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Abstract

Maps between deformation functors of modules are given which generalise the
maps induced by the Knörrer functors. These maps become isomorphisms after
introducing certain equations in the target functor restricting the Zariski tangent
space. Explicit examples are given on how the isomorphisms extend results about
deformation theory and classification of MCM modules to higher dimensions.

1. Introduction

In this article we show that the mini-versal deformation space of a module on a hy-
persurface section (and more generally a complete intersection) of a singularity under
certain conditions is given as the intersection of hypersurfaces in the mini-versal de-
formation space of another module on the ambient singularity.

A fundamental idea is to characterise singularities by properties of their module
categories. In general this seems to be difficult. The question of which singularities
have finite CM type is despite much study still not settled, cf. [34]. Similar questions:
Which singularities have modular families of indecomposable MCM modules, does
such families appear for infinitely many ranks, is the dimension of the parameter
spaces unbounded (the “geometrically wild” case) or bounded (by 1; the “tame” case)?
How are properties of the singularities of the mini-versal deformation spaces of MCM
modules on an isolated singularity X related to the properties of X?

Keywords: Versal deformation space, obstruction class, modular family, free resolution, maximal
Cohen-Macaulay module.

MSC2000: Primary 14B12, 13D02; Secondary 13D10, 13C14.

255

mmlozano
Collectanea Mathematica



256 Ile

Results in this direction are typically obtained for special classes in low dimension
by explicit calculation. Then one may try to extend the results to higher dimensions.
H. Knörrer introduced in 1987 a functor H which gives an equivalence between the
stable categories of MCM modules on the hypersurface singularities f(x) and f(x)+uv,
see [26]. It followed that all simple hypersurface singularities are of finite CM type
since this was known in dimension 1 and 2.

For curve singularities, the tame/wild dichotomy is well understood by the work
of Y. Drozd and G.-M. Greuel [10, 11]. For normal surface singularities the finiteness
of rank one MCM modules (resp. finite CM type) characterises the rational (resp. the
quotient) singularities [29, 16, 3]. The tame/wild dichotomy has been confirmed in the
minimally elliptic case, see [12] which applies results of C. Kahn [25, 24].

In general one has to expect a richer picture to emerge. In [9] R.-O. Buchweitz
and G. Leuschke prove that there is no finite dimensional variety parameterising rank
two MCM modules on the determinant of the generic n × n-matrix for n > 3, while
the rank one MCM modules are infinitesimally rigid by [8] and [21].

For MCM modules on isolated singularities there exists versal deformation spaces,
see [33], but specific knowledge about these spaces is hard to come by. A. Ishii has
constructed certain natural resolutions of components of the (reduced) versal deforma-
tion space of a (not necessarily indecomposable) MCM module on a rational surface
singularity [23]. These resolutions are described for the cone over a rational normal
curve of degree m in Pm, see [17].

The main contribution in this article is to provide tools which may extend knowl-
edge about the classification and the deformation theory of modules in low dimensions
to modules of higher dimensions. Suppose Y is a complete intersection of n hypersur-
faces in a singularity X. A deformation of a finitely generated module M on Y induces
a deformation of the nth syzygy module N = Ωn

OX
M on X. Theorem 1 in particular

shows that if mini-versal deformation spaces SY and SX exist for M and N , then SY is
the intersection of hypersurface sections in SX . The essential condition in Theorem 1
is the existence of a (non-flat) lifting of M to the double structure OX/I2

Y of Y in X.
By a result of M. Auslander, S. Ding and Ø. Solberg [4], M is a direct summand of N
restricted to Y , which is crucial in the proof. Without the lifting condition the result
is wrong, see Example 2.

In Theorem 2 the lifting condition is substituted with the (stronger) requirement
that OX/I2

Y � OY should split. The conclusion is that there is an isomorphism of
the deformation functor DefYM with a naturally defined subfunctor of DefXN for all
M . Invoking the Kodaira-Spencer map, we define a modular family of modules, and
Corollary 1 says that X has such a family of dimension d if Y has. Corollary 2 says that
the hypersurface singularities F = f(x)+ yn1

1 + · · ·+ ynr
r with ni > 3 are geometrically

wild if f is.
In Theorem 3 an intermediate singularity (i.e. Y ← Z → X) is included in the

setup, and the syzygy is to be taken of the pullback M ′ of M to this space. Theorem 3
in particular covers Knörrer’s functor H which for MCM M gives an isomorphism of
deformation functors DefYM ∼= DefXH(M), see Corollary 4. This result was first published
by G. Pfister and D. Popescu (in a slightly more restricted situation), see [31], but was
already proved by the author in his (unpublished) Master’s thesis [18].

For Theorem 3 we have to prove a splitting result in our situation, and a tensor
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product of free resolutions with Eisenbud systems which adds regular sequences (see
Definition 8) is an essential part of the proof.

In the last section the splitting condition in Theorem 2 is reformulated and in
particular considered for cones over smooth projective varieties. In Corollary 5 we give
two explicit examples of (restricted) versal deformation spaces of MCMs on the cone
of the rational normal scroll in P4.

Some conventions and definitions used throughout the article: A local k-algebra
A is a Henselian k-algebra (in particular local and Noetherian) where k is a field. In
connection with existence of versal deformations we assume that A is algebraic, i.e. A
is the Henselisation of a k-algebra of finite type. An A-module M is (if clearly not
otherwise) a finitely generated A-module. For a Noetherian k-algebra A, let AS be the
Henselisation of A⊗kS in the ideal A⊗kmS where S is an object in the category Hensk
of Henselian k-algebras with residue field k. A deformation of an A-module M to S
is an AS-module MS , flat as S-module, together with an AS-linear map π : MS →M
inducing an isomorphism π⊗Sk : MS⊗Sk

'−→ M . Two deformations are equivalent if
they are isomorphic over M . The deformation functor DefAM : Hensk → Sets associates
to S the set of equivalence classes of deformations MS of M to S. Maps are induced
by tensorisation.

Most of the results in this article will suitably adapted hold in the graded case as
well.

2. Deforming higher syzygies of a liftable module

In Theorem 1 the syzygy gives a formally smooth map between deformation functors
of modules on different rings. Theorem 2 shows that this is an isomorphism for all
modules if the double structure splits. Corollary 1 and 2 are applications to questions
about modular families. In Proposition 1 a grade condition implies that the syzygy
map is an isomorphism of deformation functors.

Let A be a local ring, then the (first) syzygy of an A-module M is the A-module
ΩAM = im d1 where F = (F, d) is a minimal A-free resolution ...

d2−→ F1
d1−→ F0 of M

(suppressing the augmentation map). We have that ΩAM is uniquely defined up to
a non-unique isomorphism. Let τ : A → B be a map of local rings, N a B-module
(hence also an A-module via τ) and let π : M → N be a map of A-modules. Define
Ωπ : ΩAM → ΩBN to be any choice of lifting of π to a map of the first syzygies after
fixing minimal resolutions. The nth syzygy, denoted Ωn

AM , is defined by induction.
The following two lemmas and definitions are vital prerequisites for the rest of

the article.

Lemma 1

Suppose A is a local k-algebra and M a finitely generated A-module, then there
is a map

DefAM −→ DefAΩAM

defined by sending π : MS → M to Ωπ : ΩAS
MR → ΩAM . The map is functorial for

isomorphisms in M and in particular independent of the choice of minimal resolution.

The proof is straight forward checking and is left to the interested reader.
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Lemma 2

Suppose C → A is a map of local k-algebras and N is a finitely generated C-

module, let M = N⊗CA. If TorC1 (N,A) = 0 then there is a map DefCN → DefAM given
by [NS ] 7→ [NS⊗CS

AS ].

