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Abstract

We show that the moduli space of coherent systems of rank two and dimension
four on a generic curve of genus at least two is non-empty for any value of the
parameter when the Brill-Noether number is at least one and the degree is odd
or when the Brill-Noether number is at least five and the degree is even. In all
these cases there is one component of the moduli space of coherent systems of
the expected dimension. The case of rank two and dimension four is particularly
relevant as it is the first case that cannot be treated by reduction to smaller rank
or dimension.

1. Introduction

The purpose of this note is to show existence of stable coherent systems of rank two
and dimension four on a generic curve of genus at least two.

One can define a coherent system on a curve C as a pair (E, V ) where E is a vector
bundle on C and V ⊂ H0(E) is a subspace of sections of E. A coherent subsystem is a
pair (E′, V ′) where E′ is a subbundle of E and V ′ ⊂ V ∩H0(E′). Given a real number
α, a coherent system is said to be α-(semi)-stable if for every coherent subsystem

deg E′ + α dim V ′

rk E′ < (≤)
deg E + α dim V

rk E
.

For general results about coherent systems, the reader is refered to [?]. Moduli
space of α-stable coherent systems of rank r, degree d and dimension k will be denoted
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by Gk
r,d(α) (see [?]). The expected dimension of Gk

r,d(α) is given by the Brill-Noether
number

ρk
r,d = r2(g − 1) + 1− k(k − d + r(g − 1)).

Any component of the moduli space has at least this dimension ρ. It is expected
that when the Brill-Noether number is positive, the moduli space is non-empty, but
this is not always true.

Here, we deal with the case in which r = 2, k = h0(E) = 4.

Theorem 1.1

Let C be a generic curve of genus at least two. For any positive value of α, the
moduli space of coherent systems of rank two and dimension four on C is non-empty
for ρ ≥ 1 and d odd or for ρ ≥ 5 and d even. In all these cases there is one component
of the moduli space of coherent systems of the expected dimension.

This result is sharper than our result in [?] that applies to a more general setting.
The reason why we focus on this particular case is that it seems to be the first example
that is not treatable with commonly used methods. Coherent systems of dimension
k < r can be constructed as extensions of a trivial coherent system by a vector bundle
(without sections). On the other hand, for k > r and under suitable additional con-
ditions there is a correspondence between coherent systems with invariants r, d, k and
coherent systems with invariants k − r, d, k assigning E, V to E′, V ′ where V ′ = V ∗

and E′ is defined by the exact sequence

0 → E
′∗ → V ⊗OC → E → 0.

This allows for example to treat the case of dimension k = r + 1. Nevertheless, the
method is useless in our situation as the numerical data are self dual.

This paper was written in response to a question by P. Newstead. The author
would like to thank him for organizing a workshop around this subject in August 2005.

P. Newstead and U. Bhosle dealt with similar questions using different methods
(work in progress).

2. A sketch of proof and preliminary results

The main point of the proof is the following fact (that was already used in previous
papers [?, ?]): the dimension of Gk

2,d at any point is at least ρ. One can also consider
the case of a family of curves

C → T,

and define
Gk

r,d = {(t, E, V )|t ∈ T, V ⊂ H0(Ct, E)}.

Here E denotes a vector bundle on Ct of rank r and degree d. Then,

dimGk
2,d ≥ ρk

2,d + dim T,

at every point. If one can find a particular curve C0 such that the dimension of Gk
2,d(C0)

is ρ, then the dimension of the generic fiber of the map Gk
2,d → T attains its minimum
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in a neighborhood of the curve. Hence, for a generic curve C in an open neighborhood
of C0, the dimension of Gk

2,d(C) is ρ (and the locus is non-empty). We only need
to explicitly exhibit a curve C0 and the corresponding family of vector bundles in
Gk

2,d(C0). Our C0 is a reducible curve that we define as follows:

Definition 2.1 Let C1...Cg be elliptic curves. Let Pi, Qi be generic points in Ci.
Then C0 is the chain obtained by gluing the elliptic curves when identifying the point
Qi in Ci to the point Pi+1 in Ci+1, i = 1...g − 1.

