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ABSTRACT

Consider a matrix A of order n X n having real entries (ie., A € R™*™).
The degree of its minimal polynomial is p. It is proved that the identity
exp(At) = 3070 ax(t)A* stands for sets {or, (1) : u = 0,1,...,p—1}
of functions of real variable defined in any real interval /. These sets are
unique for each integer p > s and can be determined from a system of
linear equations. In addition, these sets are always Chebyshev systems on
a real interval (7,7 + T/w), with w = maxi<k<o (S(Ak)), Ak (kK =
1,2,...,0) being the eigenvalues of A, and any v € R. These results
generalize a weaker parallel known result which stands for the set of minimum
cardinal (i.e., for p = p). The generalizations obtained lead to important
consequences when solving some algebraic problems in control theory.
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198 MALAINA AND DE LA SEN

1. Introduction

It is well known [1] that the matrix function exp(At) with A € R**" (or A € C™X™)

can be expressed as
u—1
exp(At) = Z ay(1)A" Viel,
u=0
with I being a real interval, u being the degree of the minimal polynomial of A4, and
ag(t),...,,—1(t) being real functions which are uniquely determined by solving the
sct of linear equations

(4)
tjcle)(/\k1f)=[1 A ’\u—]][”’o(t) ar(t) - au—1(‘)]T (1)
A=A

(k=1,2,,...,0; 7=0,1,...,p06 = 1)

where the symbols f() and T denote, respectively, jth derivative and transpose, and
A = {A1,)2,..., A} is the spectrum of A in C, with each A being of multiplicity
ik (k=1,2,...,0) in the minimal polynomial of A.

The paper is organized as follows. In section 2, the identity

p—1

exp(At) = Z oy (1) A

u=0

is proved for any integer p > i and conditions for unicity of the set
{au(t):u=0,1,...,p— 1}

are stated. In section 3, it is proved that this set is a Chebyshev system. This
implies that
det(@;(t;)) iz0,1,...0-1 #0

i=0,1,...,p~1
for some ¢; € R and ; # ¢t; for i # j. Some implications of this fact in problems of
Control Theory are presented in section 4, and, finally, conclusions end the paper.

The major mathematical contributions of the paper are:

a) Generalizations of the expansion of exp(At) for any integer p > u and for
certain kinds of complex matrices A are given.

b) The maintenance of the Chebyshev system structure of the set

{ay():u=0,1,....p-1}
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even if some of the a,(t) are complex is proved. This is a sufficient condition to
ensure that the matrix

(@i(t3)) i=0,1,.0-1  t; ER, ti £ 15
3=0,1,...,p—1

(6,5 =1,2,...,p; i #7)

has a unique inverse within certain real intervals.

2. The expansion of exp(At)

Consider any matrix A € R**" (or A € C"*™). Consider also the following general-
ization of (1)

(9
texp(Art) = [1 A M1 ao(t) ai(t) - apa(®)]” (1)

A=A
(k=1,2,,...,0; 7=0,1,...,pk—1)

where p and pi (k = 1,2,...,0) are positive and nonnegative integers satisfying the
two following constraints

(Cl) P2 1 Pk 2 Bk (k =1,2, 10)
(C.2) pP= pr
k=1

The following result generalizes the expansion of exp(At) given in [1].

Theorem 1

For any A € R™" (or C"*"), the following holds.

(i) For each possible choice of the set (p1,pz,...,ps) and p satisfying (C.1)-
(C.2) the system (2) has a unique solution defined by a set of functions of real
variable {a,(t) : w = 0,1,...,p — 1} on any real interval I.

(ii) For this set, the identity exp(At) = Y3 @, (t)A* stands on I.
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Proof. Using a compact matrix notation, system (2) is denoted by:

Pa(t) = (3)

where P is a matrix of order p X p of entries in C, and a(t), @ € CP*1, P, @ and
(t) are defined in partitioned forms by system (4):

P=[PT

2

Q=[1 @
a(t) = [ao(t) ()

Qr= [exp(/\kt) texp(Agt)

(1 A
0 1
P.=1]0 0
|0 0

System (2) has a unique solution a(t) if and only if rank(P) =

A
22
2

Ak
3N
6k

PT1"
Q.

