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Abstract

We give an overview of the behavior of the classical Hilbert TransformH seen
as an operator onLp(R) and on weak-Lp(R), then we consider other operators
related toH . In particular, we discuss various versions of Discrete Hilbert
Transform and Fourier multipliers periodized in frequency, giving some partial
results and stating some conjectures about their sharp boundsLp(R) → Lp(R),
for 1 < p <∞.

1. Introduction

In this paper we discuss the Hilbert TransformH and other multiplier operators related
to it. In particular, we discuss operators that share with H (or we conjecture that they
share) the same sharp bounds as operators mapping Lp(R) → Lp(R), for 1 < p <∞.

Section 2 contains an overview of what is known and what is not known about
the norms of H seen as an operator in three different ways: (i) from Lp into Lp; (ii)
from weak-Lp into weak-Lp; (iii) from Lp into weak-Lp. The main new result is the
observation (Theorems 2.1 and 2.2) that, although some truncations of the weak-Lp

functions |x|−1/p and sgn (x)|x|−1/p, when plugged into H make it achieve “naturally”
its norm for the case (i), yet these same weak-Lp functions are not extremals in (ii),
and the norms can be strictly bigger in this case.

In Section 3 we discuss some multipliers “of Hilbert Transform type” like the
segment multiplier, the gap Hilbert transform, general Fourier multipliers associated with
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monotonic functions, the Riesz projection, the Truncated Hilbert Transform. Among these,
in Theorem 3.1, we show that a compactly supported multiplier corresponding to one
period of the sawtooth function has the same norms of H, a result that will be used
in Section 5.

In Section 4 we introduce various versions of Discrete Hilbert Transformand discuss
the 80-year-old problem of showing that two different types of such a transform share
the same norms of H : Lp(R) → Lp(R). We give a short history of this remarkable
problem and some preliminary facts, then we present a result communicated to us by
I.E. Verbitsky a few years ago: the norms of D : `p(Z) → `p(Z), where D is a Discrete
Hilbert Transform, coincide with the norms of H : Lp(R) → Lp(R) when p is a power
of 2 or the dual exponent of such a p.

In Theorem 4.6 we give a different kind of result: the norms of D and the norms
of the truncated Hilbert transform H(1/2), differ at most by an absolute constant,
independent of p.

In Section 5 we introduce the family of those multiplier operators whose multi-
plier function is periodic in the frequency domain. Because of Theorem 4.2, this is a
natural setting in which to discuss continuous and discrete versions of operators like
H. We prove some simple, but general, facts (Propositions 5.1 and 5.2) and then show
that the main problem of the previous section can be seen as a special case of more
general problems on these multipliers (see Theorem 5.3 and the following remarks and
conjectures). We also prove (Theorem 5.6) a lower estimate for the norms of some
“asymmetric” discrete Hilbert transforms (4.5), conjecturing that this lower bound is
actually the norm itself.

2. Behavior of the classical Hilbert Transform on Lp and weak-Lp

The Hilbert transform

(Hf)(x) = p.v.
1
π

∫
R

f(x− t)
t

dt

is well-defined for f ∈ C∞c (R) and it can be extended to a bounded linear operator
that maps Lp(R) → Lp(R) and satisfies the inequality of M. Riesz

‖Hf‖p ≤ np‖f‖p 1 < p <∞. (2.1)

The operator norm ||H||p,p is the best constant np in this inequality and it is given by

np =


tan

(
π
2p

)
if 1 < p ≤ 2,

cot
(

π
2p

)
if 2 ≤ p <∞.

(2.2)

Several essentially different proofs of this fundamental inequality are known, but
only one proof technique so far leads to (2.1) with the best constant (2.2). Such a
technique involves the use of subharmonic (or superharmonic) functions together with
the fact that f + iHf is the boundary value of a holomorphic function in the upper
half plane when f is real-valued. Actually, the upper half plane can be replaced by the
unit disk, and it turns out that np is also the norm of the conjugate function operator,
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the analogue of H on the unit circle. This is what Pichorides originally proved, in [19],
and from that he derived the same result on the line. We refer the reader to the recent
work of Grafakos [11] for a shorter proof that deals directly with the case of H. We
should note that earlier than Pichorides (and Cole, unpublished) the constant (2.2) had
been shown to be optimal by Gohberg and Krupnik for a discrete family of exponents
p = 2n, with n = 1, 2, . . . (see [9] and also paragraph 4 here). Their technique does
not use subharmonic functions, but a direct extension of their result to all values of p
would require the knowledge of some strong “a priori” property of the norm.

In fact, a related general problem is the following: what assumptions on a linear
operator mappingLp into Lp are sufficient to guarantee that its norm is an analytic function
of p in some rangep1 < p < p2? A positive answer to this question appears to depend
on some kind of “uniqueness” or, at least, “good separation” of the extremals that
make our operator achieve its norm. Further complications arise when the norm is a
non-attained best constant.

Since H is an L2-isometry, the equal sign holds in (2.1) when p = 2 and every
f ∈ L2 is an extremal (note that the analyticity of np breaks down around p = 2).
When p 6= 2 no Lp extremals are known, but plugging into H certain truncations of
the weak-Lp functions |x|1/p and sgn (x)|x|1/p we can approach both the supremum
and the infimum of the ratio ||Hf ||p/||f ||p. More precisely, in [5] we have proven the
following:

Theorem 2.1

Let φδ be an Lp(R)-function, defined for each 1 < p <∞ and δ ∈ (0, 1) by

φδ(x) = (−4 log δ)−1/pχ{x:δ<|x|<1/δ}(x)|x|−1/p,

and let ψδ be the odd version of the above even function φδ, namely

ψδ(x) = φδ(x) sgn(x).

