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Abstract

We study the behavior of the Horrocks-Mumford bundleFHM when restricted
to a planeP2 ⊂ P4, looking for all possible minimal free resolutions for the
restricted bundle. To each of the 6 resolutions (4 stable and 2 unstable) we find,
we then associate a subvariety of the GrassmannianG(2, 4) of planes inP4. We
thus obtain a filtration of the Grassmannian, which we describe in the second
part of this work.

1. Introduction

The Horrocks-Mumford bundle is a stable rank-2 complex vector bundle on P4, and at
the present state, it is -up to twist by line bundles and finite pullbacks- the only one
of its kind known to be undecomposable (cf. Hartshorne’s conjecture, [10]).

It can be defined as the cohomology of the following monad:

0 → 5OP4(−1) B−→ 2Ω2
P4(2) A−→ 5OP4 → 0. (1.1)

Once we have equipped the 5-dimensional complex vector space V with a basis {ei}i∈Z5 ,
A = (aij) is a 2× 5 matrix of 2-forms (see [4] or [7]):

A =

(
a0i := ei+2 ∧ ei+3

a1i := ei+1 ∧ ei+4

)

Keywords: Horrocks-Mumford bundle, minimal free resolution, stable vector bundles, moduli
spaces, jumping planes and lines, Shioda’s modular surface.
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and B =t (A ·Q), where Q is just the matrix Q =

(
0 1
−1 0

)
.

The construction of the bundle is due to Horrocks and Mumford, who discovered
it in 1972 [13]. Nevertheless via the Hartshorne-Serre correspondence its existence is
hand in glove with that of degree 10 abelian varieties in P4, that had already been
proved by Comessatti [6] in 1916.

This work aims at studying the behavior of the HM-bundle FHM when restricted
to a plane P2 ⊂ P4.

Stable and unstable planes (the latter are also called jumping) are already known
by [4]. Here we want to study minimal free resolutions for the restricted bundle.

We find out that there are 6 possible minimal resolutions (a, b), of the form:

0 → ⊕ki=1OP2(−ai)
ϕ−→ ⊕k+2

j=1OP2(−bj) → FHM |P2 → 0. (1.2)

We prove that all of them are actually assumed by the HM-bundle on some plane
P2 ⊂ P4.

For each of these 6 resolutions, we then consider points of the Grassmannian G(2, 4)
where this particular resolution is assumed, forming the subvarieties that we call V(a,b).
Studying resolutions in connection with jumping phenomena, we obtain a detailed de-
scription of what these subvarieties look like.

The results are summarized in the:

Main Theorem. Let V(a,b) be the subvarieties of the Grassmannian G(2, 4) defined
as follows:

V(a,b) := {P2 ⊂ P4 | FHM |P2 has minimal free resolution (a, b)} .

Then we have the filtration:

V(4,5)(0,3,3,4)

nnnnnnnnnnnn

NNNNNNNNNNN

V(5)(1,1,4) V(5)(0,3,3)

V(3,4)(1,2,2,3)

V(4)(1,2,2)

V(3,3,3)(2,2,2,2,2)

where:

• V(5)(0,3,3) is a smooth surface of degree 25, formed by jumping planes. It is the
image of the well known Shioda’s surface under a complete linear system;

• V(4,5)(0,3,3,4) consists of 25 smooth conics of jumping planes on the surface
V(5)(0,3,3);
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• V(5)(1,1,4) consists of 25 planes, formed by stable planes, each one containing one
of the conics above described;

• V(3,4)(1,2,2,3) is an irreducible 4-fold, formed by stable planes;
• V(4)(1,2,2) is also formed by stable planes. It has dimension 5 and degree 5;
• V(3,3,3)(2,2,2,2,2) is an open subset of G(2, 4), associated to the generic stable reso-

lution.

Notation. V is a fixed 5-dimensional vector space over C, and P4 = P(V ) is the
projective space of hyperplanes in V , so that

H0(OP4(1)) = V.

FHM denotes the normalized Horrocks-Mumford bundle, with Chern classes c1 = −1
and c2 = 4. The stability of FHM (in the Mumford-Takemoto sense) therefore simply
means:

h0(FHM ) = dim(H0(FHM )) = 0

as it is explained in [16], for example.

I would like to thank Professor Hulek for the useful discussion that we had in
Ferrara and for the ideas that led us to prove Corollary 4.4.

