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Abstract

We establish results on interpolation of Rosenthal operators, Banach-Saks opera-
tors, Asplund operators and weakly compact operators by means of generalized
Lions-Peetre methods of constants and means. Applications are presented for
theK-method space generated by the Calderón-Lozanovskii space parameters.

1. Introduction

It is well known that some properties of operators are stable for the complex as well
as for the real method of interpolation. From the point of view of the theory of
Banach spaces it is useful to identify the properties of operators or Banach spaces
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which are stable for various interpolation methods. A notable negative result in this
context is that none of the following properties is stable for any exponential method of
interpolation: the Radon-Nikodým property, the property of not having any subspace
isomorphic to c0, and the property of being a dual space. This follows from a result
of Garling and Montgomery-Smith [14], which states that there exists a compatible
couple (A0, A1) of Banach spaces such that A0 and A1 are isometric to `1 and for
every exponential interpolation method F the interpolation space F(A0, A1) contains
a complemented copy of c0.

The behaviour of weak compactness under interpolation has attracted the atten-
tion of many researchers since the time when Davis, Figiel, Johnson and Pe lczyński [10]
established the well known result on factorization of weakly compact operators. An
early contribution was due to Beauzamy [1] who provided a necessary and sufficient
condition for the real interpolation space (A0, A1) θ, p with 0 < θ < 1 and 1 < p <∞ to
be reflexive. Later, Heinrich [15] extended this result to other closed operator ideals.
More related results that deal with the classical real method can be found in [1, 9, 18].
The case of general K- and J -methods has been investigated in [6, 7].

In this paper we investigate the interpolation of Rosenthal operators, Banach-
Saks operators, Asplund operators and weakly compact operators by means of the
generalized Lions-Peetre methods of constants and means. We use similar techniques
to those used in [6, 7, 22].

Let us mention that the methods of constants and means were defined in the
fundamental paper of Lions and Peetre [19] for the case when the lattices are weighted
Lp-spaces with power weights. Their generalizations to the case of arbitrary Banach
lattices, considered in this paper, were proposed by Peetre and later developed by
Dmitriev in several papers (see [17, 4] for details and relevant references). It is known
that the methods of constants KE0, E1(·) and means JE0, E1(·) are equivalent to the K-
and J -methods with parameters KE0, E1(`∞, `∞(2−m)) and JE0, E1(`1, `1(2−m)) res-
pectively (see, e.g., [4, Theorems 4.2.11 and 4.2.33]). In general, the description of
such space parameters is a subtle problem. Indeed, they have been calculated only
for special cases, in particular for the weighted Lp-spaces with power weights or quasi-
power weights (see [2, 13]). As one could expect, the results we derive here depend on
the Banach lattice parameters E0 and E1 which generate the corresponding method
of interpolation.

As an application, we give necessary and sufficient conditions for the K-method
space generated by the Calderón-Lozanovskii space parameters to be a space not con-
taining `1, a space with the Banach-Saks property, an Asplund space, or a reflexive
space.
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their gratitude to Fernando Cobos for his helpful comments about this paper. We wish
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of the paper.
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2. Preliminaries and auxiliary results

Let ω(Z) denote the space of all real-valued sequences modelled on Z, equipped with
the topology of pointwise convergence. By a Banach lattice on Z we shall mean a
Banach space E which is a subspace of ω(Z), such that there exists a sequence in
E that is positive on Z and E satisfies the following condition: if ξ = (ξm) ∈ E,
η = (ηm) ∈ ω(Z) and |ηm| ≤ |ξm| for every m ∈ Z, then η ∈ E and ‖η‖E ≤ ‖ξ‖E .

We say that a Banach lattice E on Z is regular if for any (xn)n∈N ⊆ E with xn ↓ 0
it follows that ‖xn‖E −→ 0 .

The Köthe dualof a Banach lattice E on Z is a Banach lattice E′ on Z which
consists of all sequences (ηm) ∈ ω(Z) for which

‖(ηm)‖E′ = sup
{ ∞∑
m=−∞

|ηmξm| : ‖(ξm)‖E ≤ 1
}
<∞.

Given a positive sequence (wm)m∈Z , we denote by E(wm) the space E with the
weight (wm)m∈Z .

If E is a Banach lattice on Z and X is a Banach space, then by E(X) we denote the
Banach space of all sequences x = (xm)m∈Z in X equipped with the norm ‖x‖E(X) =
‖(‖xm‖X)‖E .

We shall use standard notation and notions from interpolation theory as presented,
e.g., in [2, 4]. We recall that a mapping F from the category B of compatible couples
of Banach spaces into the category B of Banach spaces is said to be an interpolation
functor (or an interpolation method) if, for any couple Ā = (A0, A1), F(Ā) is a Banach
space intermediate with respect to Ā (i.e., A0 ∩ A1 ↪→ F(Ā) ↪→ A0 + A1), and T :
F(Ā) → F(B̄) for all Banach couples Ā, B̄ and any operator T : Ā → B̄. Here, as
usual, we use the notation T : Ā → B̄ to mean that T : A0 + A1 → B0 + B1 is a
linear operator such that the restriction of T to the space Aj is a bounded operator
from Aj into Bj for j = 0, 1. We denote by L(Ā, B̄) the Banach space of all operators
T : Ā→ B̄ equipped with the norm:

‖T‖Ā→B̄ = max {‖T‖A0→B0 , ‖T‖A1→B1}.

