should be able to detect both children and adults.

The number of L volumes where entropy is computed is
set to L = 20, because with a rate of 25 volumes per seconds,
this value roughly matches with the average length of a gait
cycle.

Lastly, regarding the dimensionality reduction, we tested
a range from ε = 0.75 to ε = 0.99 for the percentage of
variance (energy contained in the components signal) that
PCA should retain.

4.3 Results

We present the results of the experiments that were described
in the previous section.

Wehave adopted the approach described in [1] as baseline.
Table 1 shows its performance for each database. As we have
3D aligned gait volumes, the GEnI can be computed over
binarized marginal distributions of the aligned volumes, i.e
silhouettes. We perform matching between GEnI features
and we use a leave-one-out cross-validation strategy. In the
case of the AVAMVG dataset, each fold is composed by a
tuple formed by a set of 20 gait sequences (one sequence
per actor) for testing, and by the remaining eight trajectories
of each actor for training, i.e. 8 × 20 sequences for training
and 20 sequences for test. For the KY4D gait dataset, each
fold is composed by 42 sequences for testing (one sequence
per actor) and by the remaining five sequences of each actor
(i.e. 42 × 5 sequences) for training. To make the choice of
SVM parameters independent of the sequence test data, we
cross-validate the SVMparameters on the training set. As can
be seen, the obtained accuracy is 90.27% for the AVAMVG
dataset and 87.67% for the KY4D dataset. It corresponds to
Experiment A (see Sect. 4.2).

We show in Table 2 the performance of G GEnV as gait
signature. Due to the high dimensionality, which is propor-
tional to the 3D gait volume resolution (about 74 × 103

features in a volume with base of 1m2 and height of 2m,

Table 1 Results of GEnI baseline approach (Experiment A)

Database Signature Without dim.
red. (%)

PCA
(%)

PCA+LDA
(%)

ε

AVAMVG GEnI [1]
(baseline)

79.23 74.06 90.27 0.95

KY4D GEnI [1]
(baseline)

87.97 84.82 87.67 0.95

We report the quantitative results obtained with the approach described
in [1]. From the fourth to the fifth columns are indicated the dimen-
sionality reduction techniques applied. The sixth column indicates the
best PCA energy found for each descriptor. Each row corresponds to a
database
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Table 2 Results obtained by usingGEnV as gait signature (Experiment
B)

Database Signature PCA (%) PCA+LDA (%) ε

AVAMVG GGEnV 77.63 70.10 0.95

KY4D GGEnV 78.46 94.52 0.95

From the third to the fourth columns are indicated the dimensionality
reduction techniques applied. The fifth column indicates the best PCA
energy found for each descriptor. Each row corresponds to a database.
The size of the sliding temporal window for majority voting is set to
W = 1

with voxel size of 2.7cl), we have applied dimensionality
reduction techniques. In this experiment, the number of fea-
tures in AVAMVG after applying dimensionality reduction
is 101 with PCA, and C − 1 = 19 with PCA+LDA where
C is the number of classes in our multi-class system. On the
other hand, for the KY4D database, the number of features
is 670 after PCA, and 41 after PCA+LDA.

We use SVM with radial basis functions (RBF) and a
leave-one-out cross-validation strategy. To make the choice
of SVM parameters independent of the sequence test data,
we cross-validate the SVM parameters on the training set.
In this experiment, for the sake of simplicity, we disabled
the sliding temporal window for majority voting (W = 1).
As can be seen, by using this signature on the AVAMVG
gait dataset, the accuracy on subject identification is rather
far from baseline. However, with the KY4D gait database,
the accuracy is higher than the baseline. It corresponds to
Experiment B (see Sect. 4.2).

In Tables 3 and 4 we compare the obtained performance
by using a single signature (not combined) based on GEnV,
with the obtained performance by using a single GEnI sig-
nature, for the AVAMVG dataset and the KY4D database,
respectively. It corresponds to experiment C (see Sect. 4.2).
This experiment was carried out without applying the slid-
ing temporal window of majority vote (W = 1). In order
to achieve the best data representation and class separabil-
ity simultaneously, we apply PCA+LDA to the training and
test data. A SVM-RBF with leave-one-out cross-validation
strategy is used for training and classification. As we may
observe, the G GEnV

S signature improves results fairly well
compared to baseline on both gait databases.