For the original idea of this paper, however, and for supervision and encourage-
ment, I wish to express my deepest gratitude to Professor Ottaviani.

2. Minimal resolutions

We are looking for all possible minimal free resolutions for FHM |P2 . For this purpose,
we use results on moduli spaces contained in [5, 8, 17] and [11].

From Horrocks’ Theorem (see [12]) we learn that a vector bundle on Pn has
homological dimension (i.e. the length of its minimal free resolution) at most n − 1.
This means that we are actually looking for short exact sequences of the form:

0 → ⊕ki=1OP2(−ai)
ϕ−→ ⊕k+2

j=1OP2(−bj) → FHM |P2 → 0 (2.1)

for some integers ai, bj and k. Notice here that rk(FHM ) = 2.
We assume that the two sequences of integers ai and bj are indexed in nonde-

creasing order, and we call (a, b) = ((a1, ..., ak), (b1, ..., bk+2)) the associated pairto the
resolution 2.1.

Our goal is now to determine bounds on ai and bj , in order to obtain all possible
associated pairs for FHM |P2 . We have:

Proposition 2.1

The integers ai and bj must satisfy the following six conditions:

(1)
∑k
i=1 ai −

∑k+2
j=1 bj = −1;

(2)
∑k
i=1 ai

2 −
∑k+2
j=1 bj

2 = 7;

(3) ai ≥ bi+2 + 1, ∀ i = 1...k;
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(4) b1 ≥ 0;

(5) 2bk+2 + k ≤ 11;

(6) 2ak + k ≤ 12.

Proof. (1) and (2) come from asking the Chern classes of the bundle to be respecti-
vely -1 and 4, as we must have:

k∑
i=1

ai −
k+2∑
j=1

bj = c1(FHM ) = −1

k∑
i=1

a2
i −

k+2∑
j=1

b2j = 2c2(FHM )− c1(FHM )2 = 7.

Condition (3) corresponds to the minimality of the resolutions (see [5, Proposition 2]).
Condition (4) comes from a direct computation of the cohomology of the bundle

restricted to a plane, which can be obtained from the cohomology of the bundle on P4,
see [13]. More in detail, the Koszul complex splits in 2 short exact sequences:

0 // OP4(−2) // OP4(−1)2

&&MMMMMM
// OP4 // OP2 // 0

IP2,P4

;;wwwwww

$$II
III

II

0

77pppppppp 0

(2.2)

which we can tensorize by FHM and thus obtain that for any P2 ⊂ P4, h0(FHM |P2) = 0.
This latter condition implies (4), as proved in [8].

For (5) and (6) we modify an argument from [17] as follows. Using condi-
tions (1), (2) and (3), we have:

7 = −b12 − b2
2 +

k∑
i=1

(ai2 − bi+2
2)

= −b12 − b2
2 +

k∑
i=1

(ai − bi+2)(ai + bi+2 − 2b2) + 2b2(b1 + b2 − 1)

≥ −b12 − b2
2 + 2

k∑
i=1

(bi+2 − b2) + k + 2b2(b1 + b2 − 1)

≥ −b12 − b2
2 + 2bk+2 − 2b2 + k + 2b2(b1 + b2 − 1)

= −[b12 + b2
2 − 2b2(b1 + b2 − 2)] + 2bk+2 + k .

Now looking at the hyperbola in the plane:

x2 − y2 − 2xy + 4y − 4 = 0,

we get that, ∀ 0 ≤ b1 ≤ b2 ∈ Z:

b1
2 + b2

2 − 2b2(b1 + b2 − 2) ≤ 4.
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Thus
7 ≥ −4 + 2bk+2 + k,

which proves (5). Condition (6) easily follows with an identical argument as
for (5). �

A brute force check after the conditions of Proposition 2.1 proves the following:

Corollary 2.2

The only pairs (thus possible resolutions) satisfying the conditions of Propo-
sition 2.1 are:

(5) (0, 3, 3)
(4, 5) (0, 3, 3, 4)

(5) (1, 1, 4)
(3, 4) (1, 2, 2, 3)

(4) (1, 2, 2)
(3, 3, 3) (2, 2, 2, 2, 2) .

From a first look at the cohomology of bundles associated to these six resolutions,
we can immediately see that the first two are not stable, whereas the other four do not
have sections, i.e. they are stable.

