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Abstract

If X is a finite set of points in a multiprojective space Pn1×· · ·×Pnr with r ≥ 2,
then X may or may not be arithmetically Cohen-Macaulay (ACM). For sets of
points in P1 × P1 there are several classifications of the ACM sets of points. In
this paper we investigate the natural generalizations of these classifications to an
arbitrary multiprojective space. We show that each classification for ACM points
in P1×P1 fails to extend to the general case. We also give some new necessary
and sufficient conditions for a set of points to be ACM.

1. Introduction

Let X be a finite set of points in a multiprojective space Pn1 × · · · × Pnr , and let R/IX
denote the associated Nr-graded coordinate ring. When r = 1, then R/IX is always
Cohen-Macaulay. On the other hand, if r ≥ 2, then R/IX may or may not be Cohen-
Macaulay. More precisely, we know that dim R/IX = r, the number of projective
spaces. However, the depth of R/IX may take on any value in the set {1, . . . , r}.
When R/IX is Cohen-Macaulay, that is, depthR/IX = dim R/IX = r, then X is called
an arithmetically Cohen-Macaulay (ACM) set of points.
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Because a set of points in a multiprojective space may or may not be ACM, a
natural problem arises:

Problem 1. Find a classification of ACM sets of points in Pn1 × · · · × Pnr for r ≥ 2.

Little is known about this problem except in the case that X ⊆ P1 × P1. In this
situation there are several classifications. Giuffrida, Maggioni, and Ragusa [7], who
helped to initiate the study of points in multiprojective spaces (see, for example [8, 9,
12, 13, 14, 18, 20, 21, 22] for more on these points), provided the first classification.
They showed that ACM sets of points in P1 × P1 can be classified via their Hilbert
functions. The two authors [11, 21] independently gave geometric classifications of
ACM sets of points in P1 × P1. More recently, L. Marino [16] used the notion of a
separator to provide a new classification of ACM sets of points in P1 × P1.

In this paper we will consider the natural generalizations of the above classifica-
tions to an arbitrary multiprojective space. As we shall show, these natural general-
izations no longer classify ACM sets of points, thus suggesting a solution to Problem 1
is quite subtle. We give a partial answer to Problem 1 by giving some necessary and
sufficient conditions for a set of points to be ACM in Pn1 × · · · × Pnr .

Before proceeding, we should point out that Problem 1 is a refinement of the
following question: if X1, . . . , Xs are linear subspaces of Pn, then when is X =

⋃s
i=1 Xi

ACM? To see this, note that if we consider only the graded structure of R/IX, then the
defining ideal of each point is also the defining ideal of a linear subspace in a projective
space. This paper, therefore, can be seen as one attack on this more general question.
Alternatively, this paper can viewed as part of the program to understand when a
multigraded ring is Cohen-Macaulay (for example, see [4]).

We now expand upon the results of this paper. We start in Section 2 by recalling
the relevant results and definitions about sets of points in a multiprojective space.
In Section 3 we study the Hilbert function of an ACM set of points. As mentioned
above, ACM sets of points in P1 × P1 can be classified via their Hilbert function HX;
precisely, X is ACM in P1×P1 if and only if ∆HX, a generalized first difference function,
is the Hilbert function of a bigraded artinian quotient of k[x1, y1]. One direction of this
characterization extends to any multiprojective space, as first proved by the second
author [21]:

Theorem 1.1 (Theorem 3.2)

Let X ⊆ Pn1 × · · · × Pnr be a finite set of points with Hilbert function HX. If
X is ACM, then ∆HX is the Hilbert function of an Nr-graded artinian quotient of
k[x1,1, . . . , x1,n1 , . . . , xr,1, . . . , xr,nr ] with deg xi,j = ei.

It was not known whether the converse held (in fact, this question was raised in the
second author’s thesis [19, Question 1.3.9]). We give the first example (see Example 3.3)
of a set of points in P2 × P2 for which the converse fails and it can be extended to
any multiprojective space Pn1 × · · · × Pnr with at least two ni’s greater than or equal
to 2. This example together with Example 3.4 demonstrates that we cannot expect a
classification of ACM sets of points based only upon the Hilbert function. However, if
all but one of the ni’s equal one, we expect the converse of Theorem 3.2 to hold. We
give partial evidence for this claim in Theorem 3.7 where we show that the converse
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holds for sets of points X in P1 × · · · × P1 (r times) with depth(R/IX) = r − 1. In
fact, Theorem 3.7, combined with Theorem 1.1, will allow us to give a new proof of
Giuffrida, Maggioni, and Ragusa’s result.

In Section 4 we examine how the geometry of a set of points influences its ACM-
ness. If X is a set of points in Pn×Pm, we say that X satisfies property (?) if whenever
P1 × Q1 and P2 × Q2 are in X with P1 6= P2 and Q1 6= Q2, then either P1 × Q2 or
P2×Q1 (or both) are in X. The two authors independently showed (see [11, 21]) that X
is ACM in P1 × P1 if and only if X satisfies property (?). We extend one direction of
this classification:

Theorem 1.2 (Theorem 4.5)

Let X ⊆ P1 × Pn be a finite set of points. If X satisfies property (?), then X
is ACM.

The converse, however, is false, as shown in Example 4.9 where we give an example
of an ACM set of points in P1 × P2 which fails to satisfy property (?). At the end of
Section 4, we show how to use Theorem 1.2 to easily construct ACM sets of points in
P1 × Pn.

In Section 5 we study the connection between the separators of a point and the
ACMness of a set of points. If P ∈ X, then the multihomogeneous form F ∈ R is a
separator for P if F (P ) 6= 0 and F (Q) = 0 for all Q ∈ X \ {P}. The degree of a
point P ∈ X is the set

degX(P ) = min {deg F | F is a separator for P ∈ X}.

(We are using the partial order on Nr defined by (i1, . . . , ir) � (j1, . . . , jr) whenever
it ≥ jt for t = 1, . . . , r.) Note that if r ≥ 1, then we may have |degX(P )| > 1.
Separators for points in P1×P1 were first introduced by Marino [14], who extended the
original definition for points in Pn due to Orecchia [17]. Marino has recently shown [16]
that a set of points X ⊆ P1×P1 is ACM if and only if |degX(P )| = 1 for all P ∈ X. We
show that one direction of Marino’s result holds in an arbitrary multiprojective space:

Theorem 1.3 (Theorem 5.7)

Let X ⊆ Pn1 ×· · ·×Pnr be a finite set of points. If X is ACM, then |degX(P )| = 1
for every point P ∈ X.

The converse of Theorem 1.3 fails to hold; Example 5.10 gives an example of a set
of points X ⊆ P2 × P2 where every point P ∈ X has |degX(P )| = 1, but X fails to
be ACM.

Finally, we note that examples of points in Pn1 × · · · × Pnr , especially the coun-
terexamples to the converses of Theorems 1.1, 1.2, and 1.3, play a prominent role in this
paper. Instrumental in finding these examples was the computer program CoCoA [5].
To encourage further experimentation, our CoCoA scripts and examples can be found
on the second author’s webpage.1

1http://flash.lakeheadu.ca/∼avantuyl/research/ACMexamples Guardo VanTuyl.html
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2. Preliminaries

We begin by recalling some relevant results about points in a multiprojective space. A
more thorough introduction to points in a multiprojective space can be found in [20, 21].
In this paper k denotes an algebraically closed field of characteristic zero.