As a consequence of the closed graph theorem, for any couples Ā, B̄ there exists
a positive constant C such that for all T ∈ L(Ā, B̄) it holds

‖T‖F(Ā)→F(B̄) ≤ C ‖T‖Ā→B̄.

If C can be chosen as equal to 1 for all couples Ā, B̄, then F is called exact.
An interpolation functor F is called regular if A0 ∩ A1 is dense in F(A0, A1) for

any Banach couple (A0, A1).
For t > 0, let tR be the space R with the norm ‖λ‖tR = t|λ|. Let F be an exact

interpolation functor. Following [11] (see also [16]) the fundamental functionϕ = ϕF of
F is defined as follows:

F(R, (1/t)R) = (1/ϕ(t))R.

It is known that ϕ is a quasi-concave function, i.e., ϕ : (0,∞) → (0,∞) and it satisfies
ϕ(s) ≤ max{1, s/t}ϕ(t) for all s, t > 0. For a quasi-concave function ϕ, we define a
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quasi-concave function ϕ∗ by ϕ∗(t) = 1/ϕ(1/t) for t > 0. We denote by P0 the set of
quasi-concave functions ϕ such that ϕ(t) → 0 as t→ 0 and ϕ(t)/t→ 0 as t→∞.

Given a Banach couple (A0, A1), for each t > 0, we put

K(t, a) = K(t, a, A0, A1)
= inf {‖a0‖A0 + t‖a1‖A1 ; a = a0 + a1, ai ∈ Ai}, a ∈ A0 +A1,

and
J(t, a) = J(t, a, A0, A1) = max {‖a‖A0 , t‖a‖A1} , a ∈ A0 ∩A1.

Let us now recall the definition (in a discrete form) of the generalized Lions-Peetre
methods of constants and means. Let E0 and E1 be Banach lattices on Z. For any
Banach couple Ā = (A0, A1), the space KE0,E1(Ā) is defined as the set of elements
a ∈ A0 +A1 for which there exists ai = (aim) ∈ Ei(Ai), i = 0, 1, such that a = a0

m+a1
m

for all m ∈ Z. We set

‖a‖KE0,E1
(Ā) = inf

{
‖a0‖E0(A0) + ‖a1‖E1(A1); a

i = (aim) ∈ Ei(Ai), a = a0
m + a1

m

}
.

The space KE0,E1(Ā) may contain non-zero elements only when e ∈ E0 + E1, where
e = (em) with em = 1 for all m ∈ Z. Furthermore, if e ∈ E0 + E1, then KE0,E1 is an
exact interpolation functor (see [17, 4]). In what follows we shall always assume that
e ∈ E0 + E1.

Analogously, the Banach space JE0,E1(Ā) consists of all a ∈ A0 + A1 such that

a =
∞∑

m=−∞
um (convergence in A0 +A1), where (um) ⊂ E0(A0)∩E1(A1). JE0,E1(Ā) is

equipped with the norm defined by

‖a‖JE0,E1
(Ā) = inf

{
max { ‖(um)‖E0(A0), ‖(um)‖E1(A1) } ; a =

∞∑
m=−∞

um
}
.

In the sequel we always assume that E0 and E1 satisfy the condition E0 ∩ E1 ↪→ `1.
In that case JE0,E1 is an exact interpolation functor (see [17, 4]).

The methods of constants and means coincide with the K- and J -methods with
certain parameters (see [4]). Namely, if Φ = KE0,E1(`∞, `∞(2−m)) (resp. Φ =
JE0,E1(`1, `1(2−m))), it holds that KE0,E1(·) = KΦ(·) (resp. JE0,E1(·) = JΦ(·)).

In the special case when Ej = `pj (2 (j−θ)m), 1 ≤ pj ≤ ∞, 0 < θ < 1 (j = 0, 1), the
generalized Lions-Peetre methods of constants and means reduce to the classical real
method:

KE0,E1(Ā) = JE0,E1(Ā) = Ā θ, p ,

where 1/p = (1− θ)/p0 + θ/p1 (see [2, Theorem 3.12.1]).
On the other hand the space KE(Ā) ( resp. JE(Ā) ) coincides with KE,E(2m)(Ā)

( resp. JE,E(2m)(Ā) ) (see [17, Chapter IV, Lemma 2.8 and Lemma 2.9]).
We refer to the books [17, 4] for additional information about the methods of

constants and means.
We note that if ϕ is the fundamental function of an exact interpolation functor

F , then
F(X0, X1) ↪→ KΨ(X0, X1)
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for any Banach couple (X0, X1), with Ψ = `∞(1/ϕ(2m)) (see, e.g., [16]). When ϕ ∈ P0,
it implies, in particular, that

F(X0, X1) ↪→ X ◦
0 +X ◦

1 ,

where X ◦
j denotes the closure of X0 ∩X1 in Xj for j = 0, 1 (see [4, Proposition 2.2.12

and Corollary 3.1.14]).
Moreover, it holds that K(t, x;X0, X1) = K(t, x;X ◦

0 , X
◦

1 ) for any x ∈ X ◦
0 +X ◦

1

and t > 0. Thus, if ϕKE0,E1
∈ P0, we derive

KE0,E1(X0, X1) = KE0,E1(X ◦
0 , X

◦
1 ), (2.1)

from the known formulaKE0,E1(X0, X1) = KΦ(X0, X1), with Φ = KE0,E1(`∞, `∞(2−m))
(see [4, Theorem 4.2.11]).

