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E-mail: rttyszka@cyf-kr.edu.pl

Received February 10, 2006. Revised April 25, 2006

Abstract

We develop an arithmetic characterization of elements in a field which are first-
order definable by a parameter-free existential formula in the language of rings.
As applications we show that in fields containing an algebraically closed field
only the elements of the prime field are existentially∅-definable. On the other
hand, many finitely generated extensions ofQ contain existentially∅-definable
elements which are transcendental overQ. Finally, we show that all transcen-
dental elements inR having a recursive approximation by rationals, are definable
in R(t), and the same holds when one replacesR by any Pythagorean subfield
of R.

1. Introduction

Let L be an elementary language. Let A be any L-structure and let R be any n-ary re-
lation on |A|. Svenonius’ theorem ([15, 11, p. 184]) states that the following conditions
are equivalent:

– R is ∅-definable in A by a formula of L;

– for each elementary extension (B, S) of (A, R) each automorphism g of B satisfies
g(S) = S.

Keywords:Algebraic function field in one variable overQ (overR, overQp), element transcendental
overQ (overR, overQp), existentially∅-definable element, Faltings’ finiteness theorem, field finitely
generated overQ, Pythagorean subfield ofR, recursively approximable real number, subset ofR which
is implicitly ∅-definable in(R, +, ·, 0, 1).
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Applying this theorem for fields we conclude that for any field K and any r ∈ K
the set {r} is ∅-definable in K if and only if g(r) = r for each field automorphism
g : L → L and for each field L being an elementary extension of K . In the next
section we give another description of such elements r.

2. An arithmetic characterization of ∅-definable elements

Let K be a field and let A be a subset of K . We say that a map f : A → K is
arithmetic if it satisfies the following conditions:
(1) if 1 ∈ A then f(1) = 1,
(2) if a, b ∈ A and a + b ∈ A then f(a + b) = f(a) + f(b),
(3) if a, b ∈ A and a · b ∈ A then f(a · b) = f(a) · f(b).

Obviously, if f : A → K satisfies condition (2) and 0 ∈ A, then f(0) = 0. We call
an element r ∈ K arithmetically fixedif there is a finite set A(r) ⊆ K (an arithmetic
neighbourhoodof r) with r ∈ A(r) such that each arithmetic map f : A(r) → K fixes r,
i.e. f(r) = r. Note that any finite set containing an arithmetic neighbourhood or r
is itself an arithmetic neighbourhood of r. We denote the set of arithmetically fixed
elements of a field K by K̃ .

Proposition ([16])

K̃ is a subfield of K.

Proof. We set A(0) = {0} and A(1) = {1}, so 0, 1 ∈ K̃ . If r ∈ K̃ then −r ∈ K̃ , to
see this we set A(−r) = {0,−r} ∪ A(r). If r ∈ K̃ \ {0} then r−1 ∈ K̃ , to see this
we set A(r−1) = {1, r−1} ∪ A(r). If r1, r2 ∈ K̃ then r1 + r2 ∈ K̃ , to see this we set
A(r1 + r2) = {r1 + r2} ∪ A(r1) ∪ A(r2). If r1, r2 ∈ K̃ then r1 · r2 ∈ K̃ , to see this we
set A(r1 · r2) = {r1 · r2} ∪A(r1) ∪A(r2). �

Theorem 1

K̃ = {x ∈ K : {x} is existentially first-order definable in the language of rings
without parameters}.

Proof. Let r ∈ K be arithmetically fixed, and let A(r) = {x1, ..., xn} be an arithmetic
neighbourhood of r with xi 6= xj if i 6= j, and x1 = r. We choose all formulae xi = 1
(i ∈ {1, ..., n}), xi + xj = xk, xi · xj = xk (i, j, k ∈ {1, ..., n}) that are satisfied in
A(r). Joining these formulae with conjunctions we get some formula Φ. Let V denote
the set of variables in Φ, x1 ∈ V since otherwise for any s ∈ K \ {r} the mapping
f := id (A(r) \ {r}) ∪ {(r, s)} satisfies conditions (1)-(3) and f(r) 6= r. The formula

... ∃xi ...︸ ︷︷ ︸
xi ∈ V, i 6= 1

Φ

is satisfied in K if and only if x1 = r. It proves the inclusion ⊆. We begin the proof
of the inclusion ⊇. The proof presented here is formally a proof by induction on the
complexity of the formula. We are going to use the following two algorithms.