We shall write (i1, . . . , ir) ∈ Nr as i. We induce a partial order on the set Nr by
setting (a1, . . . , ar) � (b1, . . . , br) if ai ≥ bi for i = 1, . . . , r. The coordinate ring of the
multiprojective space Pn1 × · · · × Pnr is the Nr-graded ring

R = k[x1,0, . . . , x1,n1 , x2,0, . . . , x2,n2 , . . . , xr,0, . . . , xr,nr ]

where deg xi,j = ei, the ith standard basis vector of Nr. We use

R = k[x0, . . . , xn, y0, . . . , ym]

if considering the multiprojective space Pn × Pm. If

P = [a1,0 : · · · : a1,n1 ]× · · · × [ar,0 : · · · : ar,nr ] ∈ Pn1 × · · · × Pnr

is a point in this space, then the ideal IP of R associated to P is a prime ideal of the
form

IP = (L1,1, . . . , L1,n1 , . . . , Lr,1, . . . , Lr,nr)

where deg Li,j = ei for j = 1, . . . , ni. When X = {P1, . . . , Ps} is a set of s distinct
points in Pn1 × · · · ×Pnr , then IX = IP1 ∩ · · · ∩ IPs , where IPi is the ideal associated to
the point Pi, is the ideal generated by all the multihomogeneous forms that vanish at
all the points of X. The ideal IX is a multihomogeneous (or simply, homogeneous)
ideal of R.

Theorem 2.1

Let X ⊆ Pn1 × · · · × Pnr be a finite set of points. Then

dim R/IX = r and 1 ≤ depth R/IX ≤ r.

In fact, for any l ∈ {1, . . . , r}, there exists a set of points Xl with depth R/IXl
= l.

Proof. Because each prime ideal IPi with Pi ∈ X has height
∑r

i=1 ni, it follows that
dim R/IX = r. For the statement about the depth, see [21, Proposition 2.6]. �

Definition 2.2 A set of points X ⊆ Pn1 × · · · × Pnr is arithmetically Cohen-
Macaulay (ACM) if dim R/IX = depthR/IX = r, that is, if R/IX is Cohen-Macaulay
(CM).

Remark 2.3 When r = 1, it is clear from Theorem 2.1 that X is always ACM. However,
when r ≥ 2, it is possible that depthR/IX < dim R/IX, and consequently, X will not be
ACM. The sets Xl in Theorem 2.1 can be constructed with the property that |Xl| = 2.
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We will periodically require the following result which guarantees the existence of
a regular sequence of specific degrees.

Theorem 2.4

Suppose that X is set of points in Pn1 × · · · × Pnr with depth R/IX = l ≥ 1.
Then there exist elements L1, . . . , Ll in R/IX such that L1, . . . , Ll give rise to a regular
sequence in R/IX and deg Li = ei for i = 1, . . . , l.

Proof. One can adapt the proof of [21, Proposition 3.2] to get the desired conclusion. �

Remark 2.5 By Theorem 2.4, when X is an ACM set of points in Pn1 × · · · × Pnr ,
then there exists L1, . . . , Lr with deg Li = ei such that the Li’s give rise to a regular
sequence. After a change of coordinates, we may assume that Li = xi,0 for i = 1, . . . , r.
Note that xi,0 does not vanish at any point of X. Furthermore, since each xi,0 is
homogeneous, any permutation of {x1,0, . . . , xr,0} is also a regular sequence on R/IX.

The coordinate ring of X, that is, R/IX, inherits the Nr-grading of R. We can
then apply the following definition:

Definition 2.6 Let I be a multihomogeneous ideal of R. The Hilbert function of
S = R/I is the numerical function HS : Nr → N defined by

HS(i) := dimk Si = dimk Ri − dimk(I)i for all i ∈ Nr.

When S = R/IX is the coordinate ring of a set of points X, then we usually say HS is
the Hilbert function of X, and write HX.

Remark 2.7 An interesting open problem is to classify what functions can be the
Hilbert function of a set of points in Pn1 × · · ·×Pnr . When r = 1, then the set of valid
Hilbert functions for sets of points in Pn was first classified by Geramita, Maroscia,
and Roberts [6]. However, very few results are known if r ≥ 2. See [7, 20, 21] for more
on this problem, and some necessary conditions.

In the study of the Hilbert functions of points in Pn, one can use the first difference
Hilbert function to ascertain certain geometric and algebraic information about the
set of points. As we shall see in the next section, a generalized first difference Hilbert
function is a tool that provides information about the ACMness of sets of points
in Pn1 × · · · × Pnr . The definition that we shall require is:

Definition 2.8 If H : Nr → N is a numerical function, then the first difference
function of H, denoted ∆H, is defined to be

∆H(i) :=
∑

0 � l=(l1,...,lr)�(1,...,1)

(−1)|l|H(i1 − l1, . . . , ir − lr)

where H(j) = 0 if j 6� 0 and |l| = l1 + · · ·+ lr.

Note that when r = 1, we recover the well known first difference function ∆H(i) =
H(i)−H(i− 1) where H(i) = 0 if i < 0.
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3. ACM sets of points and their Hilbert functions

In this section we revisit a classification of ACM sets of points in P1 × P1 due to
Giuffrida, Maggioni, and Ragusa [7]:

Theorem 3.1

Let X ⊆ P1 × P1 be a finite set of points with Hilbert function HX. Then X is
ACM if and only if ∆HX is the Hilbert function of a bigraded artinian quotient of
k[x1, y1].

As shown by the second author [21], one direction of this classification extends quite
naturally to an arbitrary multiprojective space, thus giving us a necessary condition
for a set of points to be ACM. However, what was not known was whether or not the
converse statement held; we show via an example that the converse fails, thus showing
that ACM sets of points cannot be classified by Hilbert functions. We also give a new
proof for Theorem 3.1. We begin by recalling the partial generalization of Theorem 3.1.

Theorem 3.2 ([21, Corollary 3.5])

Let X ⊆ Pn1 × · · · × Pnr be a finite set of points with Hilbert function HX. If
X is ACM, then ∆HX is the Hilbert function of an Nr-graded artinian quotient of
k[x1,1, . . . , x1,n1 , . . . , xr,1, . . . , xr,nr ].

Proof. We sketch out the idea of the proof. Because X is ACM, by Theorem 2.4
there exists a regular sequence L1, . . . , Lr ∈ R/IX with deg Li = ei. Let J0 = IX and
Ji = (Ji−1, Li) for i = 1, . . . , r. Then, for each i we have a short exact sequence

0 → R/Ji−1(−ei)
×Li−−−→ R/Ji−1 −→ R/Ji → 0.

Using the r short exact sequences, one can show that ∆HX is the Hilbert function of
R/Jr. Furthermore, because R/IX is ACM and Jr = IX + (L1, . . . , Lr), we have that
R/Jr is artinian. By Remark 2.5, if we make a change of coordinates so that Li = xi,0,
then

R/Jr
∼= (R/(x1,0, . . . , xr,0))/((IX, x1,0, . . . , xr,0)/(x1,0, . . . , xr,0))

and R/(x1,0, . . . , xr,0) ∼= k[x1,1, . . . , x1,n1 , . . . , xr,1, . . . , xr,nr ]. �

The following two examples show that the converse to Theorem 3.2 is not true in
general; these examples are the first known counterexamples to the converse statement.

Example 3.3 Let P1, . . . , P6 be six points in general position in P2. By general
position we mean that no more than two points lie on line, and no more than five
points lie on a conic. Set Qi,j := Pi×Pj ∈ P2×P2, and let X be the following set of 27
points:

X = {Q1,1, Q1,2, Q1,3, Q1,4, Q1,5, Q1,6, Q2,1, Q2,3, Q2,4, Q2,6, Q3,1, Q3,2, Q3,5, Q3,6,

Q4,1, Q4,2, Q4,5, Q4,6, Q5,1, Q5,3, Q5,6, Q6,1, Q6,2, Q6,3, Q6,4, Q6,5, Q6,6}.
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Then X is not ACM since R/IX has projective dimension 5 (and not 4 for R/IX to be
Cohen-Macaulay) because the minimal graded resolution is

0 → R → R13 → R38 → R42 → R17 → R → R/IX → 0

where we have suppressed the bigraded shifts. For this set of points, HX and ∆HX are

HX =


1 3 6 6 · · ·
3 9 18 18 · · ·
6 18 27 27 · · ·
6 18 27 27 · · ·
...

...
...