Let us also mention that the equality

JE0,E1(X0, X1) = JE0,E1(X ◦
0 , X

◦
1 ) (2.2)

holds for any Banach couple (X0, X1).
For each t > 0 we put (see [5])

ψKE0,E1
(Ā)

(t) = sup
{
K(t, a); ‖a‖KE0,E1

(Ā) = 1
}
,

ρJE0,E1
(Ā)

(t) = inf
{
J(t, a); a ∈ A0 ∩A1, ‖a‖JE0,E1

(Ā) = 1
}
.

We set the relationship between functions ψKE0,E1
(Ā)
, ρJE0,E1

(Ā)
and the fundamental

functions ϕKE0,E1
, ϕJE0,E1

by means of the lemma (see [6, Lemma 2.1]).

Lemma 2.1

For any Banach couple Ā the following estimates hold:

ψKE0,E1
(Ā)

(t) ≤ ϕKE0,E1
(t), t > 0,

and

ρ∗
JE0,E1

(Ā)
(t) ≤ ϕ∗JE0,E1

(t), t > 0.

In our interpolation results we shall assume that ϕKE0,E1
and ϕ∗JE0,E1

belong to
the class P0. The following result gives a sufficient condition for these functions to
belong to P0 in terms of the norms of shift operators on Ej (j = 0, 1). For n ∈ Z, the
shift operatorτn is defined by the equality τn(ξm)m∈Z = (ξm+n)m∈Z.

Lemma 2.2

Let F be either KE0,E1 or JE0,E1 and let

2−(1−j)n‖τn‖Ej→Ej −→ 0 and 2−jn‖τ−n‖Ej→Ej −→ 0 as n→∞, (2.3)

for j = 0, 1. Then ϕF and ϕ∗F belong to P0.
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The proof of Lemma 2.2 is based on the following:

Lemma 2.3

Let F be either KE0,E1 or JE0,E1 . Suppose that Ā = (A0, A1) and B̄ = (B0, B1)
are Banach couples and let T ∈ L(Ā, B̄). For any n ∈ N the following statements hold:

(i) If ‖T‖A0→B0 ≤ 2−n and ‖T‖A1→B1 ≤ 1, then

‖T‖F(Ā)→F(B̄) ≤ max{ 2−n‖τn‖E0→E0 , ‖τn‖E1→E1 },

(ii) If ‖T‖A0→B0 ≤ 1 and ‖T‖A1→B1 ≤ 2−n, then

‖T‖F(Ā)→F(B̄) ≤ max{ ‖τ−n‖E0→E0 , 2−n‖τ−n‖E1→E1 }.

Proof of Lemma 2.3 We just show (i) for F = JE0,E1 . The rest of the proof is similar.

Let a ∈ JE0,E1(Ā) and let us take any representation a =
∞∑

m=−∞
um (convergence in

A0 + A1), with (um) ∈ E0(A0) ∩ E1(A1). Since E0 ∩ E1 ↪→ `1, the series
∞∑

m=−∞
um is

absolutely summable in A0 +A1. Therefore,

‖Ta‖JE0,E1
(B̄) ≤ max

{
‖(Tum+n)‖E0(B0) , ‖(Tum+n)‖E1(B1)

}
≤ max

{
2−n‖τn‖E0→E0 , ‖τn‖E1→E1

}
‖(um)‖E0(A0)∩E1(A1).

By taking the infimum over all J -representations of a we have that

‖Ta‖JE0,E1
(B̄) ≤ max

{
2−n‖τn‖E0→E0 , ‖τn‖E1→E1

}
‖a‖JE0,E1

(Ā) . �

Proof of Lemma 2.2 We prove that ϕKE0,E1
∈ P0 . Let us put C = ‖e‖E0+E1 , where

e = (em) with em = 1 for any m ∈ Z . It is easy to see that ‖ · ‖KE0,E1
(R,R) is equal

to C | · | .
Thus,

ϕKE0,E1
(t) = C −1 ‖I‖KE0,E1

(R,(1/t)R)→KE0,E1
(R,R) , t > 0,

where I is the identity operator. Now using Lemma 2.3(ii), we get that ϕKE0,E1
(t) → 0

as t→ 0. Analogously

ϕKE0,E1
(t)/t = C −1 ‖(1/t)I‖KE0,E1

(R,(1/t)R)→KE0,E1
(R,R) , t > 0,

and from Lemma 2.3(i) we derive that ϕKE0,E1
(t)/t→ 0 as t→∞.

In order to establish that ϕ∗JE0,E1

∈ P0 we may reason in an analogous way. In
this case,

ϕ∗JE0,E1

(t−1) = D−1 ‖I‖JE0,E1
(R,R)→JE0,E1

(R,(1/t)R) , t > 0,



Generalized Lions-Peetre methods of constants and means and operator ideals51

and
ϕ∗JE0,E1

(t−1)/t−1 = D−1 ‖tI‖JE0,E1
(R,R)→JE0,E1

(R,(1/t)R) , t > 0,

where D is the constant of the embedding E0∩E1 ↪→ `1 and I is the identity operator.
Lemma 2.3(ii) and (i) give that ϕ∗JE0,E1

(t) → 0 as t→ 0 and ϕ∗JE0,E1

(t)/t→ 0 as t→∞
respectively.

It can be checked that ϕJE0,E1
∈ P0 and ϕ∗KE0,E1

∈ P0 by repeating the above
arguments with minor modifications. �

It is easy to see that the condition (2.3) is satisfied whenever E0 = `p0(2−θm) and
E1 = `p1(2 (1−θ)m) with 0 < θ < 1 and 1 ≤ pj ≤ ∞ for j = 0, 1.