Then we have ||φδ||p = ||ψδ||p = 1. The limit lim
δ→0+

||Hφδ||p coincides with the

norm np of H for 1 < p ≤ 2 and with the subnorm 1/np of H for 2 ≤ p < ∞ (we
denote by subnorm the quantity inf ||Hf ||p/||f ||p).

Vice-versa, the limit lim
δ→0+

||Hψδ||p coincides with the norm np of H for 2 ≤ p <∞
and with the subnorm 1/np of H for 1 < p ≤ 2.

Sketch of proof. The first step is to show that

H(|x|−1/p) = tan
(
π

2p

)
sgn (x)|x|−1/p

and that

H(sgn (x)|x|−1/p) = − cot
(
π

2p

)
|x|−1/p for all 1 < p <∞.

This can be done, after a change of variable, using residues. We choose a contour of
integration in the complex plane “adapted” to the truncation given by the characteris-
tic function χ{x:δ<|x|<1/δ}(x). The two above equalities are obtained as δ → 0+ and we
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show that the remainder term remains bounded in Lp. Denoting the identity operator
with I, the result then follows from (2.1), (2.2) and the fact that H2 = −I both as an
operator on Lp and on weak-Lp. See [5] for details. �

It is useful both for the present discussion and for introducing some of the following
topics, to also take a look at the “positive” Hilbert operator defined by

H+f(x) =
1
π

∫ ∞

0

f(t)
x+ t

dt, (2.3)

where f ∈ Lp([0,+∞)) and 1 < p <∞.
This operator is clearly related to H, but it has a simpler structure because no

principal values (or cancellations of any kind) are involved in the convergence of the
integral. In fact, we can give a straightforward proof that H+ maps boundedly Lp of
the half-line into itself, while making quite explicit the special role of the functions
x−1/p in determining the best constant for each p. To do that, we consider the bilinear
form ∫ ∞

0

∫ ∞

0

f(x)g(y)
x+ y

dx dy, (2.4)

where f ∈ Lp([0,+∞)) , g ∈ Lq([0,+∞)) and 1/p+1/q = 1. Note that in what follows
we can consider f ≥ 0 and g ≥ 0 without loss of generality. The change of variables
y = ux in (2.4) and Fubini’s theorem yield∫ ∞

0

∫ ∞

0

f(x)g(y)
x+ y

dx dy =
∫ ∞

0
f(x)dx

∫ ∞

0

g(ux)
x+ ux

x du

=
∫ ∞

0

du

1 + u

∫ ∞

0
f(x) g(ux)dx.

Observing that (∫ ∞

0
g(ux)qdx

)1/q

= u−1/q||g||q,

we apply Hölder’s inequality to the inner integral, showing that (2.4) is bounded by∫ ∞

0

u−1/q

1 + u
du ||f ||p ||g||q .

Using duality and remembering definition (2.3), we obtain that

‖H+f‖p ≤ cp‖f‖p 1 < p <∞ , (2.5)

with

cp =
1
π

∫ ∞

0

u−1/q

1 + u
du =

1
sin(π

p )
, (2.6)

where the given “closed” formula for cp can be obtained, e.g., with contour integration.
Now it is not difficult to show that (2.6) is the best possible constant in (2.5) and that,
although it is never attained, it can be approached, as δ → 0+, applying H+ to the
truncated functions χ{x:δ<x<1/δ}(x)x−1/p (see [14, Chapter IX]). Note that H+ is not
an isometry when p = 2, that there are no extremals, and that the analyticity of cp
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does not break down around p = 2 . On the other hand, both cp = cq and np = nq, if
1/p+ 1/q = 1, a fact dictated by duality.

If we apply the above proof strategy in the case of H we can show that

p.v.
∫ ∞

−∞

∫ ∞

−∞

f(x)g(y)
x− y

dx dy = p.v.
∫ ∞

−∞

du

1− u

∫ ∞

−∞
f(x) g(ux)dx, (2.7)

but then we run into an obstacle, because now it is no longer correct to assume that
f and g are non-negative. We are forced to consider changes of sign in both integrals
of the last expression in (2.7) and, in fact, the outer principal value integral would not
even converge without cancellations. Hölder’s inequality tells us that, for each given
u ∈ R, we have ∣∣∣∣∫ ∞

−∞
f(x) g(ux)dx

∣∣∣∣ ≤ ||f ||p ||g(u ·)||q,

which is equivalent to the following equality∫ ∞

−∞
f(x) g(ux)dx = η(u) |u|−1/q||f ||p ||g||q, (2.8)

with η(u) = η(f, g, u) a suitable bounded function satisfying −1 ≤ η(u) ≤ 1. These
considerations imply that the norm np in (2.2) must coincide with the supremum of∣∣∣∣∣p.v. 1π

∫ ∞

−∞

η(u) |u|−1/q du

1− u

∣∣∣∣∣
taken over the admissible space of bounded functions η. Assuming Theorem 2.1 we can
say that the maximizers we are looking for (and also the corresponding minimizers) are
given by η(u) ≡ 1 or η(u) = sgn (u), depending on p being bigger or smaller than 2. A
direct solution of this variational problem would be very interesting both for clarifying
our understanding of H and for potential applications to other Fourier multipliers,
including those discussed in the next sections.

It is well known that H maps weak-Lp into weak-Lp boundedly. Also, it has been
proven by Colzani, in [2], that any sublinear translation-invariant operator bounded
on weak-Lp is also bounded on Lp, with a norm on Lp which is smaller than or equal
to its norm on weak-Lp. Explicit examples are known where the two norms are the
same, and it might seem natural to guess that H also belongs among these kind of
cases, with norm np attained on the weak-Lp extremals |x|−1/p or sgn (x)|x|−1/p as
suggested by Theorem 2.1. Perhaps surprisingly, it turns out that this is not the case.

Theorem 2.2

The norm of H as an operator mapping weak-Lp(R) into weak-Lp(R) can be
strictly bigger than np, its norm on Lp(R). In particular, this certainly happens for
p = 2 and for an open interval of exponents p containing p = 2.