The obtained accuracy by using LDA is very similar than
the obtained accuracy by just using PCA. However, the num-
ber of features with LDA is significantly reduced compared
with PCA. If the system can be trained off-line, LDA allows
SVM to handle a feature space of low dimensionality, and
the identity of the individual can be given in less time.

Experiment E (see Sect. 4.2) focuses on testing the effect,
on the final performance, of the majority voting policy over
a sliding temporal window. The size of the sliding tempo-
ral window for majority voting is limited by the number of
available gait signatures for each sequence. Figures 11, 12,

Table 3 Recognition results obtained by using a single signature based
on GEnV compared to the results obtained by using a single signature
based on GEnI, on the AVAMVG gait database (Experiment C)

Signature Without dim. red. (%) PCA (%) PCA+LDA (%) ε

GGEnV
S 97.19 97.03 96.84 0.95

GGEnI
S 95.34 94.81 92.63 0.85

GGEnV
F 94.27 94.15 91.94 0.95

GGEnI
F 90.78 89.47 87.06 0.85

GGEnV
T 70.73 65.86 58.41 0.90

GGEnI
T 60.50 57.27 50.52 0.85

From the third to the fourth columns are indicated the dimensional-
ity reduction techniques applied. The fifth column indicates the best
PCA energy found for each descriptor. The size of the sliding temporal
window for majority voting is set to W = 1

Table 4 Recognition results obtained by using a single signature based
on GEnV compared to the results obtained by using a single signature
based on GEnI, using the KY4D gait database (Experiment C)

Signature Without dim. red. (%) PCA (%) PCA+LDA (%) ε

GGEnV
S 90.92 92.74 92.50 0.95

GGEnI
S 88.90 89.53 87.88 0.90

GGEnV
F 84.42 84.75 84.40 0.99

GGEnI
F 77.25 78.34 76.06 0.90

GGEnV
T 78.42 78.68 76.35 0.95

GGEnI
T 76.43 74.55 73.60 0.85

From the third to the fourth columns are indicated the dimensional-
ity reduction techniques applied. The fifth column indicates the best
PCA energy found for each descriptor. The size of the sliding temporal
window for majority voting is set to W = 1

13 and 14 show how the accuracy for selected signatures
(using PCA+LDA) increases with respect to the size of the
sliding temporal window for majority voting. As can be seen,
the use of the sliding temporal window for majority voting
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increases the performance significantly, achieving the perfect
identification in some cases by using single signatures based
on GEnV.

We have hypothesized that the combination of signatures
will lead to a better performance, because the concept of 3D
gait volume enables us to get a larger amount of dynamical
and structural information of gait.

In order to find out the most discriminative combined
signature on both gait databases, we have carried out the
Experiment D (see Sect. 4.2). In Tables 5 and 6 we report the
performance obtained by using combined GEnV signatures,
compared with the performance obtained by using combined
GEnI signatures. We use SVM-RBF with a leave-one-out
cross-validation strategy.

As can be seen, both G GEnV
S⊕F and G GEnV

S⊕F⊕T signatures
provide good results on AVAMVG and KY4D gait data-
bases. However the accuracy’s confidence intervals at 95%
obtained for both measures are overlapped. For this reason,
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Table 5 Comparative results obtainedwith combinedGEnV signatures
and combinedGEnI signatures using theAVAMVGdataset (Experiment
D)

Signature PCA (%) PCA+LDA (%) ε

GGEnV
S⊕F 97.94 97.95 0.95

GGEnI
S⊕F 96.82 95.44 0.85

GGEnV
S⊕T 96.51 95.99 0.95

GGEnI
S⊕T 96.03 94.63 0.80

GGEnV
F⊕T 92.74 92.82 0.99

GGEnI
F⊕T 90.04 90.27 0.90

GGEnV
S⊕F⊕T 97.20 97.16 0.95

GGEnI
S⊕F⊕T 97.52 97.29 0.90

From the second to the third columns are indicated the dimensional-
ity reduction techniques applied. The fourth column indicates the best
PCA energy found for each descriptor. The size of the sliding temporal
window for majority voting is set to W = 1