Proof. The map respects the equivalence relation, we have to show that MS :=
NS⊗CS

AS is S-flat. By the local criterion of flatness it is sufficient to show that
TorS1 (MS , k) = 0. This follows from the 5-term exact sequence of the spectral se-
quence

E2
pq = TorSp (TorCS

q (NS , AS), k)⇒ TorCp+q(N,A). �

Definition 1 Suppose C → A is a surjective map of rings with kernel I and M is
an A-module. Then M has a lifting to C if there is a C-module N and a C-linear map
π : N → M such that TorC1 (N,A) = 0 and π⊗A : N⊗CA → M is an isomorphism.
There exists an obstruction class

o(C/I2,M) ∈ Ext2A(M,M⊗AI/I2) (1)

such that o(C/I2,M) = 0 if and only if M has a lifting to C/I2, see [22, IV 3.1]
(cf. also [27] and [20, Theorem 1]).

The Zariski tangent space DefAM (k[ε]) is naturally a k-vector space and there is
a canonical isomorphism DefAM (k[ε]) ∼= Ext1A(M,M) of k-vector spaces. If S in Hensk
satisfies m2

S = 0, there is also a natural isomorphism DefAM (S) ∼= DefAM (k[ε])⊗kmS .
In particular; to a finite dimensional k-vector subspace W ⊆ DefAM (k[ε]), there is a
canonical deformation MW in W⊗kW ∗ ⊆ DefAM (k[W ∗]) where k[W ∗] = k ⊕W ∗. By
standard obstruction calculus there is a complete k-algebra H = H(W ), which is a
quotient of the power series ring T = (SymkW

∗)̂ , and a pro-object M̂H = (Mn) with
Mn a deformation of M to H/mn+1 which induces Mn−1 for all n, obtained by lifting
M1 = MW successively to maximal quotients of T/mn+1, see [27, 32, 20]. Restricting
to the full subcategory Artk of finite length objects in Hensk, the pair (H, M̂H) defines
a map hW : HomArtk

(H,−)→ DefAM of functors.

Definition 2 Let V be a k-vector subspace in DefAM (k[ε]). Then DefA(M,V ) is defined
as the subfunctor of DefAM of deformations MS with the property that MS⊗SS/mn+1

is in the image of hW for some finite dimensional k-vector subspace W of V for each n.

Definition 3 Let F and G be functors F,G : Hensk → Sets with #F (k) =
#G(k) = 1. A map ϕ : F → G is smooth if fϕ : F (R) → F (S) ×G(S) G(R) is
surjective for all surjections π : R → S in Hensk, and ϕ is formally smooth if fϕ is
surjective for all surjections R→ S in Artk.

If S is algebraic and ξS ∈ F (S), then (S, ξS) is a (formally) versal family for
F if the induced map HomHensk

(S,−) → F is (formally) smooth, and a (formally)
mini-versal family if the map in addition is an isomorphism at k[ε]. See [2].
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Theorem 1

Let π : C → A be a surjective map of local k-algebras. Set I = kerπ, and assume
I is generated by a regular sequence of length n and M is a finitely generated A-module
which has a lifting to C/I2. Then the following holds:

(1) There is a map of deformation functors

σ : DefAM −→ DefC(Ωn
CM,V ),

where
V = im

{
DefAM (k[ε])→ DefCΩn

CM
(k[ε])

}
,

which is formally smooth and an isomorphism at tangent spaces.

(2) If (S,MS) is a versal family for DefAM , then (S, σ(MS)) is a versal family for
DefC(Ωn

CM,V ).

Remark 1 If M is locally free on the complement of the closed point in SpecA, then,
using [2] and [15, Theorem 3], it is shown in [33] that there exists a versal family
for DefAM . I.e. there exists a deformation MS for an algebraic S such that the map
of functors HomHensk

(S,−) → DefAM induced by MS is smooth. It follows that there
exists a finitely generated k-algebra Sft with a k-point t0 and an A⊗Sft-module MSft

flat as Sft-module inducing MS at t0. By openness of versality [2, 4.4 and 3.7] (cf. [23,
2.13]) we may assume that it is versal at all k-points in SpecSft.

Example 1 If L is an A-module, set N = Ωm
CL for m > n. Then M = N⊗CA

satisfies the conditions of Theorem 1 since TorC1 (N,A) = TorCm+1(L,A) = 0 which

implies that TorC/I
2

1 (N⊗CC/I2, A) = 0.
Let N be an MCM C-module, then TorC1 (N,A) = 0 since I is N -regular (cf. [14,

21.9]). Hence M = N⊗CA is liftable to C/I2 and satisfies the conditions of Theorem 1.

Example 2 Theorem 1 is not true without the existence of a lifting of M to C/I2.
If C = k[x]h, f = x2, A = C/(f) and M = k, then ΩCk ∼= C, hence is (infinites-
imally) rigid as C-module while DefAM ∼= Hom(A,−) by Proposition 1 and in par-
ticular has non-trivial Zariski tangent space. By Lemma 7 (or direct calculation)
o(C/(f2),M) 6= 0.

The deformation functors may also have isomorphic Zariski tangent spaces, but
differ in the obstructions: Let 0 6= f ∈ m2

P where P is a local, regular k-algebra
with k as residue field. If A = P/(f), M = k and C = P [v]h/(f + v) ∼= P , then
again DefAM ∼= Hom(A,−) and in particular M has obstruction given by f . But
DefCΩCM

∼= DefCk if dimP > 3 by Proposition 1, hence DefCΩCM
is smooth. By Lemma 7,

o(C/(f2),M) 6= 0.

Lemma 3

If C → A is a surjective map of local rings and the kernel I is generated by a
regular sequence, then for any n > 0 there is a map of A-modules

Ext2A(M,M⊗AI/I2) −→ Ext2A(Ωn
AM,Ωn

AM⊗AI/I2) (2)

which takes o(C/I2,M) to o(C/I2,Ωn
AM).
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Proof. For all i > 0 there are quite generally natural syzygy maps

ωi : ExtiA(M,M)→ ExtiA(ΩAM,ΩAM) (3)

obtained by composing the connecting map ExtiA(M,M) → Exti+1
A (M,ΩAM) with

the inverse of the connecting isomorphism

ExtiA(ΩAM,ΩAM) '−→ Exti+1
A (M,ΩAM).

Since I/I2 is A-free of finite rank,

Ext2A(M,M⊗AI/I2) ∼= Ext2A(M,M)⊗AI/I2.

The map in the lemma is ω2 iterated n times tensored with I/I2. In the Yoneda
complex this is simply to chop off the first n maps. �

Remark 2 Let MS be a deformation of M in DefAM (S) and π : R → S a small
surjection (i.e. mR · kerπ = 0), then there is a an obstruction class oA(π,MS) ∈
Ext2A(M,M)⊗k kerπ which vanish if and only if there exists a deformation MR of M
to R such that MR⊗RS is equivalent to MS , see [27]. Since −⊗k kerπ may be taken
outside the Ext2, it follows as in Lemma 3 that

ω2⊗ idkerπ(oA(π,MS)) = oA(π,ΩAS
MS) ∈ Ext2A(ΩAM,ΩAM)⊗k kerπ.