3. Interpolation results

We start by studying the interpolation of the Rosenthal operators. Recall that a
bounded linear operator T : X −→ Y between Banach spaces is said to be a Rosenthal
operator if T (UX) is a weakly precompact subset. Here UX stands for the closed unit
ball of X. In other words, T is a Rosenthal if for every bounded sequence (xn) ⊂ X,
the sequence (Txn) admits a weak Cauchy subsequence. Rosenthal operators form an
injective and surjective closed operator ideal (we refer to [25] for concepts related to
Banach operator ideals).

In what follows we will use some interpolation duality formulas, so let us note
that if X and Y are Banach spaces, then as usual X ∼= Y means that X and Y are
isometrically isomorphic.

Theorem 3.1

Let E0, E1 be Banach lattices on Z that do not contain a copy of `1. Suppose
that Ā = (A0, A1), B̄ = (B0, B1) are Banach couples and let T ∈ L(Ā, B̄) be such that
T : A0 ∩A1 −→ B0 +B1 is a Rosenthal operator.

(i) If ϕKE0,E1
∈ P0, then T : KE0,E1(A0, A1) −→ KE0,E1(B0, B1) is a Rosenthal

operator.

(ii) If ϕ∗JE0,E1

∈ P0, then T : JE0,E1(A0, A1) −→ JE0,E1(B0, B1) is a Rosenthal

operator.

Proof. Let us first show that (ii) holds. Using (2.2), without loss of the generality,
we may assume that A0 ∩ A1 is dense in Ai and that B0 ∩ B1 is dense in Bi (i =
0, 1). Since T : A0 ∩ A1 −→ B0 + B1 is a Rosenthal operator, as a consequence of
Lemma 2.1 and [8, Corollary 3.5], we conclude that T : A0 ∩ A1 −→ JE0,E1(B0, B1)
is also Rosenthal. Consequently T̃Pk has the same property for any k ∈ Z, where

T̃ : E0(A0) ∩ E1(A1) −→ JE0,E1(B0, B1) is defined by T̃ (am) = T
( ∞∑
m=−∞

am
)

and the

operator Pk : A0 ∩A1 −→ E0(A0) ∩ E1(A1) is given by Pka = (δ kma)m∈Z.
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Since T̃ = Tπ , with π : E0(A0) ∩ E1(A1) −→ JE0,E1(A0, A1) being the metric

surjection π(am) =
∞∑

m=−∞
am, the surjectivity of the ideal of Rosenthal operators yields

that the proof will be concluded if we prove that T̃ is a Rosenthal operator.
Let us take any bounded sequence (aj)j∈N ⊂ E0(A0) ∩ E1(A1) and let

M = sup
{
‖aj‖E0(A0)∩E1(A1) ; j ∈ N

}
.

We show that (T̃ aj) admits a weak Cauchy subsequence. Let Qk : E0(A0)∩E1(A1) −→
A0∩A1 be the operator given by Qk(am) = ak. Due to the fact that T̃Pk is a Rosenthal
operator for every k ∈ Z, we can choose a subsequence (ãj) of (aj) in such a way that( ∑
|k|≤N

T̃PkQkãj
)
j∈N

is a weak Cauchy sequence for any N ∈ N.

It is known that if Ei does not contain a copy of `1, then Ei and E′
i are regular

(see [28, Theorems 117.3 and 117.2]) and (E0(A0) ∩ E1(A1))∗ ∼= E′
0(A∗0) + E′

1(A∗1)
(see [17, Chapter IV, Lemma 2.13]). Thus, for any f ∈ JE0,E1(B0, B1)∗ and any ε > 0,
by the regularity of E′

i , there exists N ∈ N such that∥∥∥T̃ ∗f −
∑
|k|≤N

Q ∗
kP

∗
k T̃

∗f
∥∥∥
E′0(A ∗

0 )+E′1(A ∗
1 )
≤ ε/4M . (3.1)

On the other hand, since
( ∑
|k|≤N

T̃PkQkãj
)
j∈N

is a weak Cauchy sequence, there

exists j0 ∈ N such that∣∣∣〈 ∑
|k|≤N

T̃PkQk(ãi − ãj) , f〉
∣∣∣ ≤ ε/2 for all i, j ≥ j0. (3.2)

Finally, by (3.1) and (3.2),

|〈T̃ (ãi − ãj), f〉| ≤
∣∣∣〈ãi − ãj , T̃

∗f −
∑
|k|≤N

Q ∗
kP

∗
k T̃

∗f〉
∣∣∣

+
∣∣∣〈ãi − ãj ,

∑
|k|≤N

Q ∗
kP

∗
k T̃

∗f〉
∣∣∣ ≤ ε,

for any i, j ≥ j0. This finishes the proof of (ii).
To prove (i) we may assume without loss of generality by (2.1) that A0 ∩ A1

is dense in Ai and that B0 ∩ B1 is dense in Bi (i = 0, 1). Then, it is enough to
modify slightly the argument in the proof of the statement (ii) by using now the
injectivity of the operator ideal and the operators T̂ , Rk and Sk defined as follows:
T̂ = jT , where j : KE0,E1(B0, B1) −→ E0(B0)+E1(B1) is the metric injection given by
jb = (· · · , b, b, b, · · · ); Rk : B0 +B1 −→ E0(B0) +E1(B1), with Rkb = (δ kmb), where δ km
is the Kronecker delta; and Sk : E0(B0)+E1(B1) −→ B0 +B1, defined by Skb = b0k+b1k
for b = b0 + b1 with bj = (bjm) ∈ Ej(Bj), j = 0, 1. �

Next, we focus on Banach-Saks operators. A bounded linear operator T : X −→ Y
between Banach spaces is called a Banach-Saks operatorif it maps bounded sequences



Generalized Lions-Peetre methods of constants and means and operator ideals53

into sequences possessing Cesaro convergent subsequences. Banach-Saks operators also
form an injective and surjective closed operator ideal. A Banach space X is said to have
the Banach-Saks propertyif the identity operator IX is a Banach-Saks operator. The
Banach-Saks property has attracted considerable attention (see, e.g., [12, 1, 15, 26]).

Theorem 3.2

Assume that E0, E1 are Banach lattices on Z with the Banach-Saks property.
Let Ā = (A0, A1), B̄ = (B0, B1) be Banach couples and let T ∈ L(Ā, B̄) be such that
T : A0 ∩A1 −→ B0 +B1 is a Banach-Saks operator.

(i) If ϕKE0,E1
∈ P0, then T : KE0,E1(A0, A1) −→ KE0,E1(B0, B1) is a Banach-Saks

operator.

(ii) If ϕ∗JE0,E1

∈ P0, then T : JE0,E1(A0, A1) −→ JE0,E1(B0, B1) is a Banach-Saks

operator.

Proof. The proof of (i) will be completed if we establish that the operator T̂ :
KE0,E1(A0, A1) −→ E0(B0) + E1(B1), given by T̂ a = (· · · , Ta, Ta, Ta, · · · ), is a
Banach-Saks operator. To show this, we consider the embedding Rk : B0 + B1 −→
E0(B0) + E1(B1) and the projection Sk : E0(B0) + E1(B1) −→ B0 + B1, defined as
in the proof of Theorem 3.1(i). According to Lemma 2.1 and [8, Corollary 3.6] the
operator T : KE0,E1(A0, A1) −→ B0 +B1 is a Banach-Saks operator.

Let (aj)j∈N ⊂ KE0,E1(A0, A1) be any bounded sequence. We shall prove that there

exists a subsequence (âj) of (aj) such that
( 1
n

n∑
j=1

T̂ âj
)
n∈N

is a Cauchy sequence.

Since SkT̂ is a Banach-Saks operator for each k ∈ Z, using a result of Erdös and
Magidor [12] we can find for every N ∈ N a subsequence (aNj )j∈N of (aj)j∈N such

that all subsequences of
( ∑
|k|≤N

RkSkT̂ a
N
j

)
j∈N

are Cesaro convergent. Hence, using a

diagonal argument, we obtain a subsequence (âj) of (aj) so that
( ∑
|k|≤N

RkSkT̂ âj
)
j∈N

is Cesaro convergent for all N simultaneously.
For each j ∈ N there is b ij ∈ Ei(Bi), i = 0, 1, such that T̂ âj = b 0

j + b 1
j and

the sequence (b ij )j∈N is bounded on Ei(Bi), i = 0, 1. Let us put ξ ij = (‖Skb ij‖Bi)k∈Z ∈
Ei, j ∈ N, i = 0, 1. Taking into account that E0 and E1 have the Banach-Saks property,
we may assume (by extracting a suitable subsequence by means of Erdös-Magidor’s
result) that (âj) has been chosen in such a way that (ξ ij )j∈N is Cesaro convergent in
Ei, for i = 0, 1. Set

µ i = (µ ik)k∈Z = lim
n→∞

1
n

n∑
j=1

ξ ij , i = 0, 1.

Then, given any ε > 0, there is n i0 ∈ N such that if n > n i0 , it holds for all N ∈ N that∥∥∥(
γNk [

1
n

n∑
j=1

‖Sk b ij‖Bi − µ ik ]
)∥∥∥

Ei

≤ ε/16 (i = 0, 1),

where γNk = 0 for |k| ≤ N and γNk = 1 for |k| > N .
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On the other hand, Ei is regular because Ei has the Banach-Saks property. There-
fore, there exists q i0 ∈ N such that

‖(γqkµ
i
k)‖Ei ≤ ε/16 for all q ≥ q i0 (i = 0, 1).

Consequently, we can find N i ∈ N such that for every n > N i

∥∥∥(
γN

i

k

1
n

n∑
j=1

‖Sk b ij‖Bi

)∥∥∥
Ei

≤ ε/8 ,

for i = 0, 1. Thus, if n > N = max{N i : i = 0, 1}, then

∥∥∥ 1
n

n∑
j=1

∑
|k|>N

RkSkT̂ âj
∥∥∥
E0(B0)+E1(B1)

(3.3)

≤
∥∥∥(
γNk

∥∥∥Sk( 1
n

n∑
j=1

b 0
j

) ∥∥∥
B0

)∥∥∥
E0

+
∥∥∥(
γNk

∥∥∥Sk( 1
n

n∑
j=1

b 1
j

) ∥∥∥
B1

)∥∥∥
E1

≤ ε/4 .