It is also noteworthy that there are two couples of resolutions that have the same
cohomology: one is stable ((4)(1, 2, 2) and (3, 4)(1, 2, 2, 3)), and one is not ((5)(0, 3, 3)
and (4, 5)(0, 3, 3, 4)). The reason why this can happen is that minimality of the reso-
lutions implies that every time we have a constant map:

O(−a) → O(−a),

it has to be the zero map (again, [5, Proposition 2]).
Anyhow, in case we wanted a cohomological distinction between those resolution

forming couples, we could obtain it by tensorizing for an appropriate sheaf of forms.
Notice that all bundles we are dealing with are prioritaries, according to [11].

Remark 2.3 In what follows we will often write (a, b) meaning either the resolution,
or the associated pair, or sometimes even a bundle with that resolution (or better, its
class of isomorphism in the moduli space). What we are referring to will be clear from
the context.

3. Jumping phenomena

It is known that FHM remains stable when it is restricted to any hyperplane P3 ⊂ P4

(see [4, 7], or [14]).
We give the following:
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Definition 3.1 The subspace X ⊂ P4 is a jumping spacefor the HM-bundle iff
H0(FHM |X) 6= 0.

Hence FHM has no jumping 3-spaces, but it admits jumping spaces of lower
dimension, planes and lines.

For lines in particular we have a more subtle definition: jumping lines are those
where the bundle doesn’t have the generic splitting type entailed by Grauert-Mülich
Theorem. The measure of how much a jumping line drifts away from the generic case
is given by its jumping order.

In other words:

Definition 3.2 A line ` ⊂ P4 is a jumping line of orderk for HM (also called a k-jumping
line) iff H0(FHM |`(−k)) 6= 0.

HM-bundle’s jumping lines and planes have been deeply studied by Barth, Hulek
and Moore in [4].

The structure of jumping planes is explained in the following result:

Theorem 3.3

A plane P2 ∈ G(2, 4) ⊂ P9, with Plückerian coordinates pij , is a jumping plane iff
rk(A⊗OP2) ≤ 1, where

A⊗OP2 =

(
p23 p34 −p04 p01 p12

p14 −p02 −p13 −p24 p03

)
. (3.1)

Jumping planes thus form a smooth surface of degree 25 in P9, called S25, which is
birational to Shioda’s modular surface S(5). S25 may also be seen as the transverse
intersection of the Grassmannian G(2, 4) with the (suitably normalized) Segre variety
P1 × P4.

Proof. The result simply derives from translating in Plücker coordinates the condition
h0 6= 0. Note that the matrix A is the one used to define the monad in (1.1).

Let our P2 ⊂ P4 be defined as zero locus of the 2 hyperplanes ξ∗ and ζ∗. Then
P2 = {

∑4
0 ξixi =

∑4
0 ζixi = 0}. Restricting A to P2 means now contracting the 2-forms

aij with the 2-form ξ∗ ∧ ζ∗ associated to the plane, i.e. A⊗OP2 = (ξ∗ ∧ ζ∗(aij)), hence
Plückerian coordinates pij = ξiζj − ξjζi appear.

For details, see [7], Proposition 2, and [4], Section 3.4. �

Notice that we have a natural map S25 → P1, and that the general fibers are
transverse linear sections of G(2, 4), hence they are elliptic normal quintics in P4.

For the central role of Shioda’s modular surface in the understanding of HM-
bundle jumping phenomena, we refer the reader to the detailed articles [4, 3], and
to [14].

Here we just limit ourselves to mention the result on jumping lines, which we will
need later on. Our bundle admits jumping lines of order 1, 2 and 3. More precisely:

Theorem 3.4 ([4], Section 1.2 and 5.5)

Let Ji(FHM ) ⊂ G(1, 4), for i = 1, 2, 3, be the subvarieties of jumping lines for
the HM-bundle. J1(FHM ), is a rational, irreducible 4-fold. It is smooth outside of
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J2(FHM ). The variety J2 ⊂ J1 has dimension 2, and it is birational to Shioda sur-
face S(5). In fact it is nothing but S(5) with its 25 sections blown down to 25 singular
points, forming J3(FHM ). J3 is formed by 25 points, corresponding in P4 to 25 skew
lines, the so called Horrocks-Mumford lines.

From this first look at jumping spaces, we can already infer that at least two out
of the six possible resolutions are actually assumed by FHM |P2 : one of them will be
stable, the other not.