Proof of Theorem 1 Since both functors are locally of finite presentation, it follows
from [2, 3.7] that an algebraic family is versal if it is formally versal. The second part
of the theorem therefore follows from the first since the composition

HomHensk
(S,−)→ DefAM → DefC(Ωn

CM,V )

of two formally smooth maps is formally smooth.
A deformation of M as A-module is also a deformation of M as C-module,

which gives a map DefAM → DefCM . By Lemma 1 there is a map DefCM → DefCΩn
CM

,
and by Lemma 2 there is a map DefCΩn

CM
→ DefAΩn

CM⊗CA
since TorC1 (Ωn

CM,A) =
TorCn+1(M,A) = 0 by assumption. The resulting map DefAM → DefCΩn

CM
factors via

the inclusion through a map σ : DefAM → DefC(Ωn
CM,V ). By [4, 3.6] Ωn

CM⊗CA con-
tains M as a direct summand if M is liftable to C/I2 with the additional assumption
that TorC/I

2

i (N,A) = 0 for all i > 0. However we claim that TorC/I
2

1 (N,A) = 0 ⇒
TorC/I

2

i (N,A) = 0 for all i > 0. If (F, d) is an A-free resolution of M with differential
d, let (F̃ , d̃ ) be a lifting of (F, d) to a map d̃ of a graded module F̃ which is C/I2-free
in each degree. Then (d̃ )2 is induced by a cocycle ϕ ∈ Hom2

A(F, F⊗AI/I2). Since
I/I2 is A-free we have

o(C/I2,M) = [ϕ] ∈ H2 HomA(F, F )⊗AI/I2 = Ext2A(M,M)⊗AI/I2.

Since o(C/I2,M) = 0, there is a ψ ∈ Hom1
A(F, F )⊗AI/I2 with ∂ψ = ϕ. Adjusting d̃ by

ψ gives a differential d̃′ on F̃ , i.e. (d̃′)2 = 0, hence F⊗AI/I2 ι−→ F̃
π−→ F is a short exact

sequence of complexes and by the long exact homology sequence, (F̃ , d̃′) is a C/I2-free
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resolution of N . Tensoring (F̃ , d̃′) with A gives (F, d) and hence TorC/I
2

i (N,A) = 0 for
all i > 0.

We have obtained a natural map

τ : DefAM → DefA(M⊕Y,V ′); MS 7→ τMS := Ωn
CS
MS⊗CS

AS (4)

where Ωn
CM⊗CA ∼= M⊕Y for some finitely generated A-module Y , and V ′ = im(id, η1)

where
(id, ηi) : ExtiA(M,M) ↪→ ExtiA(M⊕Y ,M⊕Y ) for i > 0 (5)

is the composition of ExtiA(M,M)→ ExtiC(M,M), the nth iterate (ωi)n of (3), and the
natural map ExtiC(Ω,Ω) → ExtiA(Ω,Ω) obtained by tensorisation and the collapse of
the spectral sequence Epq2 = ExtpA(TorCq (Ω, A),Ω) ⇒ Extp+qC (Ω,Ω) (where Ω = Ωn

CM

and Ω = Ω⊗CA).
Formal smoothness of σ : DefAM → DefC(Ωn

CM,V ) follows: If π : R → S is a small
surjection we have

(id, η2)(oA(π,MS)) = oC(π, σMS)⊗CA = oA(π, τMS)

and since (id, η2) is injective oC(π, σMS) = 0⇒ oA(π,MS) = 0 (see Remark 2). �

A stronger condition gives a stronger conclusion than in Theorem 1:

Theorem 2

Let π : C → A be a surjective map of local k-algebras. Set I = kerπ, assume I is
generated by a regular sequence of length n, and assume the induced map C/I2 → A
has a section A → C/I2. Then for all finitely generated A-modules M there is an
isomorphism of deformation functors

σ : DefAM
'−→ DefC(Ωn

CM,V )

where
V = im

{
DefAM (k[ε])→ DefCΩn

CM
(k[ε])

}
.

Remark 3 The existence of a splitting A→ C/I2 implies that o(C/I2,M) = 0 for all
A-modules M since N = C/I2⊗AM gives a lifting of M to C/I2.

Criteria for the existence of a splitting are discussed in the last section. For
now we remark that a splitting exists if the equations (F) defining C are given as
“deformations” of the equations (f) defining A by parameters (v) ⊆ I which only
occur in expressions of v-degree > 2 as in F = f + v1v2g. More precisely suppose
A = P/(f) for a local ring P and suppose there is a map σ : P → C commuting with
the maps to A. Then σ induces a splitting if σ(f) ⊆ I2. For a class of examples, see
Theorem 3 (with p = 0).

Proof. For the extension of the surjectivity assured in Theorem 1 to all deformations we
proceed as follows: Given a deformation LS in DefC(Ωn

CM,V )(S). By formal smoothness
of σ there in particular exists a compatible system of deformations Mi of M to Si =
S/mi+1

S and isomorphisms ϕi : σMi
'−→ Li := LS⊗CS

CSi for all i > 0. By induction
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and [28, 22.1] we get an Ŝ-flat ÂŜ := A⊗̂kŜ-module M̂Ŝ and an isomorphism ϕ̂ :
Ωn
ĈŜ

M̂Ŝ
'−→ L̂Ŝ .

Let L = LS⊗CS
AS , and let L̂ = L⊗AS

ÂS be the completion of L. Observe that
the splitting A→ C/I2 induces a splitting ÂŜ → ĈŜ/Î

2
Ŝ
. Via the isomorphism induced

from ϕ̂ and the splitting Ωn
ĈŜ

M̂Ŝ⊗ĈŜ
ÂŜ = M̂Ŝ ⊕ Y assured by [4, 3.6], there is a map

L→ M̂Ŝ . Let MS be defined as the image of L under this map. Then MS is a finitely
generated AS-module, and the completion of MS is M̂Ŝ . From [28, 7.11] it follows
that there exists a map ϕS : σMS → LS inducing ϕ1. By [28, 22.5] ϕS is injective
and cokerϕS is S-flat. Since ϕS⊗Sk is an isomorphism, it follows that cokerϕS = 0
and ϕS is an isomorphism. Hence σMS is equivalent to the deformation LS and σ is
surjective.

To get injectivity of σ we prove injectivity of τ in (4). Assume ϕ : τMS
'−→ τM ′

S .
Restricting ϕ to the direct summand MS and composing with the projection τM ′

S →
M ′
S gives a map ψ : MS → M ′

S compatible with the structure maps to M . By [28,
22.5] ψ is an isomorphism as above, hence τ is injective and so is σ. �

Remark 4 With the conditions in Theorem 2, one similarly shows that τ in (4) is an
isomorphism. Moreover; we have maps

DefAM
α−→ DefC(M,V1) → DefC(Ωn

CM,V2) → DefA(Ωn
CM⊗CA,V3)

β−→ DefAM (6)

(where the Vi are the images of DefAM (k[ε])) which all except β exist without the
splitting condition or o(C/I2,M) = 0.

Let M and M ′ be A-modules and A = C/I any quotient ring. In [20] an obstruc-
tion theory for DefAM as a subfunctor of DefCM is given. Let MS be a deformation of
M as A-module. If the obstruction class oC for deforming MS along a small surjection
R→ S as C-module is zero, there exists a secondary class oI which vanish if and only
if there is a deformation of MS as A-module, see [20, Theorem 1]. Moreover, there is
a change of rings spectral sequence

Epq2 = ExtpA(M,ExtqC(A,M ′))⇒ Extp+qC (M,M ′)

with d2-differential HomA(M,Ext1C(A,M ′)) d2−→ Ext2A(M,M ′) induced by cupping with
o(C/I2,M) ∈ Ext2A(M,M⊗BI/I2) via the isomorphism

HomA(M⊗AI/I2,M ′) ∼= HomA(M,Ext1C(A,M ′)),

see [22, IV 3.1] and [20, Proposition 3]. In [20, Theorem 4] it is shown that oI is in
the image of d2 , hence is zero if o(C/I2,M) = 0. It follows that α in (6) is formally
smooth and tangentially an isomorphism, and if the splitting condition holds, α is an
isomorphism.