Proof. A property of H, proven by Stein and Weiss in [20], is that the distribution
function of the Hilbert transform of a characteristic function of a set E only depends
on the Lebesgue measure |E| of such a set. In fact we have the equality

| {x ∈ R : |HχE(x)| > λ} | = 2|E|
sinh(πλ)

,
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which is equivalent, in terms of the decreasing-rearrangement of HχE , to

(HχE)∗(t) =
1
π

arcsinh
(

2|E|
t

)
(t > 0).

The weak-Lp norm of HχE is given by

||HχE ||Lp,∞ = sup
λ>0

λ | {x ∈ R : |HχE(x)| > λ} |1/p

= sup
λ>0

λ

(
2|E|

sinh(πλ)

)1/p

= α(p)|E|1/p,

where

α(p) = sup
λ>0

λ

(
2

sinh(πλ)

)1/p

= sup
t>0

t

π

(
2

sinh t

)1/p

. (2.9)

Since H2 = −I on weak-Lp, its norm on that space is greater than or equal to
max{α(p), α(p)−1}. For example, when p = 2, we have

α(2) = sup
t>0

t

π

(
2

sinh t

)1/2

= 0.473127337424 . . .

and max{α(2), α(2)−1} = 2.113595898819 · · · > 1 = n2. When p 6= 2 we observe that
the function of t that appears in (2.9) is unimodal, with limit 0 both as t→ 0+ and as
t → +∞, increasing for t ∈ (0, t0] and decreasing for t ∈ [t0,+∞), having denoted by
t0 = t0(p) the only point where it attains its maximum α(p). The continuity of α(p)
and np as functions of p implies that there is an open interval of values p, centered
around p = 2, such that max {α(p), α(p)−1} > np. It is possible to make this interval
larger, by plugging suitable simplefunctions into H instead of characteristic functions
of sets, but given the negative nature of this result we choose to state it and prove it
in its simplest form. �

To conclude this section, we note that H can also be studied as an operator
mapping Lp(R) into weak-Lp(R). The corresponding norm is the best constant in
the weak-type (p, p) inequality. The case p = 1 can now be considered, and the
corresponding norm was shown by Davis to be

1 + 1/32 + 1/52 + 1/72 + . . .

1− 1/32 + 1/52 − 1/72 + . . .
,

using Brownian motion and probabilistic methods. A different analytic proof was
given later by A. Baernstein II. Curiously, while these best constants are known for
1 ≤ p ≤ 2, they are only “almost” known for p > 2, since there is still an open
alternative: either they are obtained by a suitable extension of Baernstein’s method,
or they are the solution of a problem on variational inequalities of Alt-Caffarelli type
(some references for this problem, in chronological order, are [3, 4, 1, 22, 8]).
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3. Some Fourier multipliers of Hilbert Transform type

The Hilbert transform can be written as a Fourier multiplier operator

(Hf)(x) =
∫

R
−i sgn (ξ)f̂(ξ)e2πixξdξ. (3.1)

In this section we want to discuss some other remarkable multiplier operators

Tmf(x) =
∫

R
m(ξ)f̂(ξ)e2πixξdξ, (3.2)

whose norm from Lp(R) to Lp(R) coincides with, or is related to, the norm of (3.1),
i.e., the quantity np defined in (2.2). If we choose m(ξ) = χ[−r,r](ξ) in (3.2), with
r > 0, we get the segment multiplier(or partial Fourier inversion multiplier)

Sr(x) =
∫ r

−r
f̂(ξ)e2πixξdξ, (3.3)

whose norm turns out to be equal to np, for 1 < p < ∞ and any r > 0. This is the
main result in [5] where we also show that the gap Hilbert Transform, i.e., the operator

Hr =
∫

R
−i sgn (ξ)χ(−∞,−r]∪[r,+∞)(ξ)f̂(ξ)e2πixξdξ, (3.4)

has norm np for 1 < p <∞ and any r > 0.
We remind the reader that multiplier operator (p, p)-norms are invariant by trans-

lation and dilation of the multiplier function m(ξ). In particular the above results do
not change for non-centered segment multipliers or for non-centered gap Hilbert Trans-
forms.

Note that the (p, p) norms of Sr, Hr and H are originally defined by taking
suprema over real-valuedLp(R) functions. It turns out that all these norms are un-
changed if we consider complex-valuedLp(R) functions. This non-trivial fact is the
consequence of a general theorem of J. Marcinkiewicz and A. Zygmund about vector-
valued linear operators, (see [18], or [12, pages 311–315]). This theorem implies that
a linear operator that maps boundedly a real-valued Lp space into itself also maps
the complex-valued version of the same space into itself with the same norm. This is
not true for multipliers in general: an important counterexample is the Riesz projection
(half-line multiplier) P , defined by

(Pf)(x) =
f(x) + i(Hf)(x)

2
=
∫ +∞

0
f̂(ξ)e2πixξdξ. (3.5)

The (p, p) norm of P does depend on the choice of the domain and it is bigger, for p 6= 2,
if we choose the complex-valued Lp(R) space instead of the real-valued one. We just
observed that we can replace the multiplier associated with [a, b] with the multiplier
associated with [−r, r] for any fixed r > 0 without affecting the corresponding (p, p)-
norm. This “centered segment” multiplier clearly maps real-valued functions into
real-valued functions. The same trick does not work for the multiplier P associated to
the half-line [0,∞). The norm of P , in the real case, has been found by I.E. Verbitsky,
and later independently by M. Essén (see [7, 23]). We have

||P ||Rp,p =
1
2

√
1 + n2

p. (3.6)
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The norm in the complex case has been determined recently by B. Hollenbeck and
I.E. Verbitsky (see [16]) and is given by

||P ||Cp,p =
1

sin(π
p )
, (3.7)

an expression that coincides with (2.6), the norm cp of H+ over Lp([0,+∞)).
Note that the operator P is injective on real-valued Lp functions, while there is a

whole Hardy space of complex-valued Lp functions which are mapped into 0.
In [6] we have shown that the multiplier function sgn (ξ) in (3.1) can be replaced

by any monotonic function increasing from −1 to 1 without affecting the operator
norm np. More generally, the norm of any operator (3.2) associated to a monotonic
function m(ξ) increasing (or decreasing) between two different finite values, has the
same (p, p) norm of the operator (3.2) associated with two half-lines at the height of
those two values.