Algorithm 1. In formulae Ψ of the language of rings, negations of atomic subformulae
are replaced by atomic formulae. For the language of rings, each negation of an atomic
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formula is equivalent to the formula of the form W (y1, ..., yn) 6= 0, where y1, ..., yn

variables and W (y1, ..., yn) ∈ Z[y1, ..., yn]. The algorithm selects a variable t which
does not occur in Ψ, and instead of W (y1, ..., yn) 6= 0 introduces to Ψ the formula
W (y1, ..., yn) · t − 1 = 0. The received formula features one negation fewer and one
variable more.

Algorithm 2. In formulae Ψ of the language of rings, some atomic subformulae
are replaced by other atomic formulae or conjunctions of atomic formulae. Atomic
subformulae of the form yi + yj = yk, yi · yj = yk, yi = 1, (yi, yj , yk variables) are
left without changes. Atomic subformulae of the form yi = 0 (yi is a variable) are
replaced by yi + yi = yi. Operation of the algorithm on other atomic subformulae will
be explained on the example of subformula 1 + x + y2 = 0, which is replaced by

(t = 1) ∧ (t + x = u) ∧ (y · y = z) ∧ (u + z = s) ∧ (s + s = s),

where variables t, u, z, s do not occur in Ψ. The above conjunction equivalently
presents the condition 1 + x + y2 = 0 and is composed solely of the formulae of the
form yi + yj = yk, yi · yj = yk, yi = 1, where yi, yj , yk variables.

We start the main part of the proof. Let r ∈ K , Γ(x, x1, ..., xn) be a quantifier-free
formula of the language of rings, and

{r} = {x ∈ K : K |= ∃x1...∃xn Γ(x, x1, ..., xn)} .

We may assume that Γ(x, x1, ..., xn) has the form Λ1 ∨ ... ∨ Λl, where each of the
formulae Λ1, ..., Λl is the conjunction of atomic formulae and negations of atomic
formulae. We want to prove that r ∈ K̃ . After an iterative application of Algorithm 1
to the formula Γ(x, x1, ..., xn) we receive a quantifier-free formula Ω(x, x1, ..., xm) for
which: Ω(x, x1, ..., xm) has the form Ξ1 ∨ ... ∨ Ξl, and each of the formulae Ξ1, ..., Ξl

is the conjunction of atomic formulae, and

{r} = {x ∈ K : K |= ∃x1...∃xm Ω(x, x1, ..., xm)},

where m−n is the number of negations in the formula Γ(x, x1, ..., xn). After an iterative
application of Algorithm 2 to the formula Ω(x, x1, ..., xm) we receive a quantifier-free
formula ∆(x, x1, ..., xp) for which: ∆(x, x1, ..., xp) has the form Π1∨ ...∨Πl, and each of
the formulae Π1, ..., Πl is the conjunction of atomic formulae of the form yi + yj = yk,
yi · yj = yk, yi = 1, where yi, yj , yk variables, and

{r} = {x ∈ K : K |= ∃x1...∃xp ∆(x, x1, ..., xp)} .