Modular families

Definition 4 An S-family of A-modules MS is an S-flat, finitely generated A⊗kS-
module with S finitely generated as k-algebra. Then the Kodaira-Spencer map gS :
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Derk(S)→ Ext1A⊗S(MS ,MS) is defined by D 7→ [D, dS ] where dS is the differential in
an A⊗kS-free resolution of MS . For each point t ∈ SpecS there is a local Kodaira-
Spencer map gt : Derk(S, k(t)) → Ext1A(Mt,Mt) at t induced by gS where Mt =
MS⊗Sk(t).

Lemma 4

Let TS,t be the Zariski tangent space of S at the k-point t. The local Kodaira-
Spencer map at t equals the natural map TS,t → Ext1A(Mt,Mt) induced by MS via the
natural isomorphism Derk(S, k(t)) ∼= TS,t.

Proof. Let k = k(t), we may assume S is local. Since

Derk(S, k) ∼= Homk(ΩS/k⊗Sk, k) ∼= TS,0 , (7)

we may assume m2
S = 0. The differential of an A⊗S-free resolution of MS can then be

written as d+
∑
ξi⊗si where d is the differential of an A-free resolution F of M , the ξi

are representatives for a basis of Ext1A(M,M) in the Yoneda complex, and the si are
elements in mS . If ϕD ∈ TS,0 is the homomorphism corresponding to D ∈ Derk(S, k)
then a calculation shows that g0(D) is represented by∑

ϕD(si)ξi ∈ Hom1
A(F, F )

and hence g0 is the natural map TS,0 → Ext1A(M,M) induced by the deformation
MS . �

Definition 5 Suppose k is algebraically closed. We say that an S-family of A-
modules MS is modular if S is regular and gt is injective for all k-points t ∈ SpecS. If
in addition dimS = d we say that MS is a modular family of dimension d.

A local Cohen-Macaulay k-algebra A is geometrically wild if for infinitely many d
there exists modular families MS of dimension d such that Mt is indecomposable and
maximal Cohen-Macaulay for all k-points t ∈ SpecS.

Remark 5 This definition of geometrically wild differs slightly from the usual one
since we allow finite repetition of isomorphism classes in the family, cf. [12].

With notation as in Theorem 2, we have:

Corollary 1

Assume k = k. If A has a modular family MS of dimension d (e.g. of maximal
Cohen-Macaulay modules), so does C.

Proof. There is an open locus U0 ⊆ SpecS where Mt is generated by the smallest
number of generators µ0. Localising S (and MS) sufficiently, we obtain a free cover
(C⊗S)µ0

ε−→MS which is minimal at all k-points t, i.e. ker(ε)⊗Sk(t) ∼= ΩAMt. Iterating

the argument yields the n + 2 first terms FSn+1
dn+1−−−→ . . . → FS0

ε−→ MS in a C⊗S-free

resolution of MS inducing minimal presentations Fi+1
di+1⊗Sk(t)−−−−−−−→ Fi � Ωi

CMt for all
k-points t and i = 0, . . . , n.
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One checks that the change of rings map

Ext1A(M,M)→ Ext1C(M,M) and ω1 : Ext1C(M,M)→ Ext1C(ΩM,ΩM)

commutes with the (local) Kodaira-Spencer map. Since

σ : Ext1A(Mt,Mt)→ Ext1C(ΩnMt,ΩnMt)

is injective for all k-points t by Theorem 2, it follows that dn+1 presents a modular
family of C-modules of dimension d. If MS is a family of MCM modules, so
is coker dn+1. �

Corollary 2

Assume k = k. Suppose C = k[x,v]h/(F ) where F is given as

F = f(x) + vn1
1 + · · ·+ vnq

q with ni > 3 for all i,

and A = k[x]h/(f). If A is geometrically wild, then so is C.

Proof. The conditions in Theorem 2 are satisfied, and by the proof of Corollary 1, we
only need the indecomposability of Ωq

CM for all indecomposable MCM A-modules M ,
which is asserted by a result of J. Yoshino [35, Theorem 4.1]. �

A grade condition

The following result gives modules of different depths and dimensions which have
isomorphic deformation functors.

Proposition 1

Let M be a finitely generated A-module where A is a local k-algebra. If

ExtiA(M,A) = 0 for all 0 < i < g, and g > 3, then

DefAM
'−→ DefAΩM

'−→ . . .
'−→ DefAΩg−2M .

In particular; if k is the residue field of A, and if A is the AA-module defined via the
multiplication map AA

m−→ A, then (A,Ωi
AA
A) is a mini-versal family for DefAΩik for all

0 6 i 6 d− 2 where d = depthA.

Proof. Assume Ext1A(M,A) = Ext2A(M,A) = 0, we show that DefAM → DefAΩAM
in

Lemma 1 is an isomorphism. For surjectivity, let (ΩM)S ∈ DefAΩAM
(S) and choose

a minimal AS-free resolution . . . → FS2 → FS1 � (ΩM)S , then a minimal A-free
resolution . . .→ F2 → F1

d1−→ F0 � M is obtained by extending FS⊗Sk. Let

bi(k) : ExtiAS
((ΩM)S , AS)⊗Sk → ExtiA(ΩM,A)

be the natural map which necessarily is surjective for i = 1. From [1, 1.9] we get that
Ext1AS

((ΩM)S , AS) = 0, which in particular is S-flat. From [1, 1.9] we get that b0(k) is
an isomorphism, hence that HomAS

((ΩM)S , AS) → HomA(ΩM,A) is surjective. We
can therefore lift the map F∨

0 → (ΩM)∨ to a map ρ0 : (FS0 )∨ → ((ΩM)S)∨ where FS0 =
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F0⊗AAS . Let σ be the composition of ρ0 with the natural inclusion ((ΩM)S)∨ ↪→
(FS1 )∨. Let dS1 := σ∨ and MS := coker dS1 . We have MS⊗Sk ∼= M . Consider the
5-term exact sequence of the spectral sequence TorSp (Hq(FS), k)⇒ Hp+q(F ):

0← TorS1 (H0(FS), k)←− H1(F )←− H1(FS)⊗Sk ←− TorS2 (H0(FS), k)← . . .

From H1(F ) = 0 and the local criterion of flatness it follows that MS is S-flat and that

. . .→ FS1
dS
1−→ FS0 � MS is an AS-free resolution. In particular ΩMS = (ΩM)S .

For the injectivity, let ψ : ΩMS → ΩM ′
S be an isomorphism of deformations.

Dualisation of the inclusions in FS0 gives surjective maps since Ext1A(M,A) = 0
by [1, 1.9] again. There is a lifting τ : (FS0 )∨ → (FS0 )∨ of ψ∨ with τ⊗Sk = idF0 .
Let ψ0 := τ∨, then ψ0 induces an isomorphism MS → M ′

S of deformations since it is
compatible with ψ.

For the final statement one checks that A as AA-module is a mini-versal family
for DefAk , cf. [20, Example 4]. �

Example 3 If A is Gorenstein andM is an MCM A-module then ExtiA(M,A) = 0 for
i > 0, hence DefAM ∼= DefAΩnM for all n > 0. By a Tate resolution we can define Ωn

AM
as an MCM A-module for all n ∈ Z, and the isomorphism of deformation functors is
valid for all n.