Let us denote by |||m|||p the (p, p)-norm of the Fourier multiplier operator (3.2)
associated to m. The following result will be applied in the next section

Theorem 3.1

The Fourier multiplier operator (3.2) associated to the compactly-supported mul-
tiplier function µ defined by

µ(ξ) =


1− 2ξ if ξ ∈ [0, 1/2]

−1− 2ξ if ξ ∈ [−1/2, 0)

0 if ξ 6∈ [−1/2, 1/2],

(3.8)

for 1 < p <∞, maps boundedly Lp(R) → Lp(R) with norm |||µ|||p = ||| sgn (·)|||p = np

equal to the norm of the Hilbert Transform H.

Proof. Note that if we change the sign of the values of µ(ξ) in left interval [−1/2, 0])
we obtain a continuous “triangular” function φ(ξ) which corresponds to Fejér’s kernel.
This is a positive convolution kernel and we have |||φ|||p = 1 for all p’s. Remembering
that H corresponds to −i sgn (ξ), we obtain |||µ|||p ≤ ||| sgn(·)|||p |||φ|||p = np (the
constant factor −i has absolute value 1 and is immaterial here). Now, as we already
observed, operator norms are invariant by (finite) dilations of the function µ. This
fact, together with Fatou’s lemma, leads to the reverse inequality np = ||| sgn (·)|||p ≤
|||µ|||p. �

In many other cases, although there might be good reasons to think that the
norms of a multiplier operator are np, the problem is still open. Two such examples
are given by m(ξ) = 1−χ[0,1](ξ) and by the Haar multiplierm(ξ) = χ[0,1](ξ)−χ[−1,0](ξ).
A third example, which also will play a role in the next section, is the Truncated Hilbert
Transform, defined for any fixed ε > 0 by

H(ε)f(x) =
1
π

∫
|t|≥ε

f(x− t)
t

dt. (3.9)
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It is known that the norms ||H(ε)||p,p do not depend on the size 2ε of the truncation
around t = 0. Since lim

ε→0
H(ε)(x) = H(x), Fatou’s lemma implies that ||H(ε)||p,p ≥ np.

4. An 80-year-old tantalizing problem: evaluating the (p, p) norms of the discrete
Hilbert transform.

D. Hilbert, followed by many others, has studied the discrete bilinear form

∞∑
m=1

∞∑
n=1

ambn
m+ n

. (4.1)

Let us assume that the sequence am 6≡ 0 is non-negative and in `p(N), that the
sequence bn 6≡ 0 is non-negative and in `q(N), with 1 < p < ∞ and 1

p + 1
q = 1. Then,

among other things, (4.1) satisfies the following inequality, with best constant

1
π

∞∑
m=1

∞∑
n=1

ambn
m+ n

<
1

sin(π/p)

( ∞∑
m=1

ap
m

)1/p ( ∞∑
n=1

bqn

)1/q

, (4.2)

which (see [14, Chapter IX]) is remarkably easy to obtain from the corresponding one
for the continuous bilinear form (2.4). In other words, the operator (2.3) has a discrete
analogue with the same norm cp as in (2.6). It is natural to ask if the Hilbert Transform
H also has a discrete analogue with norm np as in (2.2).

Historically, the first attempt to answer this question seems to date back to 1926,
to an article by E.C. Titchmarsh (see [21]) where he introduces the following discrete
operator

(D1/2b)n = p.v.
1
π

∑
k

bn−k

k + 1/2
. (4.3)

which maps boundedly the space of bilateral sequences {bn} ∈ `p(Z) into itself and does
behave in many respects likeH. The index k in (4.3) runs over all the integers in Z, and
the sum is taken in the “principal value” sense, i.e., as the limit of balanced partial
sums from −N to N , with cancellations playing a role in convergence. Curiously,
Titchmarsh states as a theorem that the (p, p) norms of H and (4.3) coincide, but his
proof turns out to be incorrect. He later acknowledges this mistake in another issue of
the same Journal, Mathematische Zeitschrift, without any comment on the putative
truth of the original statement. Note that the exact value np of the norms of H was
not known to Titchmarsh at the time. In fact he did not even know their exact order
of growth as p→ 1 or p→∞, although he did know that these norms blow up at least
with polynomial order one, and not much faster than that.

There are other good candidates for a discrete Hilbert transform. Another one is
defined by

(Db)n = p.v.
1
π

∑
k 6=0

bn−k

k
, (4.4)

where k runs over all the non-zero integers in Z, with the bilateral sum taken, again,
in the principal value sense. More generally, we can consider the operators Dα defined
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for each fixed α ∈ (0, 1) by

(Dαb)n = p.v.
sinπα
π

∑
k

bn−k

k + α
, (4.5)

where k runs over all the integers in Z, and where the normalization factor sin πα
π

compensates for one term in the sum that can be very big when its denominator k+α
is close to zero. It is known that Dα, normalized as in (4.5), maps `2(Z) → `2(Z)
with norm 1 (this includes the special case of D1/2). Furthermore, also D with its
normalization constant as in (4.4) maps `2(Z) → `2(Z) with norm 1. For a recent and
elementary proof of this fact see [10].

In the rest of this section we want to say something about the following, which is
to the best of our knowledge still an open problem.