Since

{r} = {x ∈ K : K |= ∃x1...∃xp ∆(x, x1, ..., xp)}

=
l⋃

i=1

{
x ∈ K : K |= ... ∃xs ...︸ ︷︷ ︸

xs∈Fr(Πi)\{x}

Πi(x, ..., xs, ...)
}
,

for some i ∈ {1, ..., l} the condition

{r} =
{
x ∈ K : K |= ... ∃xs ...︸ ︷︷ ︸

xs∈Fr(Πi)\{x}

Πi(x, ..., xs, ...)
}
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is satisfied. For indices s for which xs is a variable in Πi, we choose ws ∈ K for which
K |= Πi[x → r, ..., xs → ws, ...]. Then A(r) = {1, r, ..., ws, ...} is an arithmetic
neighbourhood of r, so r ∈ K̃ . �

Let K be a field extending Q. R.M. Robinson proved in [12]: if each element of
K is algebraic over Q and r ∈ K is fixed for all automorphisms of K , then there exist
U(y), V (y) ∈ Q[y] such that {r} is definable in K by the formula

∃y (U(y) = 0 ∧ x = V (y)) .

Corollary 2

If a field K extends Q and each element of K is algebraic over Q, then

K̃ =
⋂

σ ∈ Aut(K)
{x ∈ K : σ(x) = x} .

For a more general theorem and its proof, see [9, Proposition 1]. Let Ralg := {x ∈
R : x is algebraic over Q} and Qalg

p := {x ∈ Qp : x is algebraic over Q}. By Corol-

lary 2, R̃alg = Ralg and Q̃alg
p = Qalg

p . It gives R̃ = Ralg and Q̃p = Qalg
p , see [16].

Theorem 3

Let K be a field extending Q, φ(x, x1, ..., xn) is a quantifier-free formula of the
language of rings, and K |= ∃x∃x1...∃xnφ(x, x1, ..., xn). Then there exist a prime
number p and U(y), V (y) ∈ Q[y] such that

{x ∈ Qp : Qp |= ∃x1...∃xn∃y (φ(x, x1, ..., xn) ∧ U(y) = 0 ∧ x = V (y))} = {b}

for some b ∈ Qalg
p .

Proof. We choose a, a1, ..., an ∈ K such that K |= φ(a, a1, ..., an), so Q(a, a1, ..., an) |=
∃x∃x1...∃xnφ(x, x1, ..., xn). There is a prime number p such thatQ(a, a1, ..., an) embeds
in Qp, see [1, Theorem 1.1 in Chapter 5]. By this, Qp |= ∃x∃x1...∃xnφ(x, x1, ..., xn).
Since Qalg

p is an elementary subfield of Qp ([10]), there exists b ∈ Qalg
p such that

Qalg
p |= ∃x1...∃xnφ(b, x1, ..., xn). By Robinson’s theorem there exist U(y), V (y) ∈ Q[y]

such that {b} is definable in Qalg
p by the formula ∃y (U(y) = 0 ∧ x = V (y)). Thus,

{x ∈ Qp : Qp |= ∃x1...∃xn∃y (φ(x, x1, ..., xn) ∧ U(y) = 0 ∧ x = V (y))}
= {x ∈ Qalg

p : Qalg
p |= ∃x1...∃xn∃y (φ(x, x1, ..., xn) ∧ U(y) = 0 ∧ x = V (y))} = {b} �

3. Fields with algebraically closed subfields

We use below “bar” to denote the algebraic closure of a field. It was proved in [16]
that C̃ = Q. Similarly, Q̃ = Q.
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Theorem 4

If K is a field and some subfield of K is algebraically closed, then K̃ is the prime
field in K.

Proof. For any field K of non-zero characteristic K̃ is the prime field in K , see [16]. Let
char(K ) = 0. We may assume that K extends Q. By the assumption of the theorem
K extends Q. By the Proposition K̃ ⊇ Q. We want to prove K̃ ⊆ Q in a constructive
way without the use of Theorem 1. Let r ∈ K̃ , and let A(r) = {x1, ..., xn} be an
arithmetic neighborhood of r, xi 6= xj if i 6= j, and x1 = r. We choose all formulae
xi = 1 (i ∈ {1, ..., n}), xi +xj = xk, xi ·xj = xk (i, j, k ∈ {1, ..., n}) that are satisfied in
A(r). Joining these formulae with conjunctions we get some formula Φ. Let V denote
the set of variables in Φ, x1 ∈ V since otherwise for any s ∈ K \ {r} the mapping
f := id (A(r) \ {r}) ∪ {(r, s)} satisfies conditions (1)-(3) and f(r) 6= r. Since A(r) is
an arithmetic neighbourhood of r, the formula