Remark 6 In general we have that ExtiA(M,A) = 0 for i < depthAnnM A, cf. [14,
Proposition 18.4]. Proposition 1 implies that the second map in (6) factors through
n− 2 isomorphisms: DefC(M,V )

∼= DefC(Ω1
CM,V ′)

∼= . . . ∼= DefC
(Ωn−2

C M,V ′′)
.

3. Generalised Knörrer functors

In Theorem 3 we introduce an intermediate ring B and obtain a class of examples not
covered by Theorem 2. Corollary 3 and 4 applies the result to the Knörrer functors.
Lemma 5 gives conditions implying that the map of deformation functors induced by
restriction is formally smooth.

Definition 6 If I(ρ) is the ideal generated by the maximal minors of the l×m-matrix
ρ with entries from the maximal ideal of a local ring R, then I(ρ) is determinental if
depth I(ρ) = |l − m| + 1, the maximal possible value, or if ρ is empty (and then
I(ρ) = (0)).

Let P be a local k-algebra with residue field k, and let Q and R be the Henseli-
sations of the polynomial rings P [u] and P [u,v] respectively, where u = {u1, . . . , up}
and v = {v1, . . . , vq} are indeterminants. Let f and F be b elements from mP and mR

respectively. Set hi = Fi − fi ∈ R for i = 1, . . . , b. Moreover, let ψ = (gij) be an
l ×m-matrix (l 6 m) with gij ∈ Q, let gij be the image of gij under the natural map
Q→ Q⊗Pk = Q0

∼= k[u]h and put ψ0 = (gij).
With this notation we have:
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Theorem 3

Assume (f) is a regular sequence and I(ψ0) is a determinental ideal, and let
A = P/(f), B = Q/((f) + I(ψ)) and C = R/(F). For any finitely generated A-module
M , let M ′ = M⊗AB which is a C-module via the natural surjective map C → B.

If hi ∈ (v)(u,v)R for all i and gij ∈ (u)Q for all i, j, and n = q+m− l+1 (n = q
if ψ is empty), then there is an isomorphism of deformation functors

σ : DefAM
'−→ DefC(Ωn

CM
′,V )

where

V = im
{
DefAM (k[ε])→ DefCΩn

CM
′(k[ε])

}
.

Moreover; ifM is a maximal Cohen-Macaulay A-module, then Ωn
CM

′ is a maximal
Cohen-Macaulay C-module.

Remark 7 Fixing M and varying B in Theorem 3 gives many C-modules sharing
obstructions. E.g. suppose M = k is the residue field of A, then M ′ = k⊗AB =
Q0/I(ψ0) and DefC(Ωn

CM
′,V ) has A as versal deformation ring for all the ψ.

Observe that o(C/I2,M ′) may be non-zero even though C/I2 → A has a section,
which for instance is the case with Knörrer’s H-functor, see Remark 12.

For p = 0, Theorem 3 is a special case of Theorem 2.

The proof of Theorem 3 is analogous to the proof of Theorem 2, in particu-
lar we need to show that M is a direct summand of Ωn

CM
′⊗CA. Since we cannot

apply [4, 3.6], we construct a C-free resolution of M ′ from a P -free resolution L of M ,
a Koszul resolution K(v) of Q and the Eagon-Northcott resolution F(ψ) of Q/I(ψ).
Both L and K(v) carries “Eisenbud systems” with respect to the regular sequences
(f) and (h) respectively, and we define a tensor product of complexes with Eisenbud
systems which adds the regular sequences. The construction enables us to observe that
many differentials in the resolution vanish with the given conditions, and we obtain
the desired splitting.

A tensor product of Eisenbud systems

Definition 7 [D. Eisenbud] Let R be a commutative ring and J = (f1, . . . , fn) a
sequence of elements in R. An Eisenbud system relative to J on an R-complex
L = (L, dL) is a system of R-linear endomorphisms {sα} of L as graded R-module
of degree 2|α| − 1 > 1, where α is an n-multi index, satisfying

sαd
L + dLsα = −

∑
β1+β2=α

sβ1sβ2 (8)

for |α| > 1 and sid+ dsi is multiplication by fi on L, see [13].

If L is an R-free resolution of an A = R/J-module M , there exists an Eisenbud
system on L. Let S = R[t1, . . . , tn] and let D = Homgrad.R-alg.(S,R) (where deg ti = −2)
be the divided power algebra. It has generators τ (α) which are dual to the tα and ti
acts on D by subtracting the i-th index in α by 1 if possible, or else ti·τ (α) = 0. If
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we put s0 = dL and d =
∑
α t

α⊗sα then D⊗L⊗A = (D⊗RL⊗RA, d⊗1) is a complex
of A-free modules, and if (f1, . . . , fn) is a regular sequence then D⊗L⊗A is an A-free
resolution of M , for details see [13, 7.2] and [5].

Definition 8 If E = (L, {sα(f)}) and E ′ = (L′, {sα(g)}) are Eisenbud systems rela-
tive to the sequences (f1, . . . , fn) and (g1, . . . , gn) in R, then their sum tensor product
is the Eisenbud system E⊗E ′ = (L⊗RL′, {sα(f)⊗1±1⊗sα(g)}) relative to the sequence
(f1 + g1, . . . , fn + gn).

Remark 8 This definition generalises a definition by Yoshino of a tensor product of
two matrix factorisations (see Definition 9 below) over two power series rings in the
following sense. If both L and L′ have length 1 and n = 1, the second and third
“differential”;

Ψ := d2 = t⊗(s1(f)⊗1 + 1⊗s1(g)) + 1⊗(s0(f)⊗1− 1⊗s0(g))

and
Φ := d3 = t⊗(s1(f)⊗1− 1⊗s1(g)) + 1⊗(s0(f)⊗1 + 1⊗s0(g))

in (D⊗RL⊗RL′, d), give a matrix factorisation (Φ,Ψ) of f + g which is equal to the
one in [35, 1.2].

Proof of Theorem 3 We have surjections C → B and B → A, a splitting A→ B which
we claim is flat, and a finitely generated A-module M . Define σ by the composition
DefAM → DefBM ′ → DefCM ′ → DefCΩ (where Ω = Ωn

CM
′) of maps defined in Lemma 2,

by change of rings, and in Lemma 1 respectively. We claim that n > pdimC B. Then
there is a map DefCΩ → DefB

Ω
where Ω = Ωn

CM
′⊗CB by Lemma 2. By change of

rings there is a map DefB
Ω
→ DefA

Ω
. By the splitting of B as A-module Ωn

CM
′⊗CA

becomes a direct summand of Ωn
CM

′⊗CB. We claim that M is a direct summand of
Ωn
CM

′⊗CA. Define

τ : DefAM → DefA
(Ω,V ′)

, where V ′ = im DefAM (k[ε]),

by MS 7→ Ωn
CS
M ′
S⊗CS

BS considered as (a possibly not finitely generated) AS-module.
That σ is an isomorphism now follows analogously to the argument in Theorem 1
and 2: Define (id, ηi) for i > 0 to be the composition of the natural maps

ExtiA(M,M)→ ExtiC(M ′,M ′)→ ExtiC(Ω,Ω)→ ExtiB(Ω,Ω)

→ ExtiA(Ω,Ω) = ExtiA(M⊕Y ,M⊕Y ).