...
. . .

 and ∆HX =


1 2 3 0 · · ·
2 4 6 0 · · ·
3 6 0 0 · · ·
0 0 0 0 · · ·
...

...
...

...
. . .

 .

(The (i, j)th entry of the above matrix corresponds to the value of the Hilbert function
at (i, j), where we start our indexing at (0, 0).) However, ∆HX equals HS/I , the Hilbert
function of S/I where S = k[x1, x2, y1, y2] and

I = (x1, x2)3 + (y1, y2)3 + (x1, x2)2(y1, y2)2.

Note that S/I is artinian since HS/I(i) = 0 for all but a finite number of i ∈ N2.
This shows that the converse of Theorem 3.2 cannot hold because ∆HX is the Hilbert
function of a bigraded artinian quotient, but X is not ACM.

As the following example illustrates, we cannot expect any general classification
of ACM sets of points to be based solely upon the Hilbert function.

Example 3.4 Let Pij = [1 : i : j] ∈ P2, and let Qijkl = Pij ×Pkl ∈ P2×P2. Consider
the following 27 points in P2 × P2:

Y = {Q1121, Q1122, Q1131, Q1221, Q1222, Q1231, Q1321, Q1322, Q1331,

Q2111, Q2112, Q2113, Q2121, Q2122, Q2131, Q2211, Q2212, Q2213,

Q2221, Q2222, Q2231, Q3111, Q3112, Q3113, Q3121, Q3122, Q3131}.

Using CoCoA to compute the resolution of R/IY we get

0 → R12 → R38 → R42 → R17 → R → R/IY → 0,

where we have suppressed all the bigraded shifts. So Y is ACM because the projective
dimension is four. If X is the set of 27 nonACM points from the last example, then

HX = HY =


1 3 6 6 · · ·
3 9 18 18 · · ·
6 18 27 27 · · ·
6 18 27 27 · · ·
...

...
...

...
. . .

 .

So ACM and nonACM sets of points can have the exact same Hilbert function.
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We can extend the above examples to show that the converse of Theorem 3.2
fails to hold in any multiprojective space Pn1 × · · · × Pnr with r ≥ 2 and with at least
two ni’s greater than or equal to two.

Example 3.5 Consider the multiprojective space Pn1 × · · · × Pnr with r ≥ 2.
Suppose further that ni, nj ≥ 2 with i 6= j. Set Qk = [1 : 0 : · · · : 0] ∈ Pnk

for k ∈ {1, . . . , r}\{i, j}. For any point P = [a1 : a2 : a3] ∈ P2,
let P ′ = [a1 : a2 : a3 : 0 : · · · : 0] ∈ Pni , and P ′′ = [a1 : a2 : a3 : 0 : · · · : 0] ∈ Pnj . Let X
be the set of points from Example 3.3. Consider the following set of points:

X′ = {Q1 × · · · × P ′
i × · · · × P ′′

j × · · · ×Qr | Pi × Pj ∈ X} ⊆ Pn1 × · · · × Pnr .

If the point Pi × Pj ∈ X ⊆ P2 × P2 has defining ideal (Li,1, Li,2, Lj,1, Lj,2)
in k[x0, x1, x2, y0, y1, y2], then let L′

i,t, respectively L′
j,t, denote the forms we obtain

replacing xt with xi,t, respectively, yt with xj,t. The defining ideal of Q1 × · · · × P ′
i ×

· · · × P ′′
j × · · · ×Qr ∈ X′ has form

(x1,1, . . . , x1,n1 , . . . , L
′
i,1, L

′
i,2, xi,3, . . . , xi,ni , . . . , L

′
j,1,

L′
j,2, xj,3, . . . , xj,nj , . . . , xr,1, . . . , xr,nr).

So, we have

R/IX′ ∼= k[x1,0, x2,0, . . . , xi,0, xi,1, xi,2, . . . , xj,0, xj,1, xj,2, . . . , xr,0]/ĨX

where by ĨX we mean the ideal generated by the elements of IX ⊆ k[x0, x1, x2, y0, y1, y2],
where we replace xt by xi,t and yt by xj,t. The elements x1,0, . . . , x̂i,0, . . . , x̂j,0, . . . , xr,0

then form a regular sequence so that

k[x1,0, x2,0, . . . , xi,0, xi,1, xi,2, . . . , xj,0, xj,1, xj2 , . . . , xr,0]
(ĨX, x1,0, . . . , x̂i,0, . . . , x̂j,0, . . . , xr,0)

∼= k[x0, x1, x2, y0, y1, y2]/IX.

Then X′ will not be ACM because

depth(R/IX′) = r − 2 + depth(k[x0, x1, x2, y0, y1, y2]/IX) = r − 1.

However, ∆HX′ is the Hilbert function of an artinian quotient since

∆HX′(i) =

∆HX(a, b) if i = aei + bej = (0, . . . , a, . . . , b, . . . , 0)

0 otherwise

and this function is the Hilbert function of S/I where

I = (xi,1, xi,2)3 + (xj,1, xj,2)3 + (xi,1, xi,2)2(xj,1, xj,2)2 + (xi,3, . . . , xi,ni)

+ (xj,3, . . . , xj,nj ) + Se1 + Se2 + · · ·+ Ŝei + · · ·+ Ŝej + · · ·+ Ser .

where Sel
= (xl,1, . . . , xl,nl

) and S = k[x1,1, . . . , x1,n1 , . . . , xr,1, . . . , xr,nr ].
The set of points Y in Example 3.4 can similarly be extended to a set of points

in Y′ ⊆ Pn1 × · · · × Pnr where HX′ and HY′ are equal.



ACM sets of points in multiprojective space 199

In light of the above examples, we see that to distinguish ACM sets of points
from nonACM, we will need more information than just the Hilbert function of the
set of points. However, as a corollary of Theorem 3.2, we can eliminate certain sets
of points as being ACM directly from their Hilbert function. A similar result was
also proved in [18, Theorem 4.7]. If i = (i1, . . . , ir), j = (j1, . . . , jr) ∈ Nr, we set
min{i, j} := (min{i1, j1}, . . . ,min{ir, jr}).

Corollary 3.6

Let X ⊆ Pn1×· · ·×Pnr be a finite set of points with Hilbert function HX. If there
exists i, j ∈ Nr such that HX(i) = HX(j) = |X| but HX(k) 6= |X| with k = min{i, j},
then X is not ACM.

Proof. For any i ∈ Nr, the Hilbert function of X satisfies

HX(i) =
∑

0�j�i

∆HX(j).

When X is ACM, by Theorem 3.2 we have ∆HX(j) ≥ 0 for all j ∈ Nr. But then there
exists a k ∈ Nr such that HX(i) = |X| if and only if i � k. �

It is not presently known whether the converse of Theorem 3.2 fails to hold in
multiprojective spaces of the form Pn1×· · ·×Pnr with r ≥ 2 and with only one ni ≥ 1,
and the rest of the nj ’s equal to one. We end this section by giving partial evidence
that the converse of Theorem 3.2 may hold for sets of points in P1 × · · · × P1 (r ≥ 3
times). This result will also allow us to give a new proof for Theorem 3.1.

Theorem 3.7

Let X be set of points in P1 × · · · × P1 (r ≥ 2 times) and suppose that
depth(R/IX) = r− 1. If HX is the Hilbert function of X, then ∆HX is not the Hilbert
function of an Nr-graded artinian quotient of k[x1,1, x2,1, . . . , xr,1].

To prove this statement, we will need the following two technical lemmas.

Lemma 3.8

Let S = k[x1,1, . . . , xr−1,1, xr,0, xr,1] be an Nr-graded ring with deg xi,1 = ei for
i = 1, . . . , r − 1, and deg xr,0 = deg xr,1 = er. Let J ⊆ S be any Nr-graded ideal of S.
If HS/J(i) ≤ HS/J(i + er), then HS/J(i + er) = HS/J(i) or HS/J(i) + 1.