... ∃xi ...︸ ︷︷ ︸
xi ∈ V, i 6= 1

Φ (4)

is satisfied in K if and only if x1 = r. Since K extends K ,

K |= ... ∃xi ...︸ ︷︷ ︸
xi ∈ V, i 6= 1

Φ[x1 → r]

Q is an elementary subfield of K ([6, p. 306]), so there exists r1 ∈ Q satisfying

Q |= ... ∃xi ...︸ ︷︷ ︸
xi ∈ V, i 6= 1

Φ[x1 → r1] (5)

K extends Q, so by (4) there is a unique r1 ∈ Q satisfying (5) and this r1 equals r.
Thus, r ∈ Q and the formula

... ∃xi ...︸ ︷︷ ︸
xi ∈ V, i 6= 1

Φ

is satisfied in Q if and only if x1 = r. Hence r ∈ Q̃ = Q. �

Corollary 5

Let K be an arbitrary field. Then no subfield of K̃ is algebraically closed.

Theorem 6

If a field K extends Q and r ∈ K̃, then {r} is definable in K by a formula of
the form ∃x1...∃xmT (x, x1, ..., xm) = 0, where m ∈ {1, 2, 3, ...} and T (x, x1, ..., xm) ∈
Z[x, x1, ..., xm].

Proof. From the definition of K̃ it follows that {r} is definable in K by a finite
system (S) of polynomial equations of the form xi + xj − xk = 0, xi · xj − xk = 0,
xi − 1 = 0, cf. the proof of the inclusion ⊆ inside the proof of Theorem 1. If Q ⊆
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K , then by Theorem 4 each element of K̃ is definable in K by a single equation
w1 ·x+w0 = 0, where w0 ∈ Z, w1 ∈ Z\{0}. If Q 6⊆ K , then there exists a polynomial

anxn + an−1x
n−1 + ... + a1x + a0 ∈ Z[x] (n ≥ 2, an 6= 0)

having no root in K . By this, the polynomial

B(x, y) := anxn + an−1x
n−1y + ... + a1xyn−1 + a0y

n

satisfies
∀u, v ∈ K ((u = 0 ∧ v = 0) ⇐⇒ B(u, v) = 0) , (6)

see [3, pp. 363–364] and [14, p. 108], cf. [2, p. 172]. Applying (6) to (S) we obtain that
(S) is equivalent to a single equation T (x, x1, ..., xm) = 0, where m ∈ {1, 2, 3, ...} and
T (x, x1, ..., xm) ∈ Z(x, x1, ..., xm). �

Theorem 6 remains true if char(K ) = p 6= 0. In this case K̃ is the prime field
in K ([16]), so each element of K̃ is definable by the equation w1 ·x+w0 = 0 for some
w0 ∈ {0, 1, ..., p− 1}, w1 ∈ {1, ..., p− 1}.

4. Transcendental elements in finitely generated fields

It is known ([7]) that for any field K there is a function field F/K in one variable
containing elements that are transcendental over K and first-order definable in the
language of rings with parameters from K . We present similar results with quite
different proofs.

Theorem 7

Let w be transcendental over Q and a field K be finitely generated over Q(w).
Let g(x, y) ∈ Q[x, y], there exists z ∈ K with g(w, z) = 0, and the equation g(x, y) = 0
defines an irreducible algebraic curve of genus greater than 1. We claim that some
element of K̃ is transcendental over Q.