Table 6 Comparative results obtainedwith combinedGEnV signatures
and combined GEnI signatures using the KY4D dataset (Experiment D)

Signature PCA (%) PCA+LDA (%) ε

GGEnV
S⊕F 94.23 94.04 0.95

GGEnI
S⊕F 92.40 91.18 0.90

GGEnV
S⊕T 94.34 93.76 0.95

GGEnI
S⊕T 93.91 92.18 0.90

GGEnV
F⊕T 90.62 89.47 0.99

GGEnI
F⊕T 87.58 86.12 0.95

GGEnV
S⊕F⊕T 95.00 95.13 0.95

GGEnI
S⊕F⊕T 94.28 93.17 0.90

From the second to the third columns are indicated the dimensional-
ity reduction techniques applied. The fourth column indicates the best
PCA energy found for each descriptor. The size of the sliding temporal
window for majority voting is set to W = 1
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we cannot conclude that one is better than the other from
the point of view of accuracy. On the other hand, from the
point of view of computational cost, the cost of G GEnV

S⊕F⊕T is
greater than the computational cost of G GEnV

S⊕F . Therefore, for
a system in operation, G GEnV

S⊕F could be the most appropriate
signature.

As part of experiment E, we have tested the effect, on the
final performance, of themajority voting policy over a sliding
temporal window and combined signatures. Figures 15, 16,
17 and18 show the accuracy for the selected signatures (using
PCA+LDA) with respect to the size of the sliding temporal
window for majority voting. As we may observe, the use of
the sliding temporal window for majority voting increases
the performance significantly. The accuracy reaches 100%
for all the signatures based on GEnV on both dataset.

In order to determine the number of cameras that should
be employed and its effect on the performance, we have
designed a leave-one-out cross-validation experiment. As in
the other experiments, to make the choice of SVM parame-
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ters independent of the sequence test data, we cross-validate
the SVM parameters on the training set. We selected the sig-
nature configuration that achieved the best performance in
the previous experiments (G GEnV

S⊕F and G GEnV
S⊕F⊕T ) and then we

tested them with a set of KY4D models which have been
reconstructed using a number of cameras in the range 2–16.
As can be seen in Fig. 19, with just three calibrated cameras,
our method is able to correctly classify up to 95% of individ-
uals, independently of the path, evenwith curved trajectories.

To perform Experiment G, we have reconstructed all the
gait sequences of KY4D from two subsets of cameras. The
subset A is composed by cameras {07451471, 07121059,
07451527, 07451476}, whereas the subset B is composed
by cameras {07340706, 07172435, 07230135, 07451462}.
Then, we designed a leave-one-out cross-validation exper-
iment, but using the subset A for training and subset B for
testing.We obtained 90.57% of recognition rate with G GEnV

S⊕F
and 94.26% with G GEnV

S⊕F⊕T .
The results shown in Tables 7 and 8 correspond to Exper-

iment H (see Sect. 4.2). For the corresponding tests on
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Table 7 Comparative of recognition results on AVAMVG dataset
(Experiment F)

Method Test curve t4 (%) Test curve t7 (%) AVG (%)

Castro et al. [6] 95 95 95

Iwashita et al. [21] 35.14 37.71 36.42

GGEnV
S⊕F (PCA+LDA) 97.61 98.41 98.01

GGEnV
S⊕F⊕T (PCA+LDA) 97.62 98.84 98.23

GGEnI
S⊕F⊕T (PCA+LDA) 96.20 98.42 97.31

Training on trajectories t1 + t2 + t3 (straight paths). Each row corre-
sponds to a different method. The second and third columns indicate the
tested trajectory. The size of the sliding temporal window for majority
voting is set to W = 80