Proof. We are given that dimk Si+er−dimk(J)i+er ≥ dimk Si−dimk(J)i. Now, for any
i = (i1, . . . , ir) ∈ Nr, dimk Si = ir + 1. Thus ir + 2− dimk(J)i+er ≥ ir + 1− dimk(J)i.
But because dimk(J)i+er ≥ dimk(J)i for all i, we must have

dimk(J)i ≥ dimk(J)i+er − 1 ≥ dimk(J)i − 1.

So dimk(J)i+er = dimk(J)i or dimk(J)i + 1, and thus the conclusion follows. �
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Lemma 3.9

Let X ⊆ P1 × · · · × P1 be any finite set of points such that depth(R/IX) = r − 1.
Suppose x1,0, . . . , xr−1,0 is a regular sequence on R/IX, and suppose that x1,0, . . . , xr,0

are nonzero divisors on R/IX. If

HR/(IX,x1,0,...,xr−1,0)(i) ≤ HR/(IX,x1,0,...,xr−1,0)(i + er) for all i ∈ Nr,

then

HR/(IX,x1,0,...,xr,0)(i) =

{
1 if (IX)i = (0)
0 if (IX)i 6= (0).

Proof. To simplify our notation, set J = (IX, x1,0, . . . , xr,0). Consider any i ∈ Nr such
that (IX)i = (0). Then (J)i = (x1,0, . . . , xr,0)i. Hence

(R/J)i = (R/(x1,0, . . . , xr,0))i = (k[x1,1, . . . , xr,1])i,

and thus HR/J(i) = dimk(k[x1,1, . . . , xr,1])i = 1.
Let πi(X) = {Ri,1, . . . , Ri,ti} be the set of the distinct ith coordinates of the points

that appear in X. If LRi,j is the form of degree ei that passes through the point Ri,j ,
then LRi,1 · · ·LRi,ti

is a minimal generator of IX of degree tiei. Now HX((ti − 1)ei) =
HX(tiei) = |πi(X)| = ti (for example, see [20, Proposition 4.6]). Because xi,0 is a
nonzero divisor, the short exact sequence

0 → R/IX(−ei)
×xi,0−−−−→ R/IX → R/(IX, xi,0) → 0,

implies that HR/(IX,xi,0)(tiei) = HX(tiei)−HX((t− 1)ei) = 0. In other words, Rtiei =
(IX, xi,0)tiei . So, for any i � tiei, Ri = (IX, xi,0)i ⊆ (J)i, and hence HR/J(i) = 0. So,
HR/J(i) = 0 for all i � tiei and each i = 1, . . . , r.

Now consider any i ∈ Nr such that i � (t1−1, . . . , tr−1) and (IX)i 6= (0). Assume
that i is minimal, i.e., (IX)i 6= (0), but (IX)i−ej = (0) for j = 1, . . . , r. There is then a
minimal generator F ∈ IX of degree i which we can write as

F = cxi1
1,1x

i2
2,1 · · ·x

ir
r,1 +

∑
m a monomial of degree i in (x1,0, . . . , xr,0)

cmm. (3.1)

If c 6= 0, then because x1,0, . . . , xr,0 and F are in (J)i, we then have Ri = (J)i, from
which it follows that HR/J(j) = 0 for all j � i.

It thus remains to show that we can find a minimal generator F of degree i with
form (3.1) and c 6= 0. Suppose not, that is, c = 0. Then F has the form

F = x1,0H1(x1,0, . . . , xr,1) + xi1
1,1x2,0H2(x2,0, . . . , xr,1) + xi1

1,1x
i2
2,1x3,0H3(x3,0, . . . , xr,1)

+ · · ·+ xi1
1,1x

i2
2,1 · · ·x

ir−1

r−1,1xr,0Hr(xr,0, xr,1).

Set F ′ = xi1
1,1x

i2
2,1 · · ·x

ir−1

r−1,1xr,0Hr(xr,0, xr,1). We first show that F ′ 6= 0. If F ′ = 0,
then F ∈ (x1,0, . . . , xr−1,0)i, i.e.,

F = x1,0G1 + x2,0G2 + · · ·+ xr−1,0Gr−1. (3.2)
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But then xr−1,0Gr−1 ∈ (IX, x1,0, . . . , xr−2,0), and since xr−1,0 is regular on
R/(IX, x1,0, . . . , xr−2,0), we have Gr−1 ∈ (IX, x1,0, . . . , xr−2,0)i−er−1 . Because(IX)j = (0)
for all j ≺ i we must have that Gr−1 ∈ (x1,0, . . . , xr−2,0). So Gr−1 = x1,0G

′
1 + · · · +

xr−2,0G
′
r−2, and subbing back into (3.2) we get

F = x1,0G1 + · · ·+ xr−1,0(x1,0G
′
1 + · · ·+ xr−2,0G

′
r−2)

= x1,0G
′′
1 + x2,0G

′′
2 + · · ·+ xr−2,0G

′′
r−2

where G′′
i = Gi + xr−1,0G

′
i. Similarly, we can show that G′′

r−2 ∈ (x1,0, . . . , xr−3,0), and
thus F = x1,0E1+· · ·+xr−3,0Er−3 for some appropriate forms Ei. We can continue this
process to eventually show that F is divisible by x1,0, that is, F = x1,0F1. But since
x1,0 is a regular on R/IX, this implies that F1 ∈ (IX), contradicting the minimality of
the degree of F . So F ′ 6= 0.

Set J ′ = (IX, x1,0, . . . , xr−1,0). We now claim that HR/J ′(i) = ir. Now

HR/J ′(i− er) = HR/(x1,0,...,xr−1,0)(i− er) = ir.

Our hypotheses then imply that ir = HR/J ′(i− er) ≤ HR/J ′(i). But because

R/J ′ ∼=
R/(x1,0, . . . , xr−1,0)
J ′/(x1,0, . . . , xr−1,0)

∼= k[x1,1, . . . , xr−1,0, xr,0, xr,1]/L for some ideal L,

Lemma 3.8 implies HR/J ′(i) = HR/J ′(i− er) or HR/J ′(i− er)+ 1. If HR/J ′(i) = ir +1,
then

dimk(J ′)i = (i1 + 1) · · · (ir + 1)− (ir + 1) = dimk(x1,0, . . . , xr−1,0)i.

This means that (J ′)i = (x1,0, . . . , xr−1,0)i, and hence F ∈ (x1,0, . . . , xr−1,0)i.
But as shown above, F ′ 6= 0, so F 6∈ (x1,0, . . . , xr−1,0)i. Thus HR/J ′(i) = ir, and
dimk(J ′)i = (i1 + 1) · · · (ir + 1)− ir.

Let Mi denote the set of all monomials of degree i in R. A basis for (J ′)i is then

{F ′} ∪ (Mi \ {xi1
1,1x

i2
2,1 · · ·x

ir−1

r−1,1m | m = xir−a
r,0 xa

r,1 for a = 0, . . . , ir}).

To see that this is a basis, note that the elements are linearly independent and we have
dimk(J ′)i elements. Then, for any b ≥ 1, the following set of elements in (J ′)i+ber is
linearly independent:

Bb = {xb
r,0F

′, xb−1
r,0 xr,1F

′, . . . , xb
r,1F

′}

∪
(
Mi+ber \ {x

i1
1,1x

i2
2,1 · · ·x

ir−1

r−1,1m | m = xir+b−a
r,0 xa

r,1 for a = 0, . . . , ir + b}
)
.

Note that

|Bb| = (i1 + 1) · · · (ir−1 + 1)(ir + b + 1)− ir.

Now, because ir = HR/J ′(i) ≤ HR/J ′(i + bej) we have

dimk Ri+bej
− dimk(J ′)i+bej

≥ ir.
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Hence

|Bb| = (i1 + 1) · · · (ir−1 + 1)(ir + b + 1)− ir = dimk Ri+bej
− ir

≥ dimk(J ′)i+bej
≥ |Bb|.

It follows that dimk(J ′)i+bej
= |Bb|, and hence the elements of Bb form a basis for

(J ′)i+bej
.