The situation so far is then:

S25 ⊂ G(2, 4) ⊂ P9 (3.2)

where S25 “contains” the 2 unstable resolutions, the other 4 being “contained” in
G(2, 4) \ S25.

Keeping in mind Horrocks-Mumford bundle’s jumping phenomena, we now want
to analyze jumping lines admitted by each of our six resolutions.

The situation is described in the following result:

Proposition 3.5

• Part A

– (5)(0, 3, 3) admits jumping lines of order 1 and 2.

Take the 4 points of intersection of the 2 conics qi, zero locus of qi :
OP2(−5) → OP2(−3). The generic structure then is the following: the 4
pencils of lines through these 4 points are the jumping lines, while the 6
lines connecting pairs among the 4 points are double jumping lines.

The 4 points are exactly those where the unique section violating sta-
bility vanishes.

– (4, 5)(0, 3, 3, 4) generically admits only 1 jumping line `1, of order 3. It is
the zero locus of `1 : OP2(−5) → OP2(−4).

– (5)(1, 1, 4) generically admits only 1 triple jumping line `2. It is the zero
locus of `2 : OP2(−5) → OP2(−4).

– (3, 4)(1, 2, 2, 3) generically admits only 1 double jumping line `3, zero locus
of `3 : OP2(−4) → OP2(−3).

– (4)(1, 2, 2) admits only jumping lines of order 1.

Those are, in the generic case, the 6 lines connecting pairs among the 4
points of intersection of the conics zero loci of qi : OP2(−4) → OP2(−2)

• Part B

– (3, 3, 3)(2, 2, 2, 2, 2) admits only 1-jumping lines.

They can be either 6 lines with normal crossing, or they can form a
conic.

Proof of Part A.
We will not go through all the 6 cases in detail, because we use exactly the same

argument for the 5 resolutions of Part A.
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Take for example a vector bundle E associated with (5)(0, 3, 3). We have

0 → OP2(−5)
ϕ−→ 2OP2(−3)⊕OP2 → E → 0 (3.3)

where
tϕ = q1 q2 r

and the qi’s are quadratic polynomials, while r has degree 5.
Once dualized and restricted to a generic line ` ⊂ P4, the sequence (3.3) becomes

(remember that E∗ = E(−c1) = E(1)):

0 → E|` → OP1(−1)⊕ 2OP1(2) → OP1(4) → 0 . (3.4)

If we look at its cohomology sequence, we get:

0 → H0(E|`(−1)) → 2V Φ−→ S3(V )
(L1,L2) 7→ (L1 · q1|` + L2 · q2|`).

Now the two schemes q1|` and q2|` both consist of two points, and there is a nonzero
(L1,L2) ∈ ker Φ iff there is a common point between these two schemes, that is iff
` ∈ q1 ∩ q2.

In other words, when L1 and L2 vary, ` describes four pencils of lines through the
4 points of intersections of the two conics.

Moreover these 4 points coincide with the zero locus of the generic section s that
breaks the stability.

To see this, first remark that h0(E) = 1 implies that we have only one section, and
that h0(E(−1)) = 0 and c2 = 4 imply respectively that the zero locus has dimension 0
and degree 4. Now let

0 → OP2
s−→ E → IZ(−1) → 0 (3.5)

be the short exact sequence of defining the subscheme Z = {P1, ..., P4}, of points where
s vanishes.

Putting (3.5) together with (3.3), we obtain the diagram:

0

��
OP2

s

��
0 // OP2(−5)

(q1,q2,r)// 2OP2(−3)⊕OP2 // E

��

// 0

IZ(−1)

��
0
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Now, completing the diagram, we get our thesis:

0

��

0

��
OP2

��

OP2

s

��vvn n n n n n n

0 // OP2(−5)
(q1,q2,r)// 2OP2(−3)⊕OP2 //

��

E

��

// 0

0 // OP2(−5)
(q1,q2) // 2OP2(−3)

��

// IZ(−1)

��

// 0

0 0

To prove the part about the 6 double jumping lines, we repeat the previous argument,
except that this time we twist (3.4) by OP1(−2) and the cohomology sequence looks:

0 → H0(E|`(−2)) → 2C Φ−→ S2(V )
(α, β) 7→ (α · q1|` + β · q2|`) .

It is clear that, generically, to make the map Φ vanish we need:

α · q1|` = −β · q2|`.