Conjecture 4.1 The (p, p) norm of the discrete operatorsD1/2 andD, defined in (4.3)
and (4.4), coincide with the norm np of the classical Hilbert transform H, for all
1 < p <∞.

In the next section we will say something about the “asymmetric” case of Dα for
α 6= 1/2, whose (p, p)-norms behave in a slightly different way.

The next elementary, but general, result relates discrete operators like D or Dα

to operators acting on functions on the real line.

Theorem 4.2

Let’s associate with the discrete operator

(Tb)n = p.v.
∑
k

ak bn−k,

mapping bilateral sequences into bilateral sequences another operator

(Mf)(x) = p.v.
∑
k

ak f(x− k),

which maps functions of x ∈ R into functions of x ∈ R. In both cases {ak} is the same
bilateral sequence of coefficients in `∞(Z). Then T maps `p(Z) → `p(Z) if and only
if M maps Lp(R) → Lp(R) and the two norms coincide, namely ||T ||p,p = ||M ||p,p for
1 < p <∞.

Proof. If we apply M only to the subspace of Lp(R) consisting of those step functions
which are constant on the intervals [n−1/2, n+1/2) for n ∈ Z we obtain a function in
the same subspace. This implies that ||T ||p,p ≤ ||M ||p,p. In order to obtain the reverse
inequality we observe that∫

R

∣∣∣∣∣∑
k

ak f(x− k)

∣∣∣∣∣
p

dx =
∑
n

∫ 1

0

∣∣∣∣∣∑
k

ak f(t+ n− k)

∣∣∣∣∣
p

dt

≤ ||T ||pp,p

∑
n

∫ 1

0
|f(t+ n)|p dt = ||T ||pp,p

∫
R
|f(x)|pdx. �

We are ready now to prove:
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Theorem 4.3

Let D : `p(Z) → `p(Z) and D1/2 : `p(Z) → `p(Z) be the discrete linear operators
defined in (4.4) and (4.3) and let np = ||H||p,p be the expression defined in (2.2). Then
||D||p,p ≥ np and ||D1/2||p,p ≥ np for all 1 < p <∞.

Proof. Because of Theorem 4.2 we can work on the real line and replace D with

(Gf)(x) = p.v.
1
π

∑
k 6=0

f(x− k)
k

. (4.6)

Now, in order to show that ||G||p,p ≥ ||H||p,p let us consider the dilation operators
Tε defined for any fixed ε > 0 and 1 < p < ∞ by (Tεf)(x) = ε1/pf(εx). It is easy to
check that ||Tε||p,p = 1 for all ε > 0. Note that

(T1/εGTεf)(x) = p.v.
1
π

∑
k 6=0

f(x− εk)
εk

ε

is a Riemann sum for p.v.
1
π

∫
R

f(x− t)
t

dt. When ε→ 0 this sum tends to the principal

value of the corresponding integral. We have

||H||p,p ≤ sup
ε
||T1/εGTε||p,p ≤ ||G||p,p.

The proof in the case of D1/2 is very similar, so we skip the details (it will also
be a special case of our discussion of Dα in the next section). �

In [9], using the non-linear identity

(Hf(x))2 = 2H(f ·Hf)(x) + f(x)2, (4.7)

which is satisfied by the Hilbert transform, T. Gokhberg and N.Y. Krupnik show that
||H||p,p = np when p = 2n (n = 1, 2, . . . ). Their argument uses induction, from the
case p = 2, to the case p = 4, and so on doubling the exponents. The next key lemma
and the following theorem are due to I.E. Verbitsky who sketched for us, a few years
ago, how to extend the Gokhberg-Krupnik strategy to the case of G. We have:

Theorem 4.4

Let G be the linear operator defined in (4.6) and let J be the operator defined by

(Jf)(x) =
1
π2

∑
k 6=0

f(x− k)
k2

. (4.8)

Then for any f ∈ C∞c (R) we have

(Gf(x))2 = 2G(f ·Gf)(x) + J(f2)(x) + (2f · Jf)(x). (4.9)
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Proof. We compute explicitly (omitting “p.v.” before the sums)

π2
[
(Gf(x))2 − 2G(f ·Gf)(x)

]
=
∑
k 6=0
h6=0

f(x− k)f(x− h)
kh

− 2G

f(x)
∑
j 6=0

f(x− j)
j


=
∑
k 6=0
h6=0

f(x− k)f(x− h)
kh

− 2
∑
i6=0
j 6=0

f(x− i)f(x− i− j)
ij

=
∑
k 6=0
h6=0
h6=k

f(x− k)f(x− h)
(

1
kh

− 2
k(h− k)

)

+
∑
k 6=0

f(x− k)2

k2
− 2

∑
k 6=0

f(x− k)f(x)
k(0− k)

.

Using the definition (4.8), we have shown that

(Gf(x))2 − 2G(f ·Gf)(x) = J(f2)(x) + (2f · Jf)(x)

− 1
π2

∑
k 6=0
h6=0
h6=k

f(x− k)f(x− h)
h+ k

kh(h− k)
,

but the p.v. of the third term on the r.h.s. of this identity is zero, because its generic
term changes sign when we exchange h and k. �

Now we can state and prove the following partial answer to Conjecture 4.1.

Theorem 4.5

Let D be the Discrete Hilbert transform defined in (4.4). We have

||D||p,p =


tan

(
π
2p

)
if p = 2n

2n−1 (n = 1, 2, . . . ),

cot
(

π
2p

)
if p = 2n (n = 1, 2, . . . ).

Proof. By duality it suffices to prove the result for p = 2n. By Theorem 4.2 we can
consider the operator G instead of D. By Lemma 4.4 and Minkowski’s inequality

||Gf ||22p = ||(Gf)2||p ≤ 2||G(f ·Gf)||p + 2||f · Jf ||p + ||J(f2)||p

≤ 2||G||p,p

(∫
|f |p |Gf |p

)1/p

+ 2
(∫

|f |p |Jf |p
)1/p

+ ||J ||p,p||f2||p

≤ 2||G||p,p ||f ||2p ||Gf ||2p + 2||f ||2p ||Jf ||2p + ||J ||p,p||f ||22p.