We now pick p so that ir + p = tr = |πr(X)|. (We have p ≥ 1 since i � (t1 −
1, . . . , tr − 1), i.e., ir < tr.) As noted, LRr,1 · · ·LRr,tr

∈ (IX)trer , and furthermore, each
LRr,i has form bi,0xr,0 + bi,1xr,1 with bi,1 6= 0 for all i because xr,0 is not a zero-divisor,
i.e., no point Rr,i has form [0 : 1]. Now

xi1
1,1x

i2
2,1 · · ·x

ir−1

r−1,1LRr,1 · · ·LRr,tr
∈ (IX)i+per ⊆ (J ′)i+per ,

so xi1
1,1x

i2
2,1 · · ·x

ir−1

r−1,1LRr,1 · · ·LRr,tr
can be written as a linear combination of the ele-

ments of Bp. But this cannot happen because xi1
1,1x

i2
2,1 · · ·x

ir−1

r−1,1LRr,1 · · ·LRr,tr
contains

the term xi1
1,1 · · ·x

ir−1

r−1,1x
ir+p
r,1 , but this term does not appear in any of our basis ele-

ments. So, if F is a minimal generator of degree i, it must have the form (3.1) with
c 6= 0. �

Example 3.10 The hypothesis that HR/(IX,x1,0,...,xr−1,0)(i) ≤ HR/(IX,x1,0,...,xr−1,0)(i+er)
in the above statement is necessary. For example, in P1×P1 consider the set of points
X = {P1,1, P2,2, P3,3} where the defining ideal of IPi,i = (x1 − ix0, y1 − iy0). Then
depth(R/IX) = 1, x0 is a regular sequence on R/IX, and x0 and y0 are nonzero-divisors
on R/IX. We have

HX =


1 2 3 3 · · ·
2 3 3 3 · · ·
3 3 3 3 · · ·
3 3 3 3 · · ·
...

...
...

...
. . .

 and thus HR/(IX,x0) =


1 2 3 3 · · ·
1 1 0 0 · · ·
1 0 0 0 · · ·
0 0 0 0 · · ·
...

...
...

...
. . .

 .

The function HR/(IX,x0) fails to have HR/(IX,x0)(i, j) ≤ HR/(IX,x0)(i, j+e2) for all (i, j) ∈
N2. Now dimk(IX)1,1 6= 0 but

HR/(IX,x0,y0) =


1 1 1 0 · · ·
1 1 0 0 · · ·
1 0 0 0 · · ·
0 0 0 0 · · ·
...

...
...

...
. . .

 ,

that is, HR/(IX,x0,y0) = 1.

Proof. (of Theorem 3.7) Let R = k[x1,0, x1,1, x2,0, x2,1, . . . , xr,0, xr,1] be the Nr-graded
coordinate ring of P1×· · ·×P1. Since depth(R/IX) = r−1, by Theorem 2.4 we can find
a regular sequence L1, . . . , Lr−1 on R/IX with deg Li = ei. Moreover, by Remark 2.5,
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we can assume Li = xi,0 for i = 1, . . . , r − 1. Note that we can also assume that xr,0

is a nonzero divisor of R/IX.
Set J0 = IX, and for i = 1, . . . , r − 1, set Ji = (Ji−1, xi,0). Then, for each

i = 1, . . . , r − 1 we have a short exact sequence

0 → R/Ji−1(−ei)
×xi,0−−−−→ R/Ji−1 → R/Ji → 0.

We thus have

HR/Jr−1
(i) = HR/Jr−2

(i)−HR/Jr−2
(i− er−1) for all i ∈ Nr

with HR/Jr−2
(i) = 0 if i 6� 0.

For all i ∈ Nr, we have the following exact sequence of vector spaces:

0 → (ker×xr,0)i → (R/Jr−1)i
×xr,0−−−−→ (R/Jr−1)i+er → (R/(Jr, xr,0))i+er → 0 (3.3)

where xr,0 6= 0 is a degree er element in R/Jr−1 = R/(IX, x1,0, . . . , xr−1,0). Because
depth(R/IX) = r − 1, then there is at least one i ∈ Nr such that the map

(R/Jr−1)i
×xr,0−−−−→ (R/Jr−1)i+er

has a non-zero kernel. This follows from the fact that xr,0 must be a zero divisor of
R/Jr−1, so there exists a non-zero element F ∈ (R/Jr−1)i such that Fxr,0 ∈ Jr−1.

It will now suffice to show that there exists an i ∈ Nr such that

HR/Jr−1
(i) > HR/Jr−1

(i + er).

Indeed, because HR/Jr−1
(i) = HR/Jr−2

(i) − HR/Jr−2
(i − er−1), the above inequality

would imply

HR/Jr−2
(i + er)−HJr−2(i− er−1 + er)−HR/Jr−2

(i)

+ HR/Jr−2
(i− er−1) < 0 ⇔ ∆HX(i + er) < 0.

So, not only is ∆HX not the Hilbert function of an artinian quotient, ∆HX is not the
Hilbert function of any quotient because it has a negative entry.

Suppose, for a contradiction, that HR/Jr−1
(i) ≤ HR/Jr−1

(i + er) for all i ∈ Nr.
Because

R/Jr−1
∼=

R/(x1,0, . . . , xr−1,0)
Jr−1/(x1,0, . . . , xr−1,0)

∼= k[x1,1, x2,1, . . . , xr−1,1, xr,0, xr,1]/L

with L ∼= Jr−1/(x1,0, . . . , xr−1,0), HR/Jr−1
has the Hilbert function of some quotient

of k[x1,1, . . . , xr−1,1, xr,0, xr,1] with deg xi,1 = ei and deg xr,0 = deg x1,1 = er. It then
follows by Lemma 3.8 that if HR/Jr−1

(i) ≤ HR/Jr−1
(i + er), then HR/Jr−1

(i + er) =
HR/Jr−1

(i) + 1, or HR/Jr−1
(i + er) = HR/Jr−1

(i). We now show that both cases imply
dimk(ker×xr,0)i = 0 for all i ∈ Nr.

Case 1. If HR/Jr−1
(i + er) = HR/Jr−1

(i) + 1, then from the exact sequence (3.3), we
have

dimk(ker×xr,0)i = HR/Jr−1
(i)−HR/Jr−1

(i + er) + HR/(Jr−1,xr,0)(i + er)
= −1 + HR/(Jr−1,xr,0)(i + er).
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By Lemma 3.9, for any i ∈ Nr we must have

HR/(Jr−1,xr,0)(i) = dimk(R/(IX, x1,0, . . . , xr,0))i = 0 or 1.

So, if HR/Jr−1
(i + er) = HR/Jr−1

(i) + 1, then dimk(ker×xr,0)i = 0 since dimension
must be nonnegative.

Case 2. If HR/Jr−1
(i + er) = HR/Jr−1

(i), then from (3.3) we deduce that

dimk(ker×xr,0)i = HR/Jr−1
(i)−HR/Jr−1

(i + er) + HR/(Jr−1,xr,0)(i + er)
= 0 + HR/(Jr−1,xr,0)(i + er).

Now HR/Jr−1
(i) = HR/Jr−1

(i + er) can occur only if HX(i + er) < (i1 + 1) · · · (ir + 2),
that is, if (IX)i+er 6= (0). By Lemma 3.9 we have HR/(Jr−1,xr,0)(i + er) = 0, and hence
dimk(ker×xr,0)i = 0.

We now see from both Cases 1 and 2, that if HR/Jr−1
(i) ≤ HR/Jr−1

(i + er) for
all i ∈ Nr, then we must always have dimk(ker×xr,0)i = 0. But this contradicts the
fact that since X is not ACM, there exists some i ∈ Nr with dimk(ker×xr,0)i > 0. So,
HR/Jr−1

(i) > HR/Jr−1
(i + er) for some i, as desired. �

Combining the above result with Theorem 3.2 gives a new proof for Theorem 3.1.