]T

ap1(t)]”
tP 1 exp(Axt) ]

Ap-1 T
(p— 1AL
Hi:l(p - e)Az_s
(k=1,2,...,0)

p. This can be

proved by reordering the rows of P by constructing a new matrix P, being equivalent
to P, which is partitioned by

with

Py =

= [
(1 Al
1 X
L1 A,
r0...0
0...0
N’
v
0...0

BT PIT s= max (pe-1) (5)
oY g

A2 Ae-1

A2 Al

ol (v 4+ Dy ITo_ (o — e)AT¥ 15 (6)
ol (v+ 1)y HZ:l(P e)Ary v—-1

ol (v + 1), HZ=1(p - )Agc_.,u— i
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(v=1,27..,9)

where ¢, = card(A,), and
A, = {/\k pe—12v, k= ],2,...,0}

is a subset {Ay1,Au2,...,Ayc,} of the spectrum A of A in C. Matrices P, (v =
0,1,...,s) have entries in C and are of orders ¢, X p (for v > 1) and o X p (for
v = 0). Since P and P are both of order p X p, it is obvious from (5)-(6) that

Z(‘L—p—a

v=

Let Wo, Wi,...,W, be the vector subspaces of C!*? generated by the rows of
P, Py, .., P, 1tis obuous from (5) (6) that
(a) The respective rows of P, for v = 0,1,...,s are linearly independent.

(b)

P
prmm—— ——
win Z wp | =<(0 0 ... 0);,
forall i e I, = {0,1,...,s}.
Thus, the vector subspace

w W; = Wi

=0 i=0

-~

(9 denotes direct sum of vector subspaces).

From (a)-(b), it follows that the p rows of £ and P are linearly independent
and then P is non-singular. This proves proposition (i). To prove (ii), consider the
analytic function f(A) = exp(A¢) in C and the polynomial

of coefficients in C which are defined in any real interval /. Denoting by superscripts
(¢) the derivatives of order ¢ with respect to A, one gets [1, 2]:
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( F(Ak) = exp(Agt) )
FO(Ak) = t9exp(Agt)
p—=1
p(Ak) = Z an(l)AR
n=0
< = [] AL, /\P_]][m'o(l) (.!l(t) (;Ep_|(t)]T } (‘)
A=A
(a)
PO =11 A . M ag(l) ai(t) ... a,q(t)]”
A=Ax
L (k=1,2,...,0; q=1,2,..., 0= 1) J

From (2) and (7), it follows that f(Ax) = ¢(Ax) and
f(q)(’\k)zp(q)(’\k); k=1o2='--,0; ¢=12,...,p — L
Since eqns. (7) are valid for any arbitrary ¢ € I, proposition (ii) follows directly. O

It must be noticed that the proof of part i) of this theorem can be also focused
by thinking that the system has a unique solution if and only if the homogencous
system has a unique solution. This is equivalent to prove that the polynomial, of
degree less or equal than p—1in A,

(1A e 2 [aolt) aml) ... apr()]”

is the zero polynomial. This is true since the homogencous system implies that such
a polynomial must have the o zeros A, with multiplicitics greater or equal than pg.
Since the sum of those multiplicities is greater or equal than p, one deduces that such
a polynomial has to be zero. This lies in the context of a polynornial interpolation
of generalized Hermite type.

From (1) and the steps in the proof of Theorem 1, the following result stands.

Corollary 1.1

Let A be the set of the square matrices A of any order having the same spectruimn
A= (A1,A2,...,2,) in C and the same degree of the minimal polynomial u. Then,
for any integer p > p, the set {a,(t) : u = 0,1,...,p = 1} computed from (2) is
invariani for all the square matrices A € A having the same multiplicities for cach
Ak (k=1.2,....0). This result docs not depend on the order of A.
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We have essentially proved that (2) can be used to compute exp(At), even if
A has complex entries, for any p > p. The set {a,(t) : v = 0,1,...,p — 1} can
have complex elements. This can occur even if A has real entries for some choices
(p1:p2,...,ps) as it is shown in the following illustrating example.

ToxaMpLE. Consider the matrix

0 0 0
A=10 0 1
0 -1 0

The eigenvalues of A are (0,—1,4). Their multiplicities in the minimal poly-
nomial are (1,1,1). Taking p = 4 with py = 1, p2 = 2 and p3 = 1, it follows
that

3
exp(At) = Z o, (1)A®
u=0

with

ap(t) =1,
a1(t) = 1/2(sint — teost) — 1/2(2 — tsint — 2cost)i,
az(t) =1—cost,
as3(t) =1/2(—sint — tcost) — 1/2(2 — tsint — 2cost)i. O

The next result gives sufficient conditions to determine the set {a,(t) : v =
0.1,...,p—1} in R under constraints on p. Tt will be used as an intermediate result
to derive new results in section 3.