In particular the (id, ηi) are injective. Considering the obstruction classes as 4-term
exact sequences (see the proof of Lemma 7) one can show that

oC(π, σMS)⊗CB 7→ oA(π, τMS), so oC(π, σMS) = 0⇒ oA(π,MS) = 0

and formal smoothness follows for σ. Given a LS ∈ DefC(Ω,V )(S), then there is an
A⊗̂kŜ-module M̂Ŝ and an isomorphism ϕ̂ : Ωn

ĈŜ

M̂ ′
Ŝ
→ L̂Ŝ . Let LB = LS⊗CS

BS and

LA the AS-linear direct summand of LB induced by the splitting off of A in B. We
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observe that the last claim above also gives that M̂Ŝ splits off from Ωn
ĈŜ

M̂ ′
Ŝ
⊗ĈŜ

ÂŜ
since the conditions on the equations are the same. Define MS as the image of the
from ϕ̂ induced map LA → M̂Ŝ . We obtain an isomorphism σMS

∼= LS compatible
with ϕ̂ mod m2

S by [28, 7.11]. Hence σMS is equivalent to the deformation LS and σ
is surjective. For the injectivity of σ, see the proof of Theorem 2.

To show that B is A-flat it is sufficient to show that Q/I(ψ) is P -flat. Since
I(ψ0) is determinental, the Eagon-Northcott complex F(ψ0) (cf. [14, A2.6]) gives a
Q0-free resolution of Q0/I(ψ0). One can show that the natural map Hi(F(ψ))⊗Pk →
Hi(F(ψ0)) is surjective if and only if it is an isomorphism. Hence F(ψ) is a Q-free
resolution of Q/I(ψ) of length m− l + 1. We have

TorPi (Q/I(ψ), k) ∼= TorQi (Q/I(ψ), Q0) = Hi(F(ψ)⊗QQ0) = Hi(F(ψ0)) = 0

for i > 0 by assumption, and we conclude by the local criterion of flatness.
We want to show that n > pdimC B. Let C0 = C/(v) with surjections C →

C0 → B. As for F(ψ) the Koszul complex K(F) gives an R-free resolution of C. We
have

Tork[v]
i (C, k) ∼= TorRi (C,Q) ∼= Hi(K(F)⊗RQ) ∼= Hi(K(f))⊗PQ = 0

for i > 0 by assumption, hence (v) is a C-regular sequence and pdimC C0 = q. Since
Q/I(ψ) is P -flat, F(ψ)⊗PA gives an C0-free resolution of B and the length of F(ψ)
is m− l + 1. There is a change of rings spectral sequence

Eij2 = ExtiC0
(B,ExtjC(C0,−))⇒ Exti+jC (B,−).

If i > m− l + 1 or j > q, then Eij∞ = 0, and thus pdimC B 6 q +m− l + 1.
If M is a MCM A-module (so A is Cohen-Macaulay), then M0 = M⊗AC0 is a

MCM C0-module. We have that F(ψ) = F(ψ)⊗QC0 gives a C0-free resolution of B
and

Hi(F(ψ)⊗C0M0) ∼= TorC0
i (B,M0) ∼= TorAi (B,M) = 0

for i > 0 since B is A-flat. We get an “M0”-resolution of M ′ of length m− l+ 1. Now

depthM ′ > depthM0 − (m− l + 1) = depthC0 − pdimC0
B = depthB = dimB

since B is Cohen-Macaulay, so M ′ is a MCM B-module, and Ωn
CM

′ is a MCM C-
module since n > pdimC B.

For the last claim: Let E be an Eisenbud system on a minimal P -free resolution
L of M relative to the regular sequence (f1, . . . , fb) and E ′ an Eisenbud system on the
R-free Koszul resolution K(v) of Q relative to the sequence (h1, . . . , hb). Remark that
we may assume sα(h) = 0 for |α| > 1. The tensor product of these complexes with the
resolution F(ψ) gives an R-free complex with H0

∼= M ′ and Hi
∼= TorPi (M,Q/I(ψ)) = 0

for i > 0, hence an R-free resolution ofM ′. The tensor product of the Eisenbud systems
yields an Eisenbud system relative to (F1, . . . , Fb), hence we obtain a C-free resolution
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(L, d) of M ′. Assuming (D⊗L⊗A, d⊗1) is a minimal A-free resolution of M , we have

(Ωn
CM

′)⊗CA = coker dn+1⊗CA = coker(dn+1⊗CA)

= coker
n⊕
i=0

(∑
ta⊗sa(f)

)
i+1
⊗1⊗1

=
n⊕
i=0

Ωi
A(M)⊗AGn−i ,

where Gn−i =
⊕n−i

j=0(
∧n−i−j Aq)⊗AArkF(ψ)j , since by assumption hi ∈ (v)(u,v)R

so we may assume I1(si(h)) ⊆ (u,v)R and thus that the D⊗K(v)⊗C- and F(ψ)-
differentials vanish when applying −⊗CA. Non-minimality of (D⊗L⊗A, d⊗1) will
only give certain extra free addends in coker(dn+1⊗CA), the claim is still valid. �

Remark 9 Any finite functorial complex like F may be used to obtain results similar
to Theorem 3.

The restriction functor

Lemma 5

Let π : C → A be a surjective map of local k-algebras. Assume that I = kerπ
is generated by a regular sequence. If N is a finitely generated C-module with
TorC1 (N,A) = 0 and I·ExtiC(N,−) = 0 for all i > 0, then the following holds:

(1) There is a map of deformation functors

σ : DefCN −→ DefA(N⊗CA,V ),

where

V = im
{
DefCN (k[ε])→ DefAN⊗CA

(k[ε])
}
,

which is formally smooth and an isomorphism at tangent spaces. This holds in
particular if N = Ωn

CM with M an A-module and n > pdimC A.

(2) If (S,NS) is a versal family for DefCN , then (S,NS⊗CS
AS) is a versal family for

DefA(N⊗CA,V ).

Remark 10 Lemma 5 should be compared with [31, 1.4].

Proof. The map σ is the one given in Lemma 2. If N is a C-module and the length of
the regular sequence is r, one has that Ωr

C(N⊗CA) ∼=
⊕r

j=0

∧r−j Cr⊗CΩj
CN if and only

if I·ExtiC(N,−) = 0 for all i > 0, by [30, 2.2]. Define τ : DefCN → DefC
(Ωr

CN,V
′)
, where

N = N⊗CA and V ′ = im DefCN (k[ε]), by NS 7→ Ωr
CS
NS . Formal smoothness follows

as in the proof of Theorem 1. If N = Ωn
CM we have TorC1 (N,A) = TorCn+1(M,A) = 0

and ExtiC(N,−) = Exti+nC (M,−) (for i > 0) which certainly is annihilated by I. The
second part follows as in the proof of Theorem 1. �
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The Knörrer functors

Definition 9 [Eisenbud] If f is a regular element in a ring P , then a matrix factori-
sation of f is a pair of linear maps (ρ, σ) of free P -modules L0

σ−→ L1
ρ−→ L0 of finite

rank such that ρσ = f · idL0 and σρ = f · idL1 .

A matrix factorisation is a special case of an Eisenbud system, see Definition 7. If
A = P/(f) one obtains an A-free resolution . . .

ρ−→ L0
σ−→ L1

ρ−→ L0 � M where
ρ = ρ⊗PA etc. If P is a regular local ring, then M is a MCM A-module, and any
MCM A-module is given by a matrix factorisation of f . See [13].

Definition 10 [Knörrer] With notation as in Theorem 3, let F = f + v2 (i.e. h = v2,
p = 0, q = 1), then the G-functor in [26] takes the matrix factorisation (ρ, σ) of f
over P to the matrix factorisation of F (in block matrix notation)

G(ρ, σ) =

([
ρ v· id

−v· id σ

]
,

[
σ −v· id
v· id ρ

])
= (Σ,Σ′)

over R.

If M = coker ρ then M is an A = P/(f)-module. Let G(M) = cokerΣ which is a
C = R/(F )-module.