We have shown that

||Gf ||22p ≤ 2||G||p,p||G||2p,2p ||f ||22p + 2||J ||2p,2p||f ||22p + ||J ||p,p||f ||22p. (4.10)

Now we observe that the operator J has a positiveconvolution kernel in `1(Z),
therefore by Minkowski’s inequality its norms ||J ||p,p are bounded by the constant
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1
π2

∑
k 6=0

1
k2

= 1/3.

Setting dp = ||G||p,p = ||D||p,p, plugging the above estimate in (4.10) and using
Theorem 4.3 to get a lower estimate for d2p , we obtain that

cot2
π

4p
≤ d2

2p ≤ 2 dp d2p + 1. (4.11)

We conclude by induction on p = 2n. For n = 1 we have d2 = 1, we then use (4.11)
together with the trigonometric identity

cot2
a

2
= 2 cot

a

2
· cot a+ 1,

which allows us to “feed” the l.h.s. inequality of (4.11) into the r.h.s., as we keep
doubling the exponents p. �

Remarks. It is not needed in the above proof, but actually ||J ||p,p = 1/3 for all
1 ≤ p ≤ ∞, because translation invariant linear operators with positive and integrable
convolution kernels have (p, p) norm equal to the integral of the kernel. Note that
such a direct application of Minkowski’s inequality fails in studying the (p, p) norm of
operators like H+ with a positive, but non-integrableconvolution kernel. A fortiori, it
fails for singular integrals like H, or singular sums like D.

It is not difficult to see that (4.11) implies that if dp = cot π
2p for any given p, then

d2p = cot π
4p . In particular, it would suffice to prove conjecture (4.1) for 2 ≤ p ≤ 4,

and (4.11) would “bootstrap” the result to all p ∈ [2,+∞), while duality would take
care of the range p ∈ (1, 2].

Riesz-Thorin interpolation, together with Theorem 4.3, gives us upper and lower
bounds for ||D||p,p when 2n < p < 2n+1, namely

cot
π

2p
≤ ||D||p,p ≤

(
cot

π

2n+1

)1−t (
cot

π

2n+2

)t

, (4.12)

where 1
p = t

2n + 1−t
2n+1 . Note that the putative discrepancy implied by (4.12) gets bigger

for large values of p between two large powers of 2. The following theorem compares
the norms of D and the norms of the Truncated Hilbert transform giving a different
kind of discrepancy bound, independent of p.

Theorem 4.6

Let D be the Discrete Hilbert transform defined in (4.4) and let H(1/2) be the
Truncated Hilbert transform (3.9) with ε = 1/2 . Then, for 1 < p <∞ we have

||D||p,p − ||H(1/2)||p,p ≤ c,

where c > 0 is an absolute constant.

Proof. Given a sequence b = {bn}n∈Z let us define an extension operator E in the
following way

E : b ∈ `p(Z) → Eb ∈ Lp(R) where Eb(x) = bn if |x− n| < 1/2. (4.13)
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Note that ||E||p,p = 1. Assuming that t ∈ (−1/2, 1/2) the discrete Hilbert trans-
form D applied to b, without the normalization constant 1/π, is now equal to

∑
k 6=0

bn−k

k
=
∑
k 6=0

Eb(n− k + t)
k

=
∑
k 6=0

∫ 1/2

−1/2

Eb(n− k + t)
k

dt (4.14)

=
∑
k 6=0

∫ 1/2

−1/2

Eb(n− k + t)
k − t

dt+
∑
k 6=0

∫ 1/2

−1/2
Eb(n− k + t)

[
1
k
− 1
k − t

]
dt

=
∫
|y|≥1/2

Eb(n− y)
y

dy +
∑
k 6=0

bn−k

∫ 1/2

−1/2

[
1
k
− 1
k − t

]
dt.

We have shown that (Db)n = (H(1/2)Eb)n + (Ab)n where

(Ab)n =
∑
k 6=0

bn−kak,

and ak ∼ c1/k
2 for k → ∞, as is easily checked by evaluating the integral inside the

last sum of (4.14). This implies that ||A||p,p = c2 (both c1 > 0 and c2 > 0 are absolute
constants, independent of p). We have

||Db||p ≤ ||H(1/2)Eb||p + ||A||p,p||b||p, (4.15)

and it might be tempting to hastily deduce from this that

||D||p,p ≤ ||H(1/2)||p,p + c. (4.16)

Such deduction is correct, but it requires some more work, because in (4.15) the term

||H(1/2)Eb||p =

{∑
n

∣∣∣∣∣
∫
|y|≥1/2

Eb(n− y)
y

dy

∣∣∣∣∣
p}1/p

(4.17)

is a norm on the sequence space `p(Z), and we cannot say immediately that this
quantity is bounded by ||H(1/2)||Lp(R),Lp(R)||Eb||Lp(R). On the other hand we have

||H(1/2)Eb||p =

{∑
n

∫ 1/2

−1/2

∣∣∣∣∣
∫
|y|≥1/2

Eb(n− y)
y

dy

∣∣∣∣∣
p

dv

}1/p

(4.18)

≤
{∑

n

∫ 1/2

−1/2

[
sup
|t|≤1

∣∣∣∣∣
∫
|y|≥1/2

Eb(n+ v + t− y)
y

dy

∣∣∣∣∣
p]

dv

}1/p

≤
{∫

R

[
sup
|t|≤1

∣∣∣∣∣
∫
|y|≥1/2

Eb(x+ t− y)
y

dy

∣∣∣∣∣
]p

dx

}1/p

.