Proof. By Faltings’ finiteness theorem ([4], cf. [8, p. 12], formerly Mordell’s conjecture)
the set

P := {u ∈ K : ∃s ∈ K g(u, s) = 0}
is finite, w ∈ P . Let P = {u1, ..., un}, ui 6= uj if i 6= j, and

tk(x1, ..., xn) :=
∑

1≤i1<i2<...<ik≤n

xi1xi2 ...xik (k ∈ {1, ..., n})

denote the basic symmetric polynomials. We claim that

t1(u1, ..., un), ..., tn(u1, ..., un) ∈ K̃ (7)

and ti(u1, ..., un) is transcendental over Q for some i ∈ {1, ..., n}. We want to prove (7)
in a constructive way without the use of Theorem 1. To prove (7) we choose zk ∈ K
(k ∈ {1, ..., n}) that satisfy g(uk, zk) = 0. There exist m ∈ {1, 2, 3, ...} and

h : {0, ...,m} × {0, ...,m} → W (m) := {0} ∪
{

c

d
: c, d ∈ {−m, ...,−1, 1, ...,m}

}
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such that
g(x, y) =

∑
i,j∈{0,...,m}

h(i, j) · xi · yj .

Let

Mk := {ui1ui2 ...uik : 1 ≤ i1 < i2 < ... < ik ≤ n} (k ∈ {1, ..., n})

N :=
{
b · ui

k · z
j
k : b ∈ W (m), i, j ∈ {0, ...,m}, k ∈ {1, ..., n}

}
T :=

{∑
a∈S

a : ∅ 6= S ⊆ N ∪
n⋃

k=1

Mk

}

∪
{

ui − uj ,
1

ui − uj
: i, j ∈ {1, ..., n}, i 6= j

}
.

Since Mk ⊆ T for each k ∈ {1, ..., n},

tk(u1, ..., un) =
∑

a∈Mk

a ∈ T

for each k ∈ {1, ..., n}. We claim that T is an arithmetic neighbourhood of tk(u1, ..., un)
for each k ∈ {1, ..., n}. To prove it assume that f : T → K satisfies conditions (1)-(3).
Since T ⊇ N ⊇ W (m), f is the identity on W (m). For any k ∈ {1, ..., n} and any
non-empty L  {0, ...,m} × {0, ...,m} the elements∑

(i,j)∈L

h(i, j) · ui
k · z

j
k

and ∑
(i,j)∈({0,...,m}×{0,...,m})\L

h(i, j) · ui
k · z

j
k

belong to T . By these facts and by induction

0 = f(0) = f(g(uk, zk)) = f

 ∑
i,j∈{0,...,m}

h(i, j) · ui
k · z

j
k


=

∑
i,j∈{0,...,m}

f
(
h(i, j) · ui

k · z
j
k

)
=

∑
i,j∈{0,...,m}

h(i, j) · f(uk)i · f(zk)j = g(f(uk), f(zk))

for any k ∈ {1, ..., n}. Thus, f(uk) ∈ P for each k ∈ {1, ..., n}. Since

1 = f(1) = f

(
(uk − ul) ·

1
uk − ul

)
= (f(uk)− f(ul)) · f

(
1

uk − ul

)
,

we conclude that f(uk) 6= f(ul) if k 6= l. Therefore, f permutes the elements of
{u1, ..., un}. By this,

tk(u1, ..., un) = tk(f(u1), ..., f(un)) =
∑

1≤i1<i2<...<ik≤n

f(ui1)f(ui2)...f(uik)

=
∑

1≤i1<i2<...<ik≤n

f(ui1ui2 ...uik) = f

 ∑
1≤i1<i2<...<ik≤n

ui1ui2 ...uik


= f(tk(u1, ..., un))
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for any k ∈ {1, ..., n}. We have proved that T is an arithmetic neighbourhood of
tk(u1, ..., un) for each k ∈ {1, ..., n}, so tk(u1, ..., un) ∈ K̃ for each k ∈ {1, ..., n}.