Moreover, since
( ∑
|k|≤N

RkSkT̂ âj
)
j∈N

is Cesaro convergent due to the choice of (âj),

there exists N ∈ N such that if n2, n1 > N , then

∥∥∥ 1
n2

n2∑
j=1

∑
|k|≤N

RkSkT̂ âj −
1
n1

n1∑
j=1

∑
|k|≤N

RkSkT̂ âj
∥∥∥
E0(B0)+E1(B1)

≤ ε/2. (3.4)

Combining (3.3) and (3.4), we obtain that
( 1
n

n∑
j=1

T̂ âj
)
n∈N

is a Cauchy sequence.

The proof of (ii) uses similar arguments but deals with the operators T̃ , Pk and
Qk, defined as in the proof of Theorem 3.1(ii). Namely, given any bounded sequence
(aj)j∈N ⊂ E0(A0)∩E1(A1), it is possible to choose a suitable subsequence (ãj) of (aj)

in such a way that
( ∑
|k|≤N

T̃PkQk ãj
)
j∈N

is Cesaro convergent for all N simultaneously.

In this case (3.3) and(3.4) turn into

∥∥∥ 1
n

n∑
j=1

T̃
∑
|k|>N

PkQk ãj
∥∥∥
JE0,E1(B0,B1)

≤ ε/4 ,

and ∥∥∥ 1
n2

n2∑
j=1

T̃
∑
|k|≤N

PkQk ãj −
1
n1

n1∑
j=1

T̃
∑
|k|≤N

PkQk ãj
∥∥∥
JE0,E1

(B0,B1)
≤ ε/2 ,

respectively. �

We now consider the case of Asplund operators. A bounded linear operator
T : X −→ Y between Banach spaces is said to be an Asplund operatorif T ∗ is a
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Radon-Nikodým operator (recall that S : U −→ V is called a Radon-Nikod́ym opera-
tor if for any probability measure µ, S maps each µ-continuous U -valued measure of
finite variation into a µ-differentiable V -valued measure; see [25]). A Banach space X
is called an Asplund spaceif its identity operator IX is an Asplund operator. Closed
subspaces of an Asplund space and reflexive spaces are also Asplund spaces. Full
information on Asplund spaces and related questions can be found in [15, 27, 3].

Theorem 3.3

Assume that E0, E1 are Asplund Banach lattices on Z. Let Ā = (A0, A1), B̄ =
(B0, B1) be Banach couples and let T ∈ L(Ā, B̄) be such that T : A0∩A1 −→ B0 +B1

is an Asplund operator.

(i) If ϕKE0,E1
∈ P0, then T : KE0,E1(A0, A1) −→ KE0,E1(B0, B1) is Asplund.

(ii) If ϕ∗JE0,E1

∈ P0, then T : JE0,E1(A0, A1) −→ JE0,E1(B0, B1) is Asplund.

Proof. We shall first establish (ii). By (2.2) we may assume without loss of generality
that A0∩A1 is dense in Ai and that B0∩B1 is dense in Bi (i = 0, 1). We just need to
show that the operator T̃ : E0(A0)∩E1(A1) −→ JE0,E1(B0, B1) is an Asplund operator.
Furthermore, Ei is an Asplund space and consequently Ei does not contain a copy of
`1. Therefore Ei and E′

i are regular and (E0(A0)∩E1(A1))∗ ∼= E′
0(A ∗

0 ) +E′
1(A ∗

1 ). For
any bounded set H of a Banach space X, we denote by µH the seminorm on X∗ given
by µH (f) = sup {|f(x)| : x ∈ H}, f ∈ X∗.

Let D be a countable subset of the closed unit ball of E0(A0) ∩ E1(A1).
Since T̃Pk is an Asplund operator, according to [3, Theorem 5.2.11], the space
( T̃ ∗(JE0,E1(B0, B1)∗) , µ

PkQk(D)
) is separable. Let ∆k be a countable set dense in

( T̃ ∗(JE0,E1(B0, B1)∗) , µ
PkQk(D)

). We check that the countable set

∆ =
{ ∑
|k|≤N

Q ∗
k P

∗
k gk : gk ∈ ∆k , N ∈ N

}
is dense in ( T̃ ∗(JE0,E1(B0, B1)∗) , µD ). Choose f ∈ JE0,E1(B0, B1)∗ and let ε > 0.
Taking into account the regularity of E′

i , there is N ∈ N such that∥∥∥T̃ ∗f −
∑
|k|≤N

Q ∗
kP

∗
k T̃

∗f
∥∥∥
E′0(A ∗

0 )+E′1(A ∗
1 )
≤ ε/2.

Moreover, for each |k| ≤ N we can extract gk ∈ ∆k verifying that µ
PkQk(D)

(T̃ ∗f −
gk) ≤ ε/(4N + 2) . Consequently,

µD

(
T̃ ∗f −

∑
|k|≤N

Q ∗
k P

∗
k gk

)
≤ µD

(
T̃ ∗f −

∑
|k|≤N

Q ∗
kP

∗
k T̃

∗f
)

+ µD

( ∑
|k|≤N

Q ∗
kP

∗
k (T̃ ∗f − gk)

)
≤ ε/2 +

∑
|k|≤N

µ
PkQk(D)

(T̃ ∗f − gk) ≤ ε,

and so (ii) is proved.
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(i) A similar reasoning proves that T̂ : KE0,E1(A ◦
0 , A

◦
1 ) −→ E0(B ◦

0 ) + E1(B ◦
1 ) is

an Asplund operator. Indeed, if we denote by Sk : E0(B ◦
0 ) +E1(B ◦

1 ) −→ B ◦
0 +B ◦

1 the
projection given by Skb = b0k + b1k, for b = b0 + b1 with bj = (bjm) ∈ Ej(B ◦

j ) , and D is
a countable set of the closed unit ball of KE0,E1(A ◦

0 , A
◦
1 ) , then for every k there exists

a countable set Υk which is dense in ((B ◦
0 + B ◦

1 )∗ , µ
Sk T̂ (D)