In other words we want the 4 points given on ` by the 2 conics to coincide 2 by 2.
Generically this is possible for appropriate values of α and β, iff ` is exactly one of
the 6 lines passing through the 4 intersections of q1 and q2, that is what we wanted.

Proof of Part B.
We explain the generic resolution separately, because we treated this last case with

different tools, since we deal with a Steiner bundle. We use results from [1] and [18].
From the cohomology table, we know that only order 1 jumping lines are admitted.

They can be either 6 lines with normal crossing, or they can form a conic in our plane.
First, let W (S) be the scheme (see [1]) of unstable hyperlanes of a Steiner bundle

S ∈ Sn,k on Pn, with dual resolution

0 → S∗ →W ⊗OPn
fA−→ I ⊗OPn(1) → 0,

where W and I are complex vector spaces of dimension n+k and k respectively. Then
we have:

Proposition 3.6 ([1], Section 3.8)

Let pV be the projection of the Segre variety P(V )× P(I) on the P(V ). Then

W (S)red = pV [P(W ) ∩ (P(V )⊗ P(I))]red .
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In our case where (n, k) = (2, 3), the generic Steiner bundle is logarithmic. In fact,
the generic P4 linearly embedded in P8 meets the Segre variety P2⊗P2 in deg(P2⊗P2) =
6 = n+ k + 1 points.

Contrary to what happens for the resolution (4)(1, 2, 2), the six lines don’t have
a particular configuration, but normal crossing, as it is stated in [1], Theorem 5.6.

In case the jumping lines are not 6, they can only be infinite and thus form a
conic (see [1]). In particular, we get that if a generic linear P(W ) meets P(V ) ⊗ P(I)
in n+ k + 2 points, then it meets it in infinitely many points. �

Now we would like to improve (3.2), and to obtain a more detailed filtration of
the Grassmannian.

If we look at Theorem 3.3, we see that the characterization of jumping planes has
been obtained by translating in Plücker coordinates a cohomological condition.

Can we repeat this argument?
Looking at the cohomology table of the bundles associated to the 6 resolutions:

h0(E(3)) h0(E(2)) h0(E(1)) h0(E)
(4,5)(0,3,3,4) 12 6 3 1

(5)(0,3,3) 12 6 3 1
(5)(1,1,4) 12 6 2 0

(3,4)(1,2,2,3) 12 5 1 0
(4)(1,2,2) 12 5 1 0

(3,3,3)(2,2,2,2,2) 12 5 0 0

it is clear that the best condition to translate would be h0(E(1)).
Doing this is not so easy as it has been for the previous twist, though. Take the

display associated to the monad (1.1):

0

��

0

��
0 // 5OP4(−1) // Ker(A) //

��

FHM

��

// 0

0 // 5OP4(−1) B // 2Ω2
P4(2) //

A

��

Coker(B) //

��

0

5OP4

��

5OP4

��
0 0

Looking at it, from the first line we get:

h0(FHM (1)|P2) = h0(Ker(A(1))|P2)− 5

and from the first row:

h0(Ker(A(1))|P2) = 20− rk(A(1)⊗OP2) .
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Unlike the previous twist (see [7], Proposition 2 for details), this time we are not
able to determine explicitly the map A(1) ⊗ OP2 . Nevertheless, we can compute its
rank by embedding everything in a bigger space.

Let’s see this in detail. We have an isomorphism:

H0(Ω2
P4(3)) ∼= H0(Ω2

P4(3)|P2). (3.6)

This can be verified by tensorizing short exact sequence of definition of an hyper-
plane P3 ⊂ P4 by the sheaf Ω2

P4(3):

0 → Ω2
P4(2) → Ω2

P4(3) → Ω2
P4(3)|P3 → 0.

Looking at the cohomology, since Ω2
P4(2) has vanishing cohomology, we get that:

H0(Ω2
P4(3)) ∼= H0(Ω2

P4(3)|P3). (3.7)

Now since Ω2
P4(2)|P3 has vanishing cohomology as well, repeating the argument

for an (hyper)plane P2 ⊂ P3 we get the desired isomorphism (3.6).
Now we use the Plücker embedding:

V
ψ(ω)−−−→

3∧
V

v 7→ v ∧ ω

where ψ is given by the 2-form ω = x∗ ∧ y∗, once we have defined our plane P2 ⊂ P4

as the zero locus of the two hyperplanes x∗ and y∗:

P2 = {x∗ = y∗ = 0} .