Proof. (Proof of Theorem 3.1) If X is a finite set of points in P1 × P1, then
depth(R/IX) = 2 or 1 by Theorem 2.1. If depth(R/IX) = 2, then X is ACM, and
thus by Theorem 3.2 we have that ∆HX is the Hilbert function of a bigraded artinian
quotient of k[x1, y1]. If depth(R/IX) = 1, then X is not ACM. If we now apply Theo-
rem 3.7 to the case r = 2, we have that ∆HX is not the Hilbert function of a bigraded
artinian quotient. �

Remark 3.11 Let X be a finite set of points in P1×P1×P1. Then depth(R/IX) = 1, 2,
or 3. In light of Theorem 3.7, to show that the converse of Theorem 3.2 holds in
P1 × P1 × P1, it suffices to show that if depth(R/IX) = 1, then ∆HX is not the N3-
graded Hilbert function of an artinian quotient of k[x1,1, x2,1, x3,1]. We are currently
exploring the case of points in P1 × P1 × P1.

Example 3.12 In the proof of Theorem 3.7, to show that ∆HX is not the Hilbert
function of an artinian ring, we show that ∆HX must have a negative entry. This
approach, however, will not work for points in P1 × Pn with depth(R/IX) = 1 and
n > 1. For example let X ⊆ P1 × P2 where X is the following 11 points:

X = {P1 ×Q1, P1 ×Q2, P1 ×Q3, P1 ×Q4, P2 ×Q1, P2 ×Q2, P2 ×Q3, P2 ×Q5,

P3 ×Q1, P3 ×Q2, P3 ×Q3}

where Pi = [1 : i] ∈ P1 for i = 1, . . . , 3, and

Q1 = [1 : 1 : 1], Q2 = [1 : 1 : 2], Q3 = [1 : 1 : 3], Q4 = [1 : 0 : 1]
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and Q5 = [1 : 0 : 2] in P2. Using CoCoA one finds that R/IX is not CM. The Hilbert
function of X is

HX =


1 3 5 5 · · ·
2 6 8 8 · · ·
3 8 11 11 · · ·
3 8 11 11 · · ·
...

...
...

...
. . .

 and ∆HX =


1 2 2 0 · · ·
1 2 0 0 · · ·
1 1 1 0 · · ·
0 0 0 0 · · ·
...

...
...

...
. . .

 .

Note that ∆HX has no negative values, but ∆HX still cannot be the Hilbert function of
an artinian quotient. This is because ∆HX(1, 2) = 0, so we should have ∆HX(i, j) = 0
for all (i, j) � (1, 2), but ∆HX(2, 2) = 1.

4. ACM sets of points and their geometry

In [10] and [19], the two authors classified ACM sets of points in P1 × P1 via the
geometry of the points. In this section we revisit this classification; we show that this
geometric criterion extends to a sufficient condition for ACM sets of points in P1×Pn.
However, we give an example to show that this criterion fails to be a necessary condition
for a set of ACM points in the general case.

We begin by adapting the construction and main result of [11] to reduced points.
Let X be a finite set of points in P1 × P1. Let π1(X) = {P1, . . . , Pr}, respectively,
π2(X) = {Q1, . . . , Qt} be the set of first, respectively second, coordinates of the points
in X. For each tuple (i, j) with 1 ≤ i ≤ r , 1 ≤ j ≤ t, set Pi,j = Pi×Qj . Then, for each
such (i, j) define

pij :=

{
1 if Pi,j ∈ X
0 otherwise.

The set SX is then defined to be the set of t-tuples

SX := {(p11, . . . , p1t), (p21, . . . , p2t), . . . , (pr1, . . . , prt)}.

With this notation the main result of [11] for distinct points becomes:

Theorem 4.1 ([11, Theorem 2.1])

Let X be a finite set of points in P1 × P1. Then X is ACM if and only if the set
SX is a totally ordered set with respect to �.

We now introduce a geometric condition on a set of points in Pn × Pm:

Definition 4.2 Let X be any finite set of points in Pn×Pm. We say that X satisfies
property (?) if whenever P1×Q1 and P2×Q2 are two points in X with P1 6= P2 and
Q1 6= Q2, then either P1 ×Q2 ∈ X or P2 ×Q1 ∈ X (or both) are in X.

Theorem 4.3

Let X be a finite set of points in P1×P1. Then X is ACM if and only if X satisfies
property (?).
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Proof. A straightforward exercise will show that the condition (?) is equivalent to the
condition that SX is totally ordered. Then apply Theorem 4.1. �

Example 4.4 The simplest example of a nonACM set of points in P1×P1 are two non-
collinear points. That is, X = {P1 × P1, P2 × P2} where P1, P2 are two distinct points
in P1. Then X clearly does not satisfy property (?). In this case SX = {(1, 0), (0, 1)}
which is not totally ordered with respect to �.

One direction of the above result holds more generally in P1 × Pn:

Theorem 4.5

Let X be a finite set of points in P1 × Pn. If X satisfies property (?), then X
is ACM.

Proof. Let XP denote the subset of points in X whose first coordinate is P with
P ∈ π1(X).

Claim. There exists a point P ∈ π1(X) such that π2(XP ) = π2(X).

Proof of Claim. We always have π2(XP ) ⊆ π2(X). Let P be a point of π1(X) with
|π2(XP )| maximal. We will show that this is the desired point. Suppose there is
Q ∈ π2(X)\π2(XP ). So, there exists a P 6= P ′ ∈ π1(X) such that P ′ × Q ∈ X. Let
Q′ ∈ π2(XP ) be any point. So P ×Q′ and P ′ ×Q are points in X. By the hypotheses,
P×Q or P ′×Q′ are in X. But P×Q 6∈ X (else Q ∈ π2(XP )). So, for each Q′ ∈ π2(XP ),
P ′ × Q′ ∈ X. But this means |π2(XP ′)| > |π2(XP )|, contradicting the maximality of
|π2(XP )|. �

We now prove the statement by induction on |π1(X)|. If |π1(X)| = 1, then X is
ACM. To see this, note that IX = IP + Iπ2(X) where IP is the defining ideal of P ∈ P1

in R1 = k[x0, x1], but viewed as an ideal of R = k[x0, x1, y0, . . . , yn] and Iπ2(X) is
the defining ideal of π2(X) ⊆ Pn in R2 = k[y0, . . . , yn], but viewed as an idea of R.
So, the resolution of R/IX ∼= R1/IP ⊗k R2/Iπ2(X) is obtained by tensoring together
the resolutions of R1/IP and R2/Iπ2(X). From this resolution we can obtain the fact
that X is ACM.

For the induction step, set Y = X\XP , where P is the point from the claim, and
thus IX = IXP

∩IY. Note that Y also satisfies (?), so by induction Y and XP are ACM.
We have a short exact sequence

0 → R/IX → R/IXP
⊕R/IY → R/(IY + IXP

) → 0.

By induction R/IXP
and R/IY are CM of dimension 2. It suffices to show that R/(IY+

IXP
) is CM of dimension 1. It then follows that R/IX is CM of dimension 2, i.e., X

is ACM.
To prove this, we use the observation from above that IXP

= IP +Iπ2(XP ). Now any
G ∈ Iπ2(XP ) is also in IY since for any point P ′×Q′ ∈ Y, Q′ ∈ π2(Y) ⊆ π2(X) = π2(XP ),
and hence G(P ′ ×Q′) = 0. Thus

IY + IXP
= IY + IP .
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Now, by change of coordinates, we can assume IP = (x0). Also, we can assume that
x0 does not pass through any points of π1(Y). So, x0 is a nonzero divisor of R/IY. To
finish the proof we note that by induction, R/IY is ACM of dimension 2, and since x0

is a nonzero divisor of R/IY, we have

R/(IY + IXP
) = R/(IY, x0)

is CM of dimension 1. The desired conclusion now holds. �

Remark 4.6 By interchanging the roles of the xi’s and yi’s in the above proof, the
conclusion of the previous theorem also holds for points in Pn × P1.