Corollary 3

There is an isomorphism of deformation functors

DefAM
'−→ DefC(G(M),V )

where
V = im

{
DefAM (k[ε])→ DefCG(M)(k[ε])

}
.

If C defines an isolated hypersurface singularity then DefCG(M) has a versal family

(S,G(M)S), and (S,G(M)S⊗CS
AS) is a versal family for DefA(M⊕ΩAM,V ′) where

V ′ = im
{
DefCG(M)(k[ε])→ DefAM⊕ΩAM

(k[ε])
}
.

Proof. Let L′ = L⊗PR⊗RC. One checks that

M � L′0
[v· id, ρ]←−−−− L′0⊕L′1

Σ←− L′1⊕L′0
Σ
′

←− . . . (9)

gives a C-free resolution of M . Hence G(M) = ΩCM and the first part follows from
Theorem 3. For the second part G(M) is an MCM module, hence the existence
of a versal family is assured by [33], and the rest thus follows from Lemma 5 since
G(M)⊗CA = M⊕ΩAM . �

Example 4 Let P and R be the Henselisations of k[x] and k[x, v] respectively, and
A = An = P/(f) where f = xn+1, so that C = R/(F ) where F = f+v2. Let
M = k, the residue field of A, then G(k) = mC and G(k)⊗CA = k ⊕ mA. Consider



Deforming liftable modules and generalised Knörrer functors 271

the first three maps of deformation functors in (6), but without restricting to the
images of DefAk (k[ε]). In fact we have DefCk

'−→ DefCmC
. By the general identification

DefAM (k[ε]) = Ext1A(M,M), one calculates DefAk (k[ε]) = 〈ξ11〉, DefCG(k)(k[ε]) = 〈η1, η2〉,
and DefAk⊕mA

(k[ε]) = 〈ξij〉16i,j62 as k-vector spaces. Recalling ω1 in (3), the maps
in (6) give ξ11 7→ ω1

C(ξ11) = η1 7→ ξ11+ξ22 where ξ22 = ω1
A(ξ11), and η2 7→ ξ12+ξ21 .

Let the images of variables tij and si in the cotangent spaces correspond to the k-duals
of the ξij and the ηi . Then we know by Proposition 1 that S1 = k[t11]h/(tn+1

11 ) and S2 =
k[s1, s2]h/(sn+1

1 +s22) are the versal deformation rings of DefAk and DefCG(k) respectively.
The obstruction calculus, involving cup and Massey products (see [27, 32, 20]), gives the
obstruction ideal. It terminates after n+1 steps, and we obtain the versal deformation
ring S3 for DefAk⊕mA

as

S3 = k[t11, t12, t21, t22]h
/( tn+1

11 +t12t21 , t11t12−t12t22 ,

t21t11−t22t21 , tn+1
22 +t21t12

)
(10)

where the equations are valid even without assuming that the tij commute. The
choice of liftings of the dual maps of the Zariski tangent spaces of the functors to the
deformation rings given by t11, t22 7→ s1 7→ t11, and t12, t21 7→ s2 7→ 0 is respected
by the equations. However, there is no map S1 → S3 such that the composition
S1 → S3 → S2 → S1 is the identity! Hence there cannot be any “projection” map
DefAk⊕mA

→ DefAk for which the natural DefAk → DefAk⊕mA
is a section.

The above example together with Corollary 4 shows that for the An-singularities
with n odd in odd dimension, there are (indecomposable) MCM modules which have
versal deformation spaces with two components. One suspects that the versal de-
formation space of any MCM module on a simple singularity of even dimension is
irreducible.

Definition 11 [Knörrer] With notation as in Theorem 3, let F = f +uv (i.e. h = uv,
p = q = 1), then the H-functor in [26] takes the matrix factorisation (ρ, σ) of f over
P to the matrix factorisation of F (in block matrix notation)

H(ρ, σ) =

([
ρ u· id

−v· id σ

]
,

[
σ −u· id
v· id ρ

])
= (Φ,Φ′)

over R.

Let A = P/(f) and C = R/(F ), then M = coker ρ is an A-module and H(M) =
cokerΦ is a C-module. Knörrer’s main result is that H induces an equivalence between
the stable category of MCM A-modules and the stable category of MCM C-modules
in the case P is complete and regular, see [26, 3.1].

With this notation we have:

Corollary 4

If (ρ, σ) is a matrix factorisation of f , M = coker ρ and H is the Knörrer functor,
then

DefAM ∼= DefCH(M) .
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Proof. Let L′ = L⊗PR⊗RC. One checks that

M ′ � L′0
[v· id, ρ]←−−−− L′0⊕L′1

Φ←− L′1⊕L′0
Φ
′

←− . . . (11)

gives a C-free resolution of M ′ = M⊗AB (with C-module structure induced from the
natural surjection C → B). Hence H(M) = ΩCM

′ and the conclusion follows by
Theorem 3 if we can prove the tangential isomorphism DefAM (k[ε]) '−→ DefCH(M)(k[ε]).
Since (σ∨, ρ∨) is a matrix factorisation of f , we have Ext1A(M,A) = 0, which implies
that

Ext1A(M,M) ∼= HomA(ΩAM,M)
∼= HomC(H(ΩAM),H(M)) by [26, 3.1]
∼= HomC(ΩCH(M),H(M)) by [26, 3.5]
∼= Ext1C(H(M),H(M))

where Hom is the quotient of stable maps. �

Remark 11 Notice that H is also well defined for matrix factorisations over non-local
rings. At least if we restrict the functors to Artinian local k-algebras, the conclusion
in Corollary 4 is still valid. The argument in Theorem 3 can be followed for the
syzygy defined as H(M) only using the obstruction theory. For the tangential result
one explicitly constructs a chain homotopy from H(ξA) to a given cocycle ξC with
[ξC ] ∈ Ext1C(H(M),H(M)) where ξA = ξC⊗CA, proving surjectivity, as was done
in [19, 7.4.18]. This result was proved by the author in his Master’s thesis, see [18,
2.5.4]. A proof of Corollary 4 for P regular, i.e. for MCM modules, was published by
Pfister and Popescu in 1996 [31, 3.16]. The obvious generalisation of H is obtained
if we in Theorem 3 assume that ψ is empty. Indeed the initial motivation for this
work was to get a better understanding of Corollary 4 and thereby possibly obtain
generalisations of it.

Remark 12 Observing that (ΩAM)′ = ΩB(M ′), there is a (non-split) short exact
sequence

0→M ′ −→ H(M)⊗CB −→ (ΩAM)′ → 0 (12)

which represents o(C/(v2),M ′) via the connecting homomorphism. The exact se-
quences arising from applying HomB(H(M),−) and HomB(−, H(M)) splits into short
exact sequences since the connecting maps may be shown to be zero. E.g.

0→ Ext1A(ΩAM,M)→ Ext1B(H(M), H(M))→ Ext1A(M,M)→ 0 (13)

which in particular shows that we cannot expect surjectivity in Lemma 5 without
restricting to deformations above the image of the tangent space. Cf. [31, 1.17-18].
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4. Splitting criteria

Various criteria for the splitting of the map C/I2 → A in Theorem 2 are given to-
gether with some applications. In particular we consider cones over smooth projective
varieties. When we use geometric language, all schemes are supposed to be above a
fixed field k. In this section ΩX will denote the Kähler differentials on a scheme X
relative to k.

LetX and Y be reduced and connected k-schemes such that Y is a locally complete
intersection closed subscheme of X defined by the ideal sheaf I. Let Y (2) be the double
structure on Y defined by OY (2) = OX/I2. The cotangent sequence

0→ I/I2 → ΩX|Y → ΩY → 0 (14)

of OY -modules defines an element η(I) ∈ Ext1Y (ΩY , I/I2).