Theorem 2

Consider A € R"*" having p as degree of its minimal polynomial and p any
integer number satisfying p > jt. If Mg = Mg with pge = pgn, then the unique set
{oy () :u=0,1,...,p — 1} obtained from (2) contains uniquely real functions of
real variable for cach possible choice (py,p2,...,p0)-
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Proof. Trom (3) (4), it lollows that
Pra(t) = Qx (k=1,2,...,0).

Py and @ are, respectively, of orders py X p and pg X 1 and have real (complex)
entries if Ax € R (C). For each pair of complex eigenvalues of A, Ap = Brr + Yt
Apt = Ap = Bpr — e, it is possible to define the following two subsystems of lincar
cquations

Poo(t) = Qs Pena(t) = Qg (8)

with Py and Pin being matrices of order py X p, and Q and Q kv matrices of order
pr X 1, having all their entries in C. Denoting pp = pgn = Pk, eqns. (8) can be
equivalenily rewritten as

(Pkl + ]).u)(,)([) = (Jk' + Qk"; (-Pk' — P u)a(t) = (Jk' — C)k”. (9)
Consider the following sets of identities

th exp(Awt) + 7 exp(Agit) = 269 exp(Brrt)t? cos(yl)
texp(Art) — t9 exp(Agnt) = 2itd exp(Birt)td sin(yxit) (10)

G=0,1,...,p6—1)

[ A A =20 (D" () B )
r/2, r even
p=
(r—1)/2, otherwise
: —(2mt1)_, :
o= N = 2 g (U oy )T L ()
rf2—1, r even
q=
(r—1)/2, otherwise
{ (r=12,...,p-1) J

Thus, from (2) and (8) through (11), it follows that Py + Py, (Pe — Pe)/i
and Qe + Qrey (Qr — Qi) /1 are, respectively, of orders pg X p and pr x 1 and of
real entries. ‘The equivalence between (8) and (9) completes the proof. O
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3. Expansions of exp(At) using Chebyshev systems

This section is structured in two susbsections. In subsection 3.1 some topics on
Chebyshev systems of subsequent interest are presented, and the subsection 3.2 is
devoted to the characterization of the set of functions {a,(t) : v = 0,1,...,p — 1}
as a Chebyshev system on real intervals by using the results obtained in section 2.

3.1. ‘lopics about Chebyshev systems

It is well known [3, 4] the fact that for whatever a lincar normed space F' may be,
for every z € I and any set X = {xx € I': k =0,1,...,n} of linearly independent
elements, there exists a gencralized polynomial, non necessarily unique,

n
P (z,zr) = Z Crlk
k=0

with coeflicients ¢ in K (in particular, R or C) such that

n n
T — E cpek|l < flo - E ckxill,
k=0 k=0

for any gencralized polynomial

n

P*(z,24) = Z CrTk

k=0

with coefficients in K. I’* is the best approximation on 2 by generalized polynomials
P with coeflicients in K. Tn [1, 2], the following basic definition and theorems about,
Chebyshev systems are useful.

DEFINITION 1. Let I be a linear normed space and consider the set X = {z, € F:
k =0.1,....n} of lincarly independent elements. If the generalized polynomial of
least deviation from any z € I is unique, then X is called a Chebyshev system.

Irom the Theory of Approximation the following result (condition of Haar) is
uscful for testing a Chebyshev systemn in the space C of continuous functions on
[@,b] C R with

1711 = max (17(1))-
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Theorem 3

A set {zg(t) € C : k = 0,1,...,n} of lincarly independent continuous func-
tions on [a,b] is a Chebyshev system in the space C il and only if every nontrivial
genceralized polynomial

Po(t) =) cxmi(t)
k=0

has not more than n distinct zeros on this interval.

A result equivalent to Theorem 3 which is useful from an algebraic point of
view, in the context ol this paper, is the {ollowing (TTaar’s condition). See [1] for
details.