Remark 4.7 In trying to generalize the above result to points in Pm × Pn we ran
into the following difficulty. We still have IY + IXP

= IY + IP where P ∈ Pm. By
changing coordinates, we can take IP = (x0, . . . , xm−1), and we can assume that x0

does not pass through any points of π1(Y). So, x0 is a nonzero divisor of R/IY.
So, we know that R/(IY, x0) is CM of dimension 1. However, we were left with the
question of whether R/(IY, x0, . . . , xm−1) is also CM if R/(IY, x0) is CM. Computer
experimentation suggests a positive answer to this question under the hypotheses of
Theorem 4.5, thus suggesting Theorem 4.5 may hold more generally for sets of points
in Pm × Pn.

Corollary 4.8

Suppose X ⊆ P1×Pn and X is not ACM. Then there exists a pair of points P1×Q1

and P2 ×Q2 ∈ X with P1 6= P2, Q1 6= Q2, but P1 ×Q2, P2 ×Q1 6∈ X.

While the converse of Theorem 4.5 holds in P1 × P1, it fails in general.

Example 4.9 Let Pi = [1 : i] ∈ P1 for i = 1, . . . , 6, and let P ′
1, . . . , P

′
6 be six points in

general position in P2. Set Qi,j = Pi × P ′
j ∈ P1 × P2. Consider the following set of 27

points:

X = {Q1,1, Q1,2, Q2,1, Q2,2, Q2,3, Q2,4, Q2,5, Q3,1, Q3,2, Q3,3, Q3,4, Q3,5, Q4,1, Q4,2,

Q4,4, Q4,5, Q5,1, Q5,2, Q5,3, Q5,4, Q5,6, Q6,1, Q6,2, Q6,3, Q6,4, Q6,5, Q6,6}.

Using CoCoA to compute the resolution, we find

0 → R5 → R13 → R9 → R → R/IX → 0.

So X is ACM since the projective dimension is 3 and dim R = 5, so by the Auslander-
Buchsbaum formula, depth(R/IX) = 2. But X fails property (?) since Q4,5 and Q5,3

are in X, but neither Q4,3 nor Q5,5 are in X.

We end this section by describing a simple construction to make sets of points
that satisfy property (?).

Definition 4.10 A tuple λ = (λ1, . . . , λr) of positive integers is a partition of an
integer s if

∑
λi = s and λi ≥ λi+1 for every i. We write λ = (λ1, . . . , λr) ` s. To any

partition λ ` s we can associate the following diagram: on an r × λ1 grid, place λ1

points on the first line, λ2 points on the second, and so on. The resulting diagram is
called the Ferrer’s diagram of λ.
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Construction 4.11 Let λ = (λ1, . . . , λr) ` s, and let P1, . . . , Pr be r distinct points
in P1 and Q1, . . . , Qλ1 be λ1 distinct points in Pn. Let Xλ then be the s points of
P1 × Pn where

Xλ = {P1 ×Q1, P1 ×Q2, . . . , P1 ×Qλ1 , P2 ×Q1, . . . , P2 ×Qλ2 , . . .

Pr ×Q1, . . . , Pr ×Qλr}.

The set of points Xλ then resembles a Ferrer’s diagram of λ and satisfies property (?).
By Theorem 4.5:

Theorem 4.12

With the notation as above, Xλ is ACM.

5. ACM sets of points and their separators

In this section we study ACM set of points using the notion of a separator. Separators
for points in Pn were first introduced by Orecchia [17] and their properties were later
studied in [1, 2, 3, 14], to name but a few references. Separators were recently defined
in a multigraded setting by Marino in [14, 15] for the special case of points in P1×P1.
In particular, Marino classified ACM sets of points in P1 × P1 using separators; we
extend some of these ideas in this section.

We begin by introducing some notation. If S ⊆ Nr is a subset, then minS is the
set of the minimal elements of S with respect to the partial ordering �. For any i ∈ Nr,
define Di := {j ∈ Nr | j � i}. For any finite set S = {s1, . . . , sp} ⊆ Nr, we set

DS :=
⋃
s∈S

Ds.

Note that min DS = S; thus DS can be viewed as the largest subset of Nr whose
minimal elements are the elements of S.

Definition 5.1 Let X be a set of distinct points in Pn1 × · · · × Pnr and P ∈ X. We
say that the multihomogeneous form F ∈ R is a separator for P if F (P ) 6= 0 and
F (Q) = 0 for all Q ∈ X \ {P}. We will call F a minimal separator for P if there
does not exist a separator G for P with deg G ≺ deg F .

Definition 5.2 Let X be a set of distinct points in Pn1×· · ·×Pnr . Then the degree
of a point P ∈ X is the set

degX(P ) := min{deg F | F is a separator for P ∈ X}
= {deg F | F is a minimal separator of P ∈ X}.

Here, we are using the partial order � on Nr.

If X ⊆ Pn, then N is a totally ordered set, so we can talk about the degree
of a point P ∈ X (as in [1, 2, 3, 17]). In the multigraded case, however, the set
degX(P ) = {α1, . . . , αs} ⊆ Nr may have more than one element. As we will show
below, if F is a separator of P with deg F = αi ∈ degX(P ), then the equivalence class
of F in R/IX, that is, F , is unique up to scalar multiplication.
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Theorem 5.3

Let X be a set of distinct points in Pn1 × · · · × Pnr , and let P ∈ X be any point.
If Y = X\{P}, then there exists a finite set S ⊆ Nr such that

HY(i) =

HX(i) if i /∈ DS

HX(i)− 1 if i ∈ DS .

Equivalently, dimk(IX)i ≤ dimk(IY)i ≤ dimk(IX)i + 1 for all i ∈ Nr.

Proof. The second statement follows from the first since the formula implies HX(i)−1 ≤
HY(i) ≤ HX(i) for all i ∈ Nr. To prove the first statement, the short exact sequence

0 → R/(IY ∩ IP ) → R/IY ⊕R/IP → R/(IY + IP ) → 0

implies that

HY(i) = HX(i)−HP (i) + HR/(IY+IP )(i) for all i ∈ Nr

since IY ∩ IP = IX.
Now R/IP

∼= k[z1, . . . , zr], the Nr-graded ring with deg zi = ei. So HP (i) = 1 for
all i ∈ Nr. Also,

R/(IY + IP ) ∼= (R/IP )/((IY + IP )/(IP )).

So, (IY + IP )/IP
∼= J , where J is an Nr-homogeneous ideal of k[z1, . . . , zr]. Thus

HR/(IY+IP )(i) = 0 or 1 for all i ∈ Nr.
When HR/(IY+IP )(i) = 0, then HR/(IY+IP )(j) = 0 for all j � i. The desired set is

then S = min T where T = {i ∈ Nr | HR/(IY+IP )(i) = 0}. �

Corollary 5.4

Suppose degX(P ) = {α1, . . . , αs} ⊆ Nr. If F and G are any two minimal sep-
arators of P with deg F = deg G = αi, then G = cF + H for some 0 6= c ∈ k and
H ∈ (IX)αi

. Equivalently, there exists 0 6= c ∈ k such that G = cF ∈ R/IX.

Proof. Suppose F and G are separators of P and deg F = deg G = α for some
α ∈ degX(P ). Suppose that G 6= cF + H for any nonzero scalar c ∈ k and any
H ∈ (IX)α. Then the vector space (IX, F, G)α ⊆ (IY)α where Y = X \ {P}. Since
F 6∈ (IX)α, and since G 6∈ (IX, F )α, we must have

dimk(IY)α ≥ dimk(IX, F, G)α ≥ dimk(IX)α + 2.

However, this inequality contradicts the conclusion of Theorem 5.3. �

Theorem 5.5

Let X be a set of distinct points in Pn1 × · · · × Pnr , and suppose F is a separator
of a point P ∈ X. Then (IX : F ) = IP .