In this case W = Im(ψ(ω)), where P2 = P(W ).
Thus we have:

2H0(Ω2
P4(3)|P2)

A(1)⊗OP2// 5H0(OP2(1)) � � 5i // 5
∧3 H0(OP4(1))

2 H0(Ω2
P4(3))

∼

OO 66nnnnnnnnnnnn
A(1) // 5H0(OP4(1))

5π

OO

5ψ(ω)

66mmmmmmmmmmmmm

(3.8)

All in all, we have obtained:

rk(A(1)⊗OP2) = rk(5ψ(ω) ◦A(1)) . (3.9)

We are now ready to state the first result.

Proposition 3.7

Let π be a plane in G(2, 4) ⊂ P9. Let

M = A(1)⊗OP2 : 2H0(Ω2
P4(3)) → 5 ∧3 H0(OP4(1))

be the 20 × 50 matrix constructed above. The rank of M determines the minimal
resolution of FHM |π. More precisely, we have:
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• rkM = 15 ⇔ FHM |π has resolution (3, 3, 3)(2, 2, 2, 2, 2);
• rkM = 14 ⇔ FHM |π has resolution either (4)(1, 2, 2) or

(3, 4)(1, 2, 2, 3);
• rkM = 13 ⇔ FHM |π has resolution (5)(1, 1, 4);
• rkM = 12 ⇔ FHM |π has resolution either (5)(0, 3, 3) or

(4, 5)(0, 3, 3, 4).

Remark 3.8 Clearly this classification, being based on a cohomological criterion,
doesn’t take into account the differences between those couples of resolutions with
the same cohomology (see paragraph 2).

4. The Mk subvarieties

Let’s define the subvarieties of the Grassmannian G(2, 4):

Mk := {π ∈ G(2, 4) | rkM(π) ≤ k}.

We want to know more about M12, M13, M14 and M15.
Notice that even though we do have explicit equations for them, these equations

are almost impossible to handle, even with the aid of a computer.

Remark 4.1 All the four Mk’s are non empty. In fact we are able to find out points
where rk(M) assumes all its four possible values (see next Proposition 4.2 for details).

This already implies that we can confirm the presence of the generic resolution
(3, 3, 3)(2, 2, 2, 2, 2) between those really assumed by FHM |P2 .

We can make some other useful observations. First M15, being associated to the
generic resolution, hence to the open condition of maximum rank, is an open subset of
G(2, 4), so dimM15 = dim G(2, 4) = 6. Moreover we know from the previous remark
that M15 6= ∅. From now on, recalling the notation given in the Introduction, we will
call this last one V(3,3,3)(2,2,2,2,2).

Second, the subvariety M12 is nothing else than S25, the surface in P9 that para-
metrizes jumping planes.

So now the situation described in (3.2) has been improved quite a lot:

S25 = M12 ⊂M13 ⊂M14 ⊂M15 = V(3,3,3)(2,2,2,2,2) ⊂ G(2, 4) ⊂ P9. (4.1)

Another useful step in the direction of understanding the Mk’s structure is com-
puting their dimension.

Let’s take for example M13. The matrix M clearly defines a map ϑ:

G(2, 4) //
� p

  A
AA

AA
AA

A
P(M(20× 50))

P9

ϑ

::tttttttttt

where ϑ is linear in the coordinates pij .
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Now let R13 ⊂ P(M(20 × 50)) the subspace consisting of matrices whose rank
is 13. We have:

M13 = ϑ−1(R13) ∩G(2, 4).

For each point (plane) π ∈ G(2, 4) we could then obtain the tangent space Tπ(M13),
simply by deriving the equations given by the appropriate minors of M , together with
the 5 Plücker quadrics, of course.

Obviously these equations, the 14× 14 minors of a 20× 50 matrix, are too heavy
to handle. But if we are satisfied with local dimension (i.e. local tangent space), we
can use the point where we know that rk(M) = 13.

In other words, we have a 13× 13 minor µ which we know not to be zero. Then
we can compute only those minors 14 × 14 obtained by adding 1 row and 1 column
to µ. This diminishes considerably the computational cost of the operation, and can
be done without great efforts.

Thanks to these simple observations, and with the aid of Macaulay2 computer
system [9], we obtain:

Proposition 4.2

The subvarieties Mk have dimension:

• dimM12 = 2, locally around π = (1, 0, 0, 0, 0, 0, 0, 0, 0, 0);
• dimM13 = 2, l.a. ρ = (1, 1, 1, 1, 0, 0, 0, 0, 0, 0);
• dimM14 = 5, l.a. σ = (1, 1, 0, 0, 1, 0, 0, 0, 0, 0).