We now define a new operator H̃, acting on functions on the real line, by

H̃f(x) = sup
|t|≤1

∣∣∣∣∣
∫
|y|≥1/2

f(x+ t− y)
y

dy

∣∣∣∣∣ = sup
|t|≤1

∣∣∣H(1/2)f(x+ t)
∣∣∣ . (4.19)



Remarks on the Hilbert transform and on some families of multiplier operators39

We claim that H̃ satisfies, for 1 < p <∞ the uniform estimate

||(H̃ −H(1/2))f ||Lp(R) ≤ c3||f ||Lp , (4.20)

with c3 > 0 absolute constant. Assuming this claim, and using (4.18), we obtain

||H(1/2)Eb||`p(Z) ≤
{∫

R
|H̃Eb(x)|p dx

}1/p

≤ ||H(1/2)Eb||Lp(R) + ||(H̃ −H(1/2))Eb||Lp(R)

≤ ||H(1/2)||p,p||Eb||Lp(R) + ||(H̃ −H(1/2))||p,p||Eb||Lp(R)

≤ ||H(1/2)||p,p||Eb||Lp(R) + c3||Eb||Lp(R)

= ||H(1/2)||p,p||b||lp(Z) + c3||b||lp(Z),

and the desired norm inequality (4.16) follows plugging this last inequality into (4.15).
Having seen this, let us now prove our claim, i.e., inequality (4.20). To do that,

we define another operator

H[t]f(x) =
∫
|y|≥1/2

f(x+ t(x)− y)
y

dy = H(1/2)f(x+ t(x)), (4.21)

where t = t(x) is a bounded function of x ∈ R, such that |t(x)| ≤ 1. We have

|{H[t]−H(1/2)}f(x)| ≤
∫
|y|≥2

|f(x− y)|
∣∣∣∣ 1
y − t(x)

− 1
y

∣∣∣∣ dy (4.22)

+ 4
∫
|y|≤3

|f(x− y)|dy ≤
∫

R
|f(x− y)| c4

1 + y2
dy,

where c4 > 0 is another absolute constant. Since (4.22) is true for any bounded
|t(x)| ≤ 1, we can take suprema on the l.h.s. over all such t’s. Remembering the
definition (4.19) of H̃, observing that c4

1+y2 is a positive convolution kernel belonging
to L1(R), and taking Lp norms of both sides of this last inequality, we obtain (4.20). �

5. Fourier multipliers periodized in frequency

Studying D and Dα, because of Theorem 4.2, we have been led to consider convolution
operators defined by a weighted sum of translated functions

Mf(x) =
∑
k∈Z

akf(x− k), (5.1)

where {ak} is a sequence of coefficients in `∞(Z), while f ∈ Lp(R). These kind of
operators can also be seen as Fourier multipliers

Mf(x) =
∫

R
m(ξ)f̂(ξ)e2πixξdξ, (5.2)

and are characterized by the fact that m(ξ) is 1-periodic, with Fourier series given by

m(ξ) =
∑
k∈Z

ake
−2πikξ. (5.3)

It can be difficult, in general, to compute ||M ||p,p = |||m|||p exactly, but the
following proposition collects some simple general facts about these norms.
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Proposition 5.1

Let M be the Fourier multiplier operator given in (5.1) and (5.2), associated with
the sequence of coefficients {ak} ∈ `∞(Z). Then, for 1 ≤ p ≤ ∞, we have∑

k∈Z
|ak|p

1/p

≤ |||m|||p ≤
∑
k∈Z

|ak|. (5.4)

We also have

|||m|||2 = ||m||L∞([0,1]) =

∣∣∣∣∣
∣∣∣∣∣∑
k∈Z

ake
−2πik·

∣∣∣∣∣
∣∣∣∣∣
L∞([0,1])

.

Proof. The second equality follows from Plancherel’s theorem and the definition of
a Fourier multiplier. The inequality on the r.h.s. of (5.4) follows from Minkowski’s
inequality applied to (5.1). The inequality on the l.h.s. of (5.4) is obtained apply-
ing M to a function f compactly supported in [−ε, ε], with ε < 1/2 and such that∫

R
|f(x)|pdx = 1. �

Remarks. If only a finite number of coefficients {ak} are non-zero, and if these co-
efficients are non-negative (actually, it suffices ak = c bk with bk ≥ 0 and c complex
constant), equality holds on the r.h.s. of (5.4). Namely, we have∣∣∣∣∣

∣∣∣∣∣
N∑

k=−N

akf(· − k)

∣∣∣∣∣
∣∣∣∣∣
p,p

=
N∑

k=−N

|ak|.

In particular, the operator norm does not depend on p in this case. Note that M
applied to the functions f(x) = χ[−K,K](x), where K > 0 is chosen much larger than
N (fixed), approaches the norm

N∑
k=−N

|ak|, as K → +∞.

Such an equality, in particular cases, can hold also when the coefficients have variable
sign. An example is given by Mf(x) = f(x − 1) − f(x + 1), which is, in some sense,
a first-order approximation of the operator (4.6). In fact, applying this M to the

truncated sinus function χ[−4K,4K](x) sin(
πξ

2
) we see that, except for two “tails” which

become negligible as K → +∞, we have |Mf(x)| = 2|f(x)|, and therefore the norm of
M is equal to 2, for all 1 ≤ p ≤ ∞.

When we apply (5.4) to the m corresponding to D, i.e., ak =
sgn (k)
π k

, the r.h.s. is
a diverging harmonic series so that the upper estimate is empty. The lower estimate is

1
π

∑
k 6=0

(1/|k|)p

1/p

=
1
π

(2ζ(p))1/p ≤ |||m|||p,

for 1 < p <∞, where we have denoted Riemann’s zeta function by ζ.
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A better lower estimate is obtained observing that the Fourier series (5.3) of the
m corresponding to D is a sawtooth function, namely the 1-periodic function that
coincides with −i(1 − 2ξ) for ξ ∈ (0, 1). Also, the m corresponding to Dα is the 1-
periodic function that coincides with e−πiαe2πiαξ for ξ ∈ (0, 1). In particular, when
α = 1/2 it coincides with −ieπiξ for ξ ∈ (0, 1).