Theorem 4
A set X defined as in Theorem 3 is a Chebyshev system if and only if for any
distinct points tg,ty,....L, in [a,b]
:120(1‘0) :I,'()(tl) vee .’L‘()(tn)

dot :ltl(to) .’lfl(tl) .’171(1.") ?50

zn(to) zn(ly) ... Zn(tn)

We prove the next preliminary technical results which are of applicability in
subsection 3.2.

Lemma 1

Let I = {tFexp(At) : k = 0,1,...,p— 1} be any finite sct of functions on a real
interval T and let Il be any subsct of I'. I' is a Chebyshev system on [ so that Il
is also a Chebyshev system on 1.

Proof (Outline). If follows by matrix factorization immediately from Theorem 4,
since {if : k=0,1,...,p— 1} is a Chebyshev system and exp(At) is a continuous
and differentiable function on any real interval / having no zeros within such an
interval [4]. O



Extended Chebyshev systems 207

Lemma 2

Assume F' and I being defined as in Lemma 1 and G = (g;j) € C?*? any
nonsingular matrix. Il F' is a Chebyshev system on 1, then

g -

is also a Chebyshev system on 1.

Proof. Take any arbitrary finite set

{tje-[:jzoa]-v"',p_l; f1¢t_,(l#])}

and define for f;(t) = t/ the matrices

Jo(to) fo(t1) ... Jfo(tp-1)
filte)  AlL) -0 filtp-1)
¢ = (12)

Jo-1(to)  Sfo-1(t1) .- Soma(tp-1)

—1 -1 —1
j=o 90jfi(to) 0 90ifi(ty) o X52g 90ifi(te—)

. Y220 315 fi(to) "o mifilt)) .. X0Zo gifilt-1) (13)

Y020 9o-1.ifilte) X526 Go-1ifit1) oo 2o Go-1,ifilte—1)

Since F'is a Chebyshev system, det ® # 0, from Thecorem 4. Since G is non-
singular, it follows from (12)—(13) tha.t VUV =GP and det¥ = detG -det® # 0.
Applying again Theorem 4 to F', one concludes that F is also a Chebyshev system
on I and the proof is complete. OJ

Lemma 3

Assume F and I as in Lemma 1 and G = (§i;) € C?*?, with 1 < j < p, being
full row rank. If F' is a Chebyshev system on I, then

- p-1

~

= Zg,-jtj:i::(),l_,...,p—l
=0

is also a Chebyshev system on I.
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Proof. Construct a nonsingular matrix G = [G'TLT] = (gi;) € CP** by completing
G with a non unique appropiate matrix L € C(P=?)%?_ Then, from Lemma 2,

p—1
F = Eg,-jfj(t):i=0,l,...,p—1
j=0

is a Chebyshev system on I. From Lemma 1, F' C F is also a Chebyshev system
onl. O

3.2. Charactcrization of the sets {a,(t):u =0,1,...,p — 1} as Chebyshev systems

In the sequel, it is assumed that the spectrum A of A verifies that if Ay € A
then Az € A (X denotes the complex conjugate of A\x) with the entries of A in R
or C. ¢(Ax) and py denote, respectively, the multiplicities of the eigenvalue Ay in
the characteristic and the minimal polynomials P.(\) and Pp,(A) of the matrix A.
O0P.(A) and 0P, (A) are the degrees of the polynomials P;()) and Pp,(X) of A.

Remark 3.1. Note, from results in [4], that Lemmas 1 and 3 may be extended to
systems F defined by linear combinations of functions 7 exp(Axt) with j, k being
integers and Ag a real number, by assuming intervals [} C [, where the new deleted
(Lemma 1) or added (Lemma 3) functions have no zeros. Thus, it suffices to exclude
such zeros to form the new intervals where new Chebyshev systems may be defined.
Note, in this context, that the expansions of exp(At) may be computed according
to eqn. (2) with non unique choices of p leading to non unique Chebyshev systems
on different intervals depending on p, namely I, C I.

Further generaliztions may be applied to other added or deleted continuous
functions having no zeros on certain intervals of interest since it is obvious that
Lemma 1 is not applicable to Chebyshev systems F by considering arbitrarily deleted
functions to form the subsystem H.

The next result is given in [5].

Lemma 4
Assume A € R™*™ with spectrum A in C and the matrix function

u—1

exp(4t) = 3 au(t)4%,

u=0
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with

o
OPn(A)=p= Z Ik
k=1
and the sel of unique real functions of real variable {a