Remark that dimM12 is exactly the expected one, since M12 is the surface S25.
Going further on with the study of the Mk subvarieties, we use Proposition 3.5.

Let’s take a jumping line Lk,j of order 3 for which we do have explicit equations,
from [4]:

Lk,j = {zk = zk+2 + ej
2πı
5 zk+3 = zk+1 + e3j

2πı
5 zk+4 = 0}, k, j = 0...4.

The incidence variety:
{π ∈ G(2, 4) | π ⊃ Lk,j}

forms a plane P2 ⊂ P9. This plane cuts the surface S25 in a smooth conic.
If we recall that Lk,j may be contained only in a plane with resolution either

(5)(1, 1, 4) if it is stable, or (4, 5)(0, 3, 3, 4) if it is not, we easily have:

Theorem 4.3

Each of the 25 (skew) jumping lines of order 3 is contained in a smooth conic C ⊂
P2 of jumping planes, on which the restriction of FHM takes resolution (4, 5)(0, 3, 3, 4).

For each of these lines then there exists a set {P2 \C} of stable planes containing
it, with resolution (5)(1, 1, 4).

Proof. Now we explicitly use the group of symmetries of the HM bundle, for which we
refer the reader to [13, 14] and [15]. In fact the property we are checking is invariant
under the action of the symmetry group of FHM , and this group acts transitively on
the 25 Horrocks-Mumford lines (see [13]). This means that what we prove for one Lk,j
is valid for all the 25 triple jumping lines.
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Take for example the line:

L0,0 = {z0 = z2 + z3 = z1 + z4 = 0}.

A plane π = {
∑4
i=0 fizi =

∑4
i=0 gizi = 0} will contain L0,0 iff:

rk


f0 f1 f2 f3 f4

g0 g1 g2 g3 g4
1 0 0 0 0
0 0 1 1 0
0 1 0 0 1

 ≤ 3. (4.2)

Translating condition (4.2) in Plücker coordinates pij = figj − fjgi, we obtain:
p14 = p23 = 0
p01 = p04 = a
p02 = p03 = b
p13 = p12 = −p24 = −p34 = c .

Now if we ask for the plane π to be unstable, hence to satisfy Theorem 3.3, we finally
get the smooth conic ab = c2. �

Corollary 4.4

The surface S25 contains exactly 25 conics, which are the image of the 25 sections
of the Shioda’s surface.

Proof. The 25 smooth conics of Theorem 4.3 are exactly the image of the 25 sections
of the Shioda’s modular surface S(5) under the linear system

S(5)
|I+3F |−−−−→ S25,

where I and F are classes of divisors of S(5) (see [3, 4] for details).
This is because if we take any curve C that doesn’t correspond neither to a section

nor to a singular fibre, then C must have degree≥ 3, since both C.I and C.F are strictly
greater than zero (again, we refer to [3, 4]). Thus the only curves with degree 2 are
the 25 sections. �

Theorem 4.3 confirms the presence of (4, 5)(0, 3, 3, 4) and (5)(1, 1, 4), because we
need to have both stable and unstable planes to contain jumping lines of order 3.

If we analyze this result from the Mk’s point of view, we can distinguish inside
M12 = S25 two subvarieties:

V(4,5)(0,3,3,4) ↔ (4, 5)(0, 3, 3, 4)

V(5)(0,3,3) ↔ (5)(0, 3, 3),

where of course M12 = V(4,5)(0,3,3,4) ∪ V(5)(0,3,3) = S25.
Then Theorem 4.3 takes us to this



The Horrocks-Mumford bundle restricted to planes 115

Corollary 4.5

• V(4,5)(0,3,3,4) = 25 smooth conics;
• V(5)(0,3,3) = S25 \ V(4,5)(0,3,3,4);
• M13 =: V(5)(1,1,4) = 25 planes.

Remark that V(5)(1,1,4) is reducible.
This result makes us hope we could obtain information on M14 repeating a similar

argument for a double jumping line.
Just like we have done for M12, we make the distinction:

V(3,4)(1,2,2,3) ↔ (3, 4)(1, 2, 2, 3)

V(4)(1,2,2) ↔ (4)(1, 2, 2).