) and it can be checked

that
Υ =

{ ∑
|k|≤N

S ∗
k gk : gk ∈ Υk , N ∈ N

}
is a dense set in ( (E0(B ◦

0 ) + E1(B ◦
1 ) )∗ , µ

T̂ (D)
) . The proof is complete by (2.1). �

Finally, we research the interpolation of weakly compact operators. Recall that
a bounded linear operator T : X −→ Y between two Banach spaces is said to be
weakly compactif T (UX) is a relatively weakly compact subset of Y . By the well-known
Gantmacher’s theorem, the operator T is weakly compact if and only if T ∗∗(X∗∗) ⊂ Y .

We will need the following preliminary technical lemma.

Lemma 3.4

Let E0 and E1 be reflexive Banach lattices on Z and suppose that ϕKE0,E1
∈ P0.

Then the following statements are true:

(i) KE0,E1 is a regular interpolation functor.

(ii) The closed unit ball of KE0,E1(X0, X1) is a closed subset of X0 + X1 for any
Banach couple (X0, X1).

Proof. Let Φ = KE0,E1(`∞, `∞(2−m)). To establish (i) we follow the line of reasoning
of [4, Lemma 4.6.15.] According to [4, Corollary 3.6.3(b), Theorem 4.2.11], the inter-
polation functor KE0,E1 is regular if and only if `∞ ∩ `∞(2−m) is dense in Φ and the
lattice Φ is a nondegenerate parameter of the K-method, i.e. Φ \ `∞ ∪ `∞(2−m) 6= ∅
(see [4, Definition 3.5.4]).

By Theorem 3.1 we get that Φ does not contain a copy of `1. In particular, the
Banach lattice Φ is regular and so it is clear that `∞ ∩ `∞(2−m) is dense in Φ.

Let us now see that Φ is a nondegenerate parameter of the K-method. For
instance, assume that the embedding Φ ↪→ `∞(2−m) holds. Then the embedding
i : `∞ ∩ `∞(2−m) ↪→ `∞(2−m) is a Rosenthal operator. Let us denote by X the
subspace X = {x = (xm) ∈ `∞ ∩ `∞(2−m) : xm = 0 for all m > 0} . In addition,
let P : `∞ ∩ `∞(2−m) −→ X be the operator of multiplication by the characteristic
function of the set {m ∈ Z : m ≤ 0} . For every x = (xm) ∈ X, it follows that

‖iPx‖`∞(2−m) = sup {2−m|xm| : m ≤ 0} = ‖x‖`∞∩`∞(2−m) .

Thus, the restriction to X of the operator iP coincides with the identity operator on X
and hence X does not contain a copy of `1. However, taking into account the previous
equality, the space X is isometrically isomorphic to

`−∞(2−m) = {x = (xm)m≤0 : sup{2−m|xm| : m ≤ 0} <∞} .

We arrive at a contradiction.
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(ii). It is proved in [24] that the Banach lattice Φ has the Fatou property, that is,
the closed unit ball of Φ, UΦ, is closed in ω(Z). Then, it is easy to derive that the closed
unit ball of KΦ(X0, X1) is closed in X0 + X1 for any Banach couple (X0, X1). Since
KE0,E1(X0, X1) = KΦ(X0, X1) with equality of norms, the proof of (ii) is complete. �

Theorem 3.5

Assume that E0 and E1 are reflexive Banach lattices on Z. Let Ā = (A0, A1), B̄ =
(B0, B1) be Banach couples and let T ∈ L(Ā, B̄) be such that T : A0∩A1 −→ B0 +B1

is a weakly compact operator. Then the following statements hold:

(i) If ϕKE0,E1
∈ P0, then the operator T : KE0,E1(A0, A1) → KE0,E1(B0, B1) is

weakly compact.

(ii) If ϕ∗JE0,E1

∈ P0, then the operator T : JE0,E1(A0, A1) → JE0,E1(B0, B1) is

weakly compact.

Proof. (i). According to (2.1), without loss of generality, we may assume that A0 ∩A1

is dense in Ai and that B0 ∩B1 is dense in Bi (i = 0, 1).
Applying Lemma 3.4(i) and [17, Chapter IV, Theorem 2.14], it holds that

KE0,E1(B0, B1)∗ ∼= JE′0,E′1(B∗
0 , B

∗
1). (3.5)

Now we claim that the inclusion map KE0,E1(B0, B1) ↪→ B0 + B1 is a Tauberian
operator (see, e.g., [22] for definition and properties of Tauberian operators). In fact,
according to [22, Theorem 5], it is enough to check that (B0 + B1)∗ is norm-dense in
KE0,E1(B0, B1)∗ and moreover that the closed unit ball of KE0,E1(B0, B1) is a closed
subset of B0 +B1 . But these facts follow as a straightforward consequence from (3.5)
(see also [17, Chapter IV, Lemma 2.14]) and Lemma 3.4(ii) respectively.

We can conclude that T (UKE0,E1
(A0,A1)) is a relatively weakly compact subset of

KE0,E1(B0, B1) provided that T : A0 ∩ A1 → B0 + B1 is weakly compact (see [22,
Theorem 8]).