We prove now that ti(u1, ..., un) is transcendental over Q for some i ∈ {1, ..., n}.
Assume, on the contrary, that all tk(u1, ..., un) (k ∈ {1, ..., n}) are algebraic over Q.
Since u1, ..., un are the roots of the polynomial

xn − t1(u1, ..., un)xn−1 + t2(u1, ..., un)xn−2 − ... + (−1)ntn(u1, ..., un),

we conclude that u1, ..., un are also algebraic over Q. It is impossible, because among
elements u1, ..., un is w that is transcendental over Q. �

In the proof of Theorem 7 for each k ∈ {1, ..., n} the set {tk(u1, ..., un)} is exis-
tentially ∅-definable in K by the formula ∃u1∃s1...∃un∃sn

(g(u1, s1) = 0 ∧ ... ∧ g(un, sn) = 0 ∧ ... ∧ ui 6= uj ∧ ...︸ ︷︷ ︸
1≤i<j≤n

∧ v = tk(u1, ..., un)) (8)

Applying Theorem 1 we obtain tk(u1, ..., un) ∈ K̃ for each k ∈ {1, ..., n}, unfortunately,
without a direct description of any arithmetic neighbourhood of tk(u1, ..., un). This
gives a non-constructive proof of Theorem 7.

Formula (8) has a form

∃u1∃s1...∃un∃snφ(v, u1, s1, ..., un, sn),

where φ(v, u1, s1, ..., un, sn) is quantifier-free. By Theorem 3 there exist a prime number
p and U(y), V (y) ∈ Q[y] such that the formula

∃u1∃s1...∃un∃sn∃y (φ(v, u1, s1, ..., un, sn) ∧ U(y) = 0 ∧ v = V (y))

defines in Qp an element that is algebraic over Q.

The proof of Theorem 7 gives an element of K̃ that is transcendental over Q. Let
K be a field extending Q and v ∈ K̃ is transcendental over Q. Since K̃ is a subfield
of K , Q(v) \Q ⊆ K̃ . Obviously, each element of Q(v) \Q is transcendental over Q.

There exists a function field K/Q in one variable such that

K̃ = K ! Q = {x ∈ K : x is algebraic over Q} .

It follows from Proposition 3 in [9].

Theorem 7 admits a more general form. Let the fields K and L be finitely
generated over Q such that L extends K . Let w ∈ L be transcendental over K ,
g(x, y) ∈ Q[x, y], there exists z ∈ L with g(w, z) = 0, and the equation g(x, y) = 0
defines an irreducible algebraic curve of genus greater than 1. Analogously as in the
proof of Theorem 7 we conclude that there is an element of L̃ that is transcendental
over K .

Let p be a prime number, R(x, y) (Qp(x, y)) denote the function field defined by
px4+p2y4 = −1. The genus of the extension R(x, y)/R (Qp(x, y)/Qp) is greater than 1.
By the results in [7, p. 952, item 3 inside the proof of Theorem 1] the sets
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{(u, v) ∈ R(x, y)× R(x, y) : pu4 + p2v4 = −1} \ {(u, v) ∈ R× R : pu4 + p2v4 = −1}

{(u, v) ∈ Qp(x, y)×Qp(x, y) : pu4+p2v4 = −1}\{(u, v) ∈ Qp×Qp : pu4+p2v4 = −1}

are finite. Since
{(u, v) ∈ R× R : pu4 + p2v4 = −1} = ∅

and
{(u, v) ∈ Qp ×Qp : pu4 + p2v4 = −1} = ∅,

the sets
{(u, v) ∈ R(x, y)× R(x, y) : pu4 + p2v4 = −1}

and
{(u, v) ∈ Qp(x, y)×Qp(x, y) : pu4 + p2v4 = −1}

are finite. Analogously as in the proof of Theorem 7 we conclude that there is an
element of R̃(x, y) (Q̃p(x, y)) that is transcendental over R (Qp).

5. Recursively defined transcendentals in function fields over archimedean
pythagorean fields

A real number r is called recursively approximable, if there exists a computable se-
quence of rational numbers which converges to r, see [17]. Let ω := {0, 1, 2, ...}, K be
a subfield of R. K is said to be Pythagorean if

∀x ∈ K (0 ≤ x ⇒ ∃y ∈ K x = y2) .

Our next theorem is inspired by Cherlin’s example in [7, p. 949].