Table 8 Comparative of recognition results on KY4D dataset (Exper-
iment F)

Method Test curve 1 (%) Test curve 2 (%) AVG (%)

Iwashita et al. [21] 61.90 71.40 66.65

GGEnV
S⊕F (PCA+LDA) 44.92 42.08 43.50

GGEnV
S⊕F⊕T (PCA+LDA) 57.83 79.28 68.55

GGEnI
S⊕F⊕T (PCA+LDA) 55.26 87.31 71.28

Training on trajectories 1+ 2+ 3+ 4 (straight paths). Each row corre-
sponds to a different method. The second and third columns indicate the
tested trajectory. The size of the sliding temporal window for majority
voting is set to W = 135

AVAMVG, we have trained on linear trajectories {t1, t2, t3}
(all in the same set), and tested on curved trajectories {t4, t7}
(see corresponding columns). For theKY4Ddataset, we have
trained on linear trajectories {1, 2, 3, 4} (all in the same set)
and tested on curved trajectories {curve 1 and curve 2} (see
Sect. 4.1 for more details). We have compared our best sig-
natures with other related methods that are able to recognize
people on curved trajectories, such as [6,21]. The size of the
sliding temporal window for majority voting of our method
is set toW = 80 for AVAMVGandW = 135 for KY4D. The

methodofCastro et al. [6] only canbe tested on theAVAMVG
dataset, because it need colour or grayscale images, and the
KY4D dataset only provides binary silhouettes and 3Dmod-
els.

Wehavenotice a lowperformance of themethodpresented
in [21] when it is trained with straight paths and tested with
curves of the AVAMVG dataset. We think it may be due
to the low number of cameras of AVAMVG (6 cameras), in
contrastwith the number of cameras of theKY4Dgait dataset
(16 cameras). On the one hand, it seems reasonable to think
that fewer cameras leads us to obtain 3D reconstructions of
lower precision. Besides the number of cameras, the quality
of silhouettes is also a factor that must be considered. On
the other hand, in the AVAMVG dataset, depending on the
viewpoint and performed trajectory, people appear at diverse
scales, even showing partially occluded body parts, which
adversely affects to the performance of [21].

If the classifier is trained with just linear trajectories, both
G GEnI
S⊕F⊕T and G GEnV

S⊕F⊕T signatures provide good results. How-
ever, training with both linear and curved trajectories leads
to get better performance, as we can see in results of Exper-
iments D and E, and in that case, GEnV-based signatures
provide the best performance. We think when a subject is
walking along a curved path, the gait pattern is consequently
modified, and signatures based on GEnV are able to better
capture dynamical 3D information than signatures based on
GEnI, as was probed in Experiments D and E. For this rea-
son, on unconstrained paths, we suggest the use of G GEnV

S⊕F or
G GEnV
S⊕F⊕T signatures.

5 Conclusions

This paper has proposed a method to recognize walking
humans independently of the viewpoint, even with curved
trajectories. Our method achieves a good recognition rate on
unconstrained paths, in contrast to other view-independent
approaches which restrict the view change to a few angles on
straight trajectories.

A new gait descriptor, called GEnV has also been pro-
posed. GEnV focuses on capturing 3D dynamic information
of walking humans through the concept of entropy, applied
on volumetric reconstructions. The use of volumetric recon-
structions allowsmore information to be analysed in contrast
to other related works, which only compute the gait descrip-
tors from 2D images, discarding a significant part of 3D
dynamical information of the gait. Several signatures based
onGEnVhave also beenproposed in order to get better recog-
nition rate.

We have tested the classification performance for each
proposed gait signature on the AVAMVG [31] and on the
KY4D [21]. The experimental results show that GEnV-based
signatures such as G GEnV

S⊕F and G GEnV
S⊕F⊕T are the most reli-
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able signatures for using with our gait-recognition method
on unconstrained path, providing good results in both gait
databases. Finally, by using a majority voting policy on a
sliding temporal window, the system is able to reach a per-
fect identification of individuals for both datasets.
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