(ii). Using (2.2), we may suppose without loss of generality that A0 ∩A1 is dense
in Ai and that B0 ∩ B1 is dense in Bi (i = 0, 1). Because of E0 ∩ E1 ↪→ `1, we have
e ∈ E′

0 + E′
1, and so KE′0,E′1 is a well defined interpolation functor. In addition, it is

not hard to derive that ϕK
E′

0
,E′

1

= ϕ∗JE0,E1

from the definition of fundamental function,

and so ϕK
E′

0
,E′

1

∈ P0. Indeed, under our assumptions, it holds that (see Lemma 3.4(i)

and [17, Chapter IV, Theorem 2.15])

JE0,E1(A0, A1)∗ ∼= KE′0,E′1(A∗0, A
∗
1) and JE0,E1(B0, B1)∗ ∼= KE′0,E′1(B∗

0 , B
∗
1). (3.6)

By Gantmacher’s theorem, it follows that T ∗ : B∗
0 ∩B∗

1 → A∗0 +A∗1 is a weakly compact
operator. Using (3.6) and the statement (i), we obtain that T ∗ : JE0,E1(B0, B1)∗ →
JE0,E1(A0, A1)∗ is weakly compact, and the proof finishes. �

Since KE(Ā) (resp. JE(Ā) ) coincides with KE,E(2m)(Ā) (resp. JE,E(2m)(Ā) ),
Theorems 3.5, 3.1, 3.2 and 3.3 yield [6, Corollaries 4.4, 4.5 and 4.6] as well as [7,
Theorems 3.1 and 3.2] respectively (see also [4, Theorem 4.6.8], [21, Theorem 3.3]
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and [22, Corolary 11]). Moreover, applying Theorems 3.1, 3.2, 3.3 and 3.5 for the
special case E0 = `p0(2−θm), E1 = `p1(2 (1−θ)m), 1 < p0, p1 <∞, 0 < θ < 1, we derive
results due to Heinrich (see [15, Theorem 2.3 and Proposition 2.2]) on interpolation of
these operator ideals by the classical real method (see also [1, Propositions II.2.3, II.3.3
and Theorem III.2.1]).

On the other hand, Theorem 3.1 yields:

Corollary 3.6

Let E0, E1 be Banach lattices on Z that do not contain a copy of `1. Suppose
that (A0, A1) is a Banach couple such that the inclusion map A0 ∩A1 ↪→ A0 +A1 is a
Rosenthal operator.

(i) If ϕKE0,E1
∈ P0, then KE0,E1(A0, A1) does not contain a copy of `1.

(ii) If ϕ∗JE0,E1

∈ P0, then JE0,E1(A0, A1) does not contain a copy of `1.

Similar results hold for Banach-Saks operators, Asplund operators and weakly
compact operators.

Finally we present some applications. Let U denotes the set of all concave, posi-
tively homogeneous of degree one, nondecreasing continuous in each variable functions
ψ : [0,∞)× [0,∞) → [0,∞) such that ψ(0, 0) = 0. If Ē = (E0, E1) is a couple of Ba-
nach lattices on Z and ψ ∈ U , then the Caldeŕon-Lozanovskii spaceψ(Ē) = ψ(E0, E1)
consists of all x ∈ ω(Z) such that |x| ≤ λψ(|x0|, |x1|) for some λ > 0, xj ∈ Ej , with
‖xj‖Ej ≤ 1, j = 0, 1. The space ψ(Ē) is a Banach lattice equipped with the norm

‖x‖ψ = inf{λ > 0 : |x| ≤ λψ(|x0|, |x1|), ‖x0‖E0 ≤ 1, ‖x1‖E1 ≤ 1}

(see [20] for details).
A function ψ ∈ U is said to be a quasi-powerif the dilatation indices δρ and γρ of

the function ρ(t) = ψ(1, t) satisfy 0 < δρ ≤ γρ < 1 (see, e.g., [16, 17]).

Theorem 3.7

Let E0 = `p0(1/ψ(1, 2m)) and E1 = `p1(2m/ψ(1, 2m)) be weighted Banach lattices
on Z, where ψ ∈ U is a quasi-power function and 1 < pj < ∞ for j = 0, 1. Suppose
that Ā = (A0, A1) is a Banach couple. Then the following statements are equivalent:

(i) The inclusion map A0 ∩A1 ↪→ A0 +A1 is a Banach-Saks operator.

(ii) JE0,E1(A0, A1) has the Banach-Saks property.

(iii) The K-method space Kψ(`p0 ,`p1 (2−m))(A0, A1) has the Banach-Saks property.

Proof. Since ψ ∈ U is quasi-power, can easily get that E0 ∩ E1 ↪→ `1. This implies
that JE0,E1 is a non-trivial functor. Further simple calculations show that

2−(1−j)n‖τn‖Ej→Ej −→ 0 and 2−jn‖τ−n‖Ej→Ej −→ 0 as n→∞,

for j = 0, 1. In consequence, it follows by Lemma 2.2 that ϕ∗JE0,E1

∈ P0.
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It is shown in [23] that under above conditions

JE0,E1(A0, A1) = Kψ(`p0 ,`p1 (2−m))(A0, A1)

holds for every Banach couple (A0, A1). Since both spaces E0 and E1 have the Banach-
Saks property, Theorem 3.2 applies. �

Using Theorems 3.1, 3.3 and 3.5, we obtain analogous results concerning the
Rosenthal property, the property of being Asplund, and the weak compactness, res-
pectively.
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