We shall be using the following well-known fact:

Lemma 2.2

Let C be an elliptic curve and L a line bundle of degree d on C. One can define a
subspace of dimension k of sections of L by specifying the k distinct (minimum) desired
vanishing of a basis of the subspace at two different points P,Q so that the sum of the
corresponding vanishings at P and Q is d−1. In the case when L = O(aP +(d−a)Q)
two of the vanishings could be chosen to be a, d − a adding to d rather than d − 1.
These are the only two vanishings that can add up to d if P,Q are generic.

Similarly, let E be a vector bundle obtained as the sum of two line bundles of
degree d. Then one can find a space of sections of E with desired vanishing at two
points P,Q if the sum of the vanishings at P,Q is at most d − 1 and each vanishing
appears at most twice.

The proof is left to the reader (or see [?]).
When dealing with reducible curves, the notion of a line bundle and a space

of its sections needs to be replaced by the analogous concept of limit linear series
as introduced by Eisenbud and Harris. A similar definition can be given for vector
bundles (cf. [?]). For the convenience of the reader, we reproduce this definition here:

Definition 2.3 A limit linear series of rank r, degree d and dimension k on a chain
of M (not necessarily elliptic) curves consists of data I,II below for which data III, IV
exist satisfying conditions a)-c)

I) For every component Ci, a vector bundle Ei of rank r and degree di and a
k-dimensional space Vi of sections of Ei

II) For every node obtained by gluing Qi and Pi+1, an isomorphism of the pro-
jectivisation of the fibers (Ei)Qi and (Ei+1)Pi+1

III) A positive integer b
IV) For every node obtained by gluing Qi and Pi+1 basis st

Qi
, st

Pi+1
, t = 1...k of

the vector spaces Vi, Vi+1 of I.

Subject to the conditions

a)
∑M

i=1 di − r(M − 1)b = d
b) The orders of vanishing at Qi, Pi+1 of the sections of the chosen basis satisfy

ordQis
t
Qi

+ ordPi+1s
t
Pi+1

≥ b
c) Sections of the vector bundles Ei(−bPi), Ei(−bQi) are completely determined

by their value at the nodes.
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Finally notice that in order to prove the stability of a coherent system (E, V ) for
every positive value of α, it suffices to prove the following two facts:

1) The vector bundle E is stable.
2) For every proper subbundle E′,

dim(H0(E′) ∩ V )
rk E′ ≤ dim V

rk E
.

This is what we shall do in the next section for our particular case.

3. Proof of the result

We now give the proof of the Theorem 1.1.
We can assume d < 2g+2 as otherwise every vector bundle of rank two and degree

d has at least four sections.
We construct the limit linear series on the chain of elliptic curves described above

first in the case of d = 2a even. The integer b that appears in III of the definition of
limit linear series above will be taken to be a.

For i = 1, ..., g − a + 1 take the vector bundle on C2i−1 to be

[O((i− 1)Pi + (a− i + 1)Qi)]⊕2.

Take the four dimensional space of sections generated by the two sections that vanish
with order i− 1 at Pi and a− i + 1 at Qi and the two sections that vanish with order
i at Pi and a− i− 1 at Qi.

For i = 1, ..., g − a + 1 take on C2i the vector bundle

[O((i + 1)Pi + (a− i− 1)Qi)]⊕2.

Take the four dimensional space of sections generated by the two sections that vanish
with order i + 1 at Pi and a− i− 1 at Qi and the two sections that vanish with order
i− 1 at Pi and a− i at Qi.

On Cj , j = 2(g − a) + 3, ..., g, take the vector bundle to be the direct sum of
two generic line bundles of degree a. Take the space of sections generated by the two
sections that vanish at Pj with multiplicity a− g + j − 2 and at Qj with multiplicity
g− j + 1 and the two sections that vanish at Pj with multiplicity a− g + j − 1 and at
Qj with multiplicity g − j.