Now recall that the resolution (3, 4)(1, 2, 2, 3) is the only stable one that admits jumping
lines of order 2. We have that:

Proposition 4.6

V(3,4)(1,2,2,3) is irreducible of dimension 4.

Proof. Take a 2-jumping line, and recall that 2-jumping lines form a surface J2 ⊂
G(1, 4) which is smooth outside 25 points. Since (once again from Proposition 3.5)
(3, 4)(1, 2, 2, 3) admits only 1 jumping line of order 2, we have the fibration:

V(3,4)(1,2,2,3)

g
����

π_

�
J2 `

that associates to each plane π ∈ V(3,4)(1,2,2,3) the only 2-jumping line ` contained in
it. Each fiber has dimension 2. Moreover, J2 is irreducible, and for every ` ∈ J2,
g−1(`) ' P2 is irreducible. This concludes the proof. �

From [4] we learn that generically each double jumping line is contained in ex-
actly 3 jumping planes.

As a first consequence, now we can also confirm the presence of resolutions
(3, 4)(1, 2, 2, 3) and (5)(0, 3, 3), for we must have stable and unstable planes containing
jumping lines of order 2.

Secondly, with the notation used above, for ` ∈ J2 generic:

g−1(`) ∩ S25 = 3points . (4.3)

As already remarked, the above described property is generic. In fact when working
out some examples explicitly with the aid of a computer, sometimes a degenerate case
comes out, where instead of 3 points, the intersection (4.3) consists of a line plus an
external point.

The observation of this phenomenon takes us to stress out the fact that there are
lines entirely contained in S25.
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This we already knew from [4], Section 3.4. In S25 we find 12 pentagons, that are
the 12 singular fibres of the Shioda’s surface, isomorphically mapped in S25. It means
we have at least 12× 5 = 60 lines inside our surface.

We can show that:

Corollary 4.7

The surface S25 contains exactly 60 lines.

Proof. We use the same argument that entailed Corollary 4.4. If there is a curve in S25

with degree 1, then it must be contained in a singular fibre, otherwise it would have
degree ≥ 3. �

As our last step, we want to study the subvariety V(4)(1,2,2).
Of course we deal with the usual computing problems. Unfortunately in this case

jumping phenomena do not help, since we have another stable resolution that admits
jumping lines of order 1, the generic (3, 3, 3)(2, 2, 2, 2, 2).

Yet we have explicitly found out a point

π̃ = (1, 1, 1, 0, 0, 0, 0, 0, 0, 0) ∈ G(2, 4)

where the resolution (4)(1, 2, 2) is assumed, so that our subvariety V(4)(1,2,2) is non-
empty.

From Proposition 4.2, we know that (locally) it has dimension 5. We want to
compute its degree. The result we obtain is:

Proposition 4.8

The subvariety formed by stable planes V(4)(1,2,2) is a 5-fold of degree 5.

Proof. V(4)(1,2,2) ⊂ G(2, 4) has codimension 1, a hypersurface inside the Grassmannian.
Now let’s take a line P1 ⊂ G(2, 4), paramatrized by the coordinates (s, t). The intersec-
tion V(4)(1,2,2) ∩ P1 is formed by a number of points equal to the degree we are looking
for:

deg(V(4)(1,2,2) ∩ P1) = deg(V(4)(1,2,2)),

but this time we are dealing with a Principal Ideal Domain, which means that
I(V(4)(1,2,2) ∩ P1) = (f), where f ∈ C[s, t] is an homogeneous polynomial of degree
= deg(V(4)(1,2,2)).

The Greatest Common Divisor of two (suitably chosen) 15×15 minors is a degree
5 polynomial in C[s, t], thus:

deg(V(4)(1,2,2)) ≤ 5.

In fact, the degree turns out to be exactly 5.
To show this, we use Invariant Theory. Let’s take the standard action of the

Heisenberg group H5 on V (see [13, 15]), and the induced action on ∧2V . From the
computations contained in the appendix of Manolache’s work, it is easy to see that the
symmetric powers

Si(∧2V )

do not contain trivial summands for 1 ≤ i ≤ 4, so that the degree of our subvariety
must be 5. �
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Remark 4.9 From the proof of Proposition 4.8 we can also infer that the hypersurface
we have found inside G(2, 4) is irreducible. Unfortunately we are not yet able to exclude
the presence of some components of lower dimension in V(4)(1,2,2).
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