Note that the dilation limit of m(ξ), both in the case of D and D1/2, coincides
with the function −i sgn (ξ). This gives us a second proof of Theorem 4.3, because
of Fatou’s Lemma, and because the multiplier function −i sgn (ξ) defines the Hilbert
transform H.

If we try to evaluate our multiplier norms via approximations with trigonometric
polynomials, we have to keep in mind the following:

Proposition 5.2

If the Fourier multiplier operator given in (5.1) and (5.2) is associated with a
multiplier function m(ξ) that has a jump discontinuity in some ξ = ξ0, then the norms∣∣∣∣∣

∣∣∣∣∣
∣∣∣∣∣

N∑
k=−N

ake
−2πik·

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
p

of the multiplier operators corresponding to the partial sums of the Fourier series of
m, may fail to converge to |||m|||p as N → +∞, for 1 < p < ∞. On the other hand,
taking the Cesaro averaged partial sums of (5.3), we obtain that

lim
N→+∞

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣

N∑
k=−N

(
1− |k|

N + 1

)
ake

−2πik·
∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
p

= |||m|||p.

Proof. When p = 2 we have∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣

N∑
k=−N

ake
−2πik·

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2

= max
ξ∈[0,1]

N∑
k=−N

ake
−2πikξ,

but because of Gibbs’ phenomenon the trigonometric polynomials on the r.h.s. of the
last equality “always overshoot the mark”. If sup |m| corresponds to the amplitude of
the jump in ξ0 the limit of

max
ξ∈[0,1]

N∑
k=−N

ake
−2πikξ as N → +∞,

will be 1.08949 . . . times the right value.
Taking the Cesaro averaged partial sums eliminates Gibbs’ phenomenon and cor-

responds to a convolution with Fejér’s kernel for Fourier Series, an operator with
(p, p)-norm equal to 1 for all 1 < p < ∞. This implies the positive part of our state-
ment. �

There is another way to approximate our multiplier operators (5.2), periodized
in frequency, based on the observation that m can be written as an infinite sum of
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“non-overlapping translations” of its restriction µ to any given interval of length 1. If
we define, for example

µ(ξ) = m(ξ) χ[−1/2,1/2)(ξ), (5.5)

we have
m(ξ) =

∑
n∈Z

µ(ξ + n), (5.6)

and the following holds:

Theorem 5.3

Let m be a 1-periodic, L∞(R)-function and let us represent it as a sum of non-
overlapping translations of µ, like in (5.6), with µ supported in [−1/2, 1/2]. We then
have, for 1 < p <∞,

r |||m|||p ≤ |||µ|||p ≤ np |||m|||p, (5.7)

where np is the expression (2.2) and where 0 < r < 1 is some absolute constant
(independent of p and m).

Proof. The r.h.s. inequality follows immediately from our main theorem in [5], which
can be stated as |||χ[−1/2,1/2]|||p = np. The l.h.s. inequality has been proven by M.
Jodeit in [17]. �

Remarks. The r.h.s. inequality is sharp. The equal sign is attained when we choose
m(ξ) ≡ 1. (Note the “smoothing effect” of the periodization in this example).

The exact value of r is not known. There are examples where |||µ|||p < |||m|||p, and
they seem to correspond to cases where µ, in some suitable sense, becomes “rougher”
after periodization (one such example is the truncated parabola χ[−1/2,1/2](ξ)(1−4ξ2)).

The case of equality |||µ|||p = |||m|||p is also possible. In fact we pose the following:

Conjecture 5.4 Let µ andm be L∞(R) functions, related as in (5.6) and correspond-
ing to the Discrete Hilbert transform D. Then |||µ|||p = |||m|||p for all 1 < p <∞.

Note that, because of Theorem 3.1 we know that |||µ|||p = np (one “tooth” of the
sawtooth functionm has the same norm of the Hilbert transformH). This observation,
together with Theorem 5.3 imply that this conjecture is true at least for p = 2n

(n = 1, 2, . . . ) and for their dual exponents.

Conjecture 5.5 Let µ andm be L∞(R) functions, related as in (5.6) and correspond-
ing to the Discrete Hilbert transform D1/2. Then |||µ|||p = |||m|||p for all 1 < p <∞.

For a generic α the following holds:

Theorem 5.6

For 1 < p <∞ and α ∈ (0, 1) we have

||Dα||p,p ≥ || cosπα I + sinπα H||p,p,

where I is the identity operator and H is the Hilbert transform.
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Proof. The Discrete Hilbert transform Dα corresponds to the the 1-periodic multiplier
whose values for ξ ∈ (0, 1) are given by m(ξ) = e−πiαe2πiαξ. Dilating this function
away from ξ = 0 we obtain a step-function equal to cosαπ − i sinαπ for ξ > 0 and
equal to cosαπ+ i sinαπ for ξ < 0. This multiplier corresponds to cosπα I+sinπα H
and the theorem follows from Fatou’s Lemma. �

Conjecture 5.7 For 1 < p <∞ and α ∈ (0, 1) the norms ||Dα||p,p actually coincide
with the norms || cosπα I + sinπα H||p,p.

A “closed” expression for the above quantity is

|| cosπα I + sinπα H||p,p = max
t∈[0,2π]

{
| cos(t+ πα)|p + | cos(t+ π(α+ 1

p))|p

| cos(t)|p + | cos(t+ π
p )|p

}1/p

,

as it follows from one of the results in [15, page 240].

Acknowledgements. The author thanks Leonardo Colzani and Igor E. Verbitsky for
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