Theorem 8

If K is a Pythagorean subfield of R, t is transcendental over K, and r ∈ K is
recursively approximable, then {r} is ∅-definable in (K(t),+, ·, 0, 1).

Proof. It follows from [13, p. 280] that there is a formula N (x) in the language of rings
such that

{x ∈ K (t) : K (t) |= N (x)} = ω . (9)

Let M(x) abbreviate ∃y 1 + x4 = y2. It is known that

{x ∈ K (t) : K (t) |= M(x)} = K ,

for the proof see [6, p. 34]. Assume that r ≥ 0, the proof in case r ≤ 0 goes analogically.
There exist recursive functions f : ω → ω and g : ω → ω \ {0} such that lim

n→∞
f(n)
g(n) = r.

Since f and g are recursive there exist formulae F (s, t) and G(s, t) (both in the language
of rings) for which

∀n, m ∈ ω (m = f(n) ⇐⇒ ω |= F (n, m))
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and
∀n, m ∈ ω (m = g(n) ⇐⇒ ω |= G(n, m))

By (9) we can find formulae F̃ (s, t) and G̃(s, t) for which

∀s, t ∈ K (t) ((s ∈ ω ∧ t ∈ ω ∧ t = f(s)) ⇐⇒ K (t) |= F̃ (s, t))

and
∀s, t ∈ K (t) ((s ∈ ω ∧ t ∈ ω ∧ t = g(s)) ⇐⇒ K (t) |= G̃(s, t) .

Let a < b abbreviate

a 6= b ∧M(a) ∧M(b) ∧ ∃c (M(c) ∧ a + c2 = b) .

The formula

M(x) ∧ ∀ε (0 < ε ⇒ ∃z∃s∃u∃v (z 6= x ∧ x < z + ε ∧ z < x + ε ∧
N (s) ∧N (u) ∧N (v) ∧ F̃ (s, u) ∧ G̃(s, v) ∧ z · v = u))

defines r in (K (t),+, ·, 0, 1). �

Let L be an elementary language, let M be an L-structure, and let U be an n-ary
relation on M . We say that U is implicitly ∅-definable in M if there exists a sentence Φ
in the language L ∪ {U} with an additional n-ary predicate symbol U , such that for
all n-ary relations U∗ on M , (M,U∗) |= Φ if and only if U∗ = U , see the introductory
part of [5].

Theorem 9

If a real number r is recursively approximable, then {r} is existentially ∅-definable
in (R,+, ·, 0, 1, U) for some unary predicate U which is implicitly ∅-definable in
(R,+, ·, 0, 1).

Proof. If r is a rational number then {r} is existentially ∅-definable in (R,+, ·, 0, 1). At
this moment we assume that r is an irrational number. We may assume without loss of
generality that r < 0, so there exists an integer i < r. There exist recursive functions
f : ω → ω and g : ω → ω \ {0} such that lim

n→∞
− f(n)

g(n) = r, we may assume without loss

of generality that − f(n)
g(n) ∈ (i, 0) for each n ∈ ω. Since f and g are recursive, there

exist formulae F (s, t) and G(s, t) (both in the language of rings) for which

∀n, m ∈ ω (m = f(n) ⇐⇒ ω |= F (n, m))

and
∀n, m ∈ ω (m = g(n) ⇐⇒ ω |= G(n, m)) .

Let
U := {r + i} ∪

{
− f(n)

g(n)
: n ∈ ω

}
∪ ω

and U be a unary predicate symbol for membership in U . Let x ≤ y abbreviate

∃s x + s2 = y,
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x < y abbreviate
x ≤ y ∧ x 6= y,

succ(x, y) abbreviate

x < y ∧ U(x) ∧ U(y) ∧ ∀z ((x < z ∧ z < y) ⇒ ¬U(z)),

accum(x) abbreviate

∀ε (0 < ε ⇒ ∃z (z 6= x ∧ x < z + ε ∧ z < x + ε ∧ U(z))) .

We have:
∀x ∈ R (x ∈ ω ⇐⇒ R |= (0 ≤ x ∧ U(x))) .