One can check that this gives rise to a limit linear series. The vector bundle
obtained in this way is stable because all the restriction to the elliptic components are
semistable and the assumption ρ ≥ 5 is equivalent to the fact that there is at least one
curve where the line bundles are generic. Then the destabilising line bundles for each
component do not glue with each other (see [?]).

The number of moduli on which the family depends can be computed as follows:
the first 2(g−a+1) line bundles are completely determined and have a four dimensional
family of automorphisms while the remaining ones move in a two dimensional family
and have a two dimensional family of endomorphisms. The gluings are arbitrary and
therefore move in four dimensional families. The resulting vector bundle being stable
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has a one dimensional family of endomorphisms. Therefore, the dimension of the family
is

2(g − 2(g − a + 1)) + 4(g − 1)− 4(2(g − a + 1))− 2(g − 2(g − a + 1)) + 1 = ρ.

It is easy to check that the family is not contained in a higher dimensional family
of limit linear series: In order to obtain a larger family, one needs to make either the
restriction of the vector bundles to the various components more general by replacing
an O(αP + (a − α)Q) by a generic line bundle, or make the gluing more general (or
both). But either change would decrease the vanishing at Qi and therefore requires to
increase the vanishing at Pi+1. This implies that the vanishing at Qi+1 must decrease
as well and so on. Then the vanishing at Qg is negative, which is impossible.

It then follows from the general argument at the beginning of section two that
such a limit linear series deforms to the generic curve.

Consider now the case of odd d = 2a + 1.
On C1 take the vector bundle to be O(aQ1)⊕2. Take the four dimension space of

sections that vanish with order at least a− 2 at Q1.
On C2 take the vector bundle to be O(aQ2)⊕O(2P2 + (a− 2)Q2). Take the four

dimensional space of sections generated by the section s1 that vanishes with order a
at Q2, the section s2 that vanishes with order a− 1 at Q2, the section s3 that vanishes
with order 2 at P2 and a− 2 at Q2 and the section s4 that vanishes with order 2 at P2

and a− 3 at Q2.
On C3 take the vector bundle to be indecomposable of degree d. Take the section

that vanishes with order 1 at P3 and a− 1 at Q3 and glue its direction at P3 with the
direction of s2, take the section that vanishes with order 3 at P3 and a− 3 at Q3 and
glue its direction at P3 with the direction of s4. Take then the section that vanishes
with order a− 1 at Q3 that glues with s1 and the section that vanishes with order two
at P3 and a− 3 at Q3 and glues with s3.

On C4 take the vector bundle to be [O(3P4 + (a − 3)Q4)]⊕2. Take the four
dimension space of sections generated by the two sections that vanish with order 1 at
P4 and a − 2 at Q4 and the two sections that vanish with order 3 at P4 and a − 3 at
Q4.

On Ci, i = 5...g, take the limit linear series exactly as in the case of even degree.
The resulting vector bundle is stable because the restriction to each component

is semistable and one of them (the restriction to C3) is stable.
The number of moduli on which the family depends can be computed as follows:

the first two and the fourth to 2(g−a+1)th vector bundles are completely determined
and have a four dimensional family of automorphisms except for the second which has a
two dimensional family. The third vector bundle moves in a one dimensional family and
has a one dimensional family of endomorphisms. The remaining vector bundles move
in a two dimensional family and have a two dimensional family of endomorphisms. The
gluings are arbitrary and therefore move in four dimensional families except for the
gluing between the second and third curve that moves in a two dimensional family. The
resulting vector bundle being stable has a one dimensional family of endomorphisms.
Therefore, the dimension of the family is

2(g−2(g−a+1))+1+4(g−2)+2−4(2(g−a+1)−2)−2−1−2(g−2(g−a+1))+1 = ρ.
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As in the even degree case, it is easy to check that the family is not contained in
a higher dimensional family of limit linear series, therefore such a limit linear series
deforms to the generic curve.

The statement about the coherent system follows from the fact that on most
curves, the limit linear series has only two different values for the vanishing at each
node. Therefore, any sublinebundle of E has at most two limit sections. As E is stable,
for any positive value of α, the stability condition is satisfied. �
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