Lemma 6

With the above assumptions, the map OY (2) → OY splits if and only if η(I) = 0.
If Y is smooth over k, then η(I) = δ(idI/I2) where δ is the connecting map

δ : H0(EndOY
(I/I2))→ H1(TY⊗I/I2),

for the short exact sequence obtained by applying HomOY
(−, I/I2) to (14).

Proof. In general ΩX|Y = ΩY (2)|Y . The first part is a consequence of the obvious
generalisation of D. Bayer and Eisenbuds classification theorem of “ribbons” (double
structures) in [6, 1.2]. A splitting of ρ : OY (2) → OY induces a splitting of ϕ : ΩY (2)|Y →
ΩY . For the converse, if ϕ splits by a map ψ : ΩY → ΩY (2)|Y then the pullback of ψ
along the universal derivation d : OY → ΩY gives a splitting of ρ since OY (2) is the
pullback of ϕ along d as shown in the proof of [6, 1.2].

The second part follows by definition of η(I) and the natural isomorphism
Ext∗Y (F , I/I2) ∼= H∗(Y,F∨⊗I/I2) for locally free coherent sheaves F . �

We are interested in the local situation, i.e. the vertex of the affine cone over a
smooth and projectively normal variety X embedded in some Pm and not contained
in a hyperplane. The splitting condition forces Y to be cut out in X by hyperplanes:

Lemma 7

Suppose π : C → A is a surjective map of local rings and assume k is the residue
field of A. If I = kerπ is generated by a regular sequence of length n, then

o(C/I2, k) = 0 ⇐⇒ edimC = edimA+ n.

Proof. (⇐): Let L � k be a minimal C-free resolution of k = C/(x1, . . . , xe), e =
edimC. Choose an Eisenbud system {sα} relative to I = (h1, . . . , hn) on L, and let
F = (D⊗CL⊗CA, d), as given after Definition 7. Then o(C/I2, k) ∈ Ext2A(k, k)⊗kI/mI
is represented in the complex HomA(F, k)⊗kI/mI by the cocycle η given as F2 =

L
n
0 [2] ⊕ L2

(id[2],0)−−−−−→ L
n
0 = An composed with An � I/mI, see [20, Proposition 3]. We

have si : L0 → L1 with (x1, . . . , xe)si = hi . We may assume that hi = xi+ gi , gi ∈ m2
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for i = 1, . . . , n. Hence si = ei + δi where I(δi) ⊆ m, and η is the coboundary induced
from [id | 0] : L1 → Ln0 composed with Ln0 � I/mI.

(⇒): Applying −⊗CA to the short exact sequence 0 → mC → C → k → 0 gives
a 4-term exact sequence 0 → TorC1 (k,A) → mC⊗CA → A → k → 0. It represents
o(C/I2, k), cf. [4, 3.5]. The connecting Ext1A(mA, k)→ Ext2A(k, k) is an isomorphism,
so o(C/I2, k) = 0 implies that

0→ TorC1 (k,A) −→ mC⊗CA −→ mA −→ 0 (15)

splits. Since TorC1 (k,A) ∼= I/mCI, we have, after applying −⊗Ak to (15), a splitting
mC/m

2
C = mA/m

2
A ⊕ I/mCI. �

Remark 13 By Example 1, liftability of an MCM module is not sufficient to imply
changing embedding dimension.

Suppose k is algebraically closed. By Lemma 7 we henceforth restrict the attention
to smooth (and positive dimensional) hyperplane sections Y = X∩H for which η(I) ∈
H1(TY (−1)). E.g. if dimY = 1, then this group vanish if and only if Y is a rational
curve of degree less than 4.

Corollary 5

Let C be the local k-algebra defined by the vertex of the cone of the 2-dimensional
rational normal scroll X = P(OP1(2) ⊕ OP1(1)) of degree 3 in P4. Then there are
maximal Cohen-Macaulay C-modules N1 and N2 of rank 8 and 9 respectively, such
that the following holds:

(1) There is a 10-dimensional k-vector subspace V ⊆ DefCN1
(k[ε]) such that the

reduced versal deformation space Rred of DefC(N1,V ) is an isolated singularity of
dimension 4 with a (small) resolution T → Rred given by contraction of the zero
section in the vector bundle

T = SpecSymOP1
(OP1(2)⊕2 ⊕OP1(1)).

(2) There is a 16-dimensional k-vector subspace V ⊆ DefCN2
(k[ε]) such that the

reduced versal deformation space Rred of DefC(N2,V ) is given as the cone over

the image of the Segre embedding P5×P2 ↪→ P17 intersected with two (special)
hyperplanes.

Proof. Let A be the local k-algebra defined by the cone of any smooth hyperplane
section Y of X. Since Y is a rational normal curve of degree 3, H1(TY (−1)) = 0, so
C → A satisfies the splitting condition of Theorem 2. We have A ∼= k[u3, u2v, uv2, v3]h

and rank one MCM A-modules L1 = (u, v) and L2 = (u2, uv, v2). Let M1 = L1 ⊕ L⊕2
2

and M2 = L⊕3
2 and let Ni be the first C-syzygy of Mi. The rank of Ni equals the mi-

nimal number of generators of Mi. The descriptions of the reduced versal deformation
spaces of the DefAMi

given in Example 1 and 2 in [17] together with Theorem 2 gives
the result. �

In [17] we more generally give explicit descriptions of certain canonical resolutions
of strata in the reduced versal deformation space of any MCM module on the cone
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over the rational normal curve of degree m in Pm. Hence (1) and (2) in Corollary 5
are only two out of an infinite class of examples on C.

Example 5 If Hi(TX(−1−i)) = 0 for i = 0, 1, the short exact sequence TX(−2) →
TX(−1) → TX |Y (−1) implies that H0(TX |Y (−1)) = 0, hence by Lemma 6 η(I) 6=
0. E.g. if either X is embedded by a sufficiently high multiple of an ample line bundle
or X is an abelian variety, then for all smooth hyperplane sections η(I) 6= 0.

Example 6 If dimX = 2, H0(TY (−1)) = 0 if deg Y > 2− 2gY . Hence

η(I) = 0⇐⇒ H0(TX |Y (−1)) 6= 0 if gY > 0 or deg Y > 2 . (16)

Example 7 Suppose G is a cyclic group acting linearly on Pm inducing an action
on X ⊆ Pm. If G fixes a hyperplane H such that Y := XG = X ∩H is smooth, then
TY → TX |Y splits by the map TX |Y (U) 3 v 7→ |G|−1∑

h∈G hv ∈ TY (U) and hence
η(I) = 0. An explicit example is the hypersurface given by F = f(x) +ung(x), n > 1,
with G = 〈ξ〉, where ξ is a primitive nth root of 1 which acts by multiplication in the
u-coordinate. This in particular gives examples where H0(TX |Y (−1)) 6= 0.

Consider the following geometric condition:

(C) There is a point p, not contained in the hyperplane H, such that the tangent
space TyX of X at y contains p for all y ∈ Y .

If (C) is satisfied, then the cotangent sequence splits. This was observed by A. Beauville
and J.-Y. Mérindol in [7]1 . They also proved the following strong converse:

Proposition 3 (Beauville and Mérindol)

If either dimX > 3 and H1(OY (−1)) = 0 (e.g. if k = C), or dimX = 2 and
H0(ωY )⊗H0(OPm(1)) → H0(ωY (1)) is surjective, then the splitting of the cotangent
sequence implies condition (C).
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