Therefore, extending the language of rings with predicate symbol U for membership
in U we can find formulae F̃ (s, t) and G̃(s, t) for which

∀s, t ∈ R ((s ∈ ω ∧ t ∈ ω ∧ t = f(s)) ⇐⇒ R |= F̃ (s, t))

and
∀s, t ∈ R ((s ∈ ω ∧ t ∈ ω ∧ t = g(s)) ⇐⇒ R |= G̃(s, t)) .

The sentence

U(0) ∧ ∀x ((0 ≤ x ∧ U(x)) ⇒ succ(x, x + 1))
∧ ∀x ((0 ≤ x + 1 + ... + 1︸ ︷︷ ︸

|i|−times

∧ x < 0) ⇐⇒ ∃s∃u∃v

(0 ≤ s ∧ U(s) ∧ 0 ≤ u ∧ U(u) ∧ 0 ≤ v ∧ U(v) ∧ F̃ (s, u) ∧ G̃(s, v) ∧ u + x · v = 0))
∧ ∀x ((0 < x + 1 + ... + 1︸ ︷︷ ︸

2|i|−times

∧ x + 1 + ... + 1︸ ︷︷ ︸
|i|−times

< 0)

⇒ (U(x) ⇐⇒ accum(x + 1 + ... + 1︸ ︷︷ ︸
|i|−times

)))

∧ ∀x (x + 1 + ... + 1︸ ︷︷ ︸
2|i|−times

≤ 0 ⇒ ¬U(x))

is valid in R if and only if U(x) means x ∈ U , so U is implicitly ∅-definable in R. The
formula

∃t∃y (x + t2 = 0 ∧ x = y + 1 + ... + 1︸ ︷︷ ︸
|i|−times

∧ U(y))

defines r in (R,+, ·, 0, 1, U). �
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349–366.

5. K. Fukuzaki and A. Tsuboi, Implicit definability of subfields,Notre Dame J. Formal Logic44
(2003), 217–225.

6. C.U. Jensen and H. Lenzing,Model Theoretic Algebra: with Particular Emphasis on Fields,
Rings, Modules, Gordon and Breach Science Publishers, New York, 1989.

7. J. Koenigsmann, Defining transcendentals in function fields,J. Symbolic Logic67 (2002), 947–
956.

8. S. Lang,Number Theory III: Diophantine Geometry, Encyclopaedia of Mathematical Sciences
60, Springer-Verlag, Berlin, 1991.

9. G. Lettl, Finitely arithmetically fixed elements of a field, 9 pages, to appear inArch. Math. (Basel),
Presented at 70th Workshop on General Algebra, Institute of Discrete Mathematics and Geometry,
Vienna University of Technology, May 26–29, 2005.

10. A. Macintyre, Twenty years ofp-adic model theory,Logic Colloquium ’84 (Manchester, 1984),
121–153, Stud. Logic Found. Math., 120, North-Holland, Amsterdam, 1986.

11. B. Poizat,A Course in Model Theory: An Introduction to Contemporary Mathematical Logic,
Springer-Verlag, New York, 2000.

12. R.M. Robinson, Arithmetical definability of field elements,J. Symbolic Logic16(1951), 125–126.
13. R.M. Robinson, The undecidability of pure transcendental extensions of real fields,Z. Math. Logik

Grundlagen Math.10 (1964), 275–282.
14. A. Shlapentokh, Hilbert’s tenth problem over number fields, a survey,Hilbert’s tenth problem:

relations with arithmetic and algebraic geometry (Ghent, 1999), 107–137, Contemp. Math., 270,
Amer. Math. Soc., Providence, RI, 2000.

15. L. Svenonius, A theorem on permutations in models,Theoria (Lund)25 (1959), 173–178.
16. A. Tyszka, A discrete form of the theorem that each field endomorphism ofR (Qp) is the identity,

Aequationes Math.71 (2006), 100–108.
17. X. Zheng, Recursive approximability of real numbers,MLQ Math. Log. Q.48 (2002), 131–156.