Proof. For any G ∈ IP , FG ∈ IX since FG vanishes at all points of X. Conversely, let
G ∈ (IX : F ). So GF ∈ IX ⊆ IP . Now F 6∈ IP , and because IP is a prime ideal, we
have G ∈ IP , as desired. �
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Corollary 5.6

With the hypotheses as in the previous theorem,

dimk(IX, F )i = dimk(IX)i + 1 for all i � deg F .

Proof. We have a short exact sequence

0 → R/(IX : F )(−deg F ) ×F−→ R/IX −→ R/(IX, F ) → 0.

By the previous theorem R/(IX : F ) ∼= R/IP . So

HR/(IX,F )(i) = HX(i)−HR/IP
(i− deg F ) for all i ∈ Nr.

Now HR/IP
(i) = 1 for all i ∈ Nr, and equals 0 otherwise. The conclusion follows. �

The main theorem of this section shows that every point P ∈ X has a unique
degree if X is ACM.

Theorem 5.7

Let X be any ACM set of points in Pn1 × · · · ×Pnr . Then for any point P ∈ X we
have |degX(P )| = 1.

Proof. After a change of coordinates, we can assume that x1,0, . . . , xr,0 form a regular
sequence on R/IX, and in particular, for each i, xi,0 does not vanish at any point of
X. Suppose, for a contradiction, that P ∈ X is a point with degX(P ) = {α1, . . . , αt}
with t = |degX(P )| ≥ 2. If {F1, . . . , Ft} are t ≥ 2 minimal separators of P with
deg Fi = αi, we can reorder and relabel the separators so that deg Fi ≤lex deg Fi+1 for
i = 1, . . . , t− 1 with respect to the lexicographical order.

For ease of notation, let F = F1 and G = F2 be the two smallest minimal separa-
tors with respect to the lexicographical order. Suppose deg F = a = (a1, . . . , ar) and
deg G = b = (b1, . . . , br). Set s = min{i | ai < bi}; such an s exists since deg F 6= deg G
by Corollary 5.4. Also, let p = min{j | aj > bj}. Such a p must exist; otherwise
deg G � deg F , contradicting the fact that F and G are minimal separators of P .

Consider c = (c1, . . . , cr) where ci = max{ai, bi}. Since c � a, by Corollary 5.6
we must have that dimk(IX, F )c = dimk(IX)c + 1. So, a basis for (IX, F )c is given by
the dimk(IX)c basis elements of (IX)c and any other form of degree c in (IX, F )c\(IX)c.
One such form is

xc1−a1
1,0 · · ·xcr−ar

r,0 F = xcs−as
s,0 · · ·xcr−ar

r,0 F.

Recall, we are assuming that xi,0s form a regular sequence on R/IX, so none of the
xi,0’s vanish at any of the points. As well, ci = ai = bi for i = 1, . . . , s− 1.

A similar argument implies that dimk(IX, G)c = dimk(IX)c + 1, so a basis for
(IX, G)c is given by the dimk(IX)c basis elements of (IX)c and xc1−b1

1,0 · · ·xcr−br
r,0 G =

x
cp−bp

p,0 · · ·xcr−br
r,0 G (because ci = bi for i = 1, . . . , p− 1).

Since c � deg G, and c � deg F we have

(IX, F )c ⊆ (IY)c and (IX, G)c ⊆ (IY)c.
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But dimk(IX, F )c = dimk(IX)c +1, and since dimk(IY)c ≤ dimk(IX)c +1, we must have
(IX, F )c = (IY)c. A similar argument implies that (IX, G)c = (IY)c. Hence,

(IX, F )c = (IX, G)c.

Because x
cp−bp

p,0 · · ·xcr−br
r,0 G ∈ (IX, G)c, our discussion about the basis for (IX, F )c im-

plies

x
cp−bp

p,0 · · ·xcr−br
r,0 G = H + cxcs−as

s,0 · · ·xcr−ar
r,0 F with H ∈ (IX)c and 0 6= c ∈ k.

Note that c 6= 0 because if c = 0, then the right hand side vanishes at all the points of
X, but the left hand side does not. We thus have

x
cp−bp

p,0 · · ·xcr−br
r,0 G− cxcs−as

s,0 · · ·xcr−ar
r,0 F ∈ (IX).

Because x1,0, . . . , xr,0 form a regular sequence on R/IX and since X is ACM,
any permutation of these variables is again a regular sequence on R/IX. So, we
can assume there is a regular sequence whose first two elements are xs,0 and xp,0.
So, x

cp−bp

p,0 · · ·xcr−br
r,0 G ∈ (IX, xs,0), and since xp,0 is regular on R/(IX, xs,0) we have

x
cp+1−bp+1

p+1,0 · · ·xcr−br
r,0 G ∈ (IX, xs,0). Thus

x
cp+1−bp+1

p+1,0 · · ·xcr−br
r,0 G = H1 + H2xs,0 with H1 ∈ IX and H2 ∈ R.

If Q ∈ X\{P}, then G(Q) = 0 implies that H2(Q) = 0 since H1(Q) = 0 and
xs,0(Q) 6= 0. On the other hand, if we evaluate both sides at P we have

0 6= x
cp+1−bp+1

p+1,0 · · ·xcr−br
r,0 (P )G(P ) = H1(P ) + xs,0(P )H2(P ) = xs,0(P )H2(P ).

But because xs,0(P ) 6= 0, this forces H2(P ) 6= 0. So, H2 is a separator of P with
deg H2 = (b1, . . . , bs − 1, . . . , bp, cp+1, . . . , cr). Let F` be a minimal separator with
deg F` � deg H2. But then deg F` ≤lex deg G = (b1, . . . , bs, . . . , br). But any minimal
separator whose degree is smaller than G with respect to lex must have the same degree
as F1, i.e., deg F1 = deg F`. So, deg F1 � deg H2. But this contradicts the fact that
ap > bp and hence deg F1 6� deg H2. This gives the desired contradiction. �

Remark 5.8 If X is a finite set of ACM points in Pn1 × · · · × Pnr , then by the above
theorem we know that |degX(P )| = 1 for any P ∈ X. So we can talk about the degree
of a point in this situation.

In the forthcoming paper of Marino [16], it is shown that the converse of the above
statement holds in P1 × P1, thus giving a new characterization of ACM sets of points
in P1 × P1. We record the precise statement here:

Theorem 5.9

Let X be a finite set of points in P1 × P1. Then X is ACM if and only if
|degX(P )| = 1 for all P ∈ X.

However, the converse of Theorem 5.7 fails to hold in general as shown below.
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Example 5.10 Let P1, . . . , P6 be six points in general position in P2. If Qi,j = Pi×Pj ∈
P2 × P2, then let X be the set of points

X = {Q1,1, Q1,2, Q2,1, Q2,2, Q3,1, Q3,2, Q4,1, Q4,2, Q5,2, Q5,3,

Q5,4, Q5,5, Q5,6, Q6,1, Q6,3, Q6,4, Q6,5, Q6,6}.

Using CoCoA we found that the resolution of R/IX is

0 → R2 → R14 → R33 → R34 → R15 → R → R/IX → 0

and thus R/IX is not Cohen-Macaulay. The bigraded Hilbert function of X is

HX =


1 3 6 6 · · ·
3 8 14 14 · · ·
6 14 18 18 · · ·
6 14 18 18 · · ·
...

...
...

...
. . .

 .

If we remove the point Q5,2 and compute the Hilbert function of Y = X \ {Q5,2} we
get

HY =


1 3 6 6 · · ·
3 8 14 14 · · ·
6 14 17 17 · · ·
6 14 17 17 · · ·
...

...
...

...
. . .

 .

From the Hilbert function, it follows that degX(Q5,2) = {(2, 2)} because the Hilbert
function drops by one for all i � (2, 2). By checking all other points in a similar fashion,
we have that degX(Q6,1) = {(2, 2)} and if we remove any point Qi,j with i ≤ 4, then
degX(Qi,j) = {(2, 1)}, and if we remove any point of the form Qi,j with j ≥ 3, then
Qi,j has only a minimal separator of degree (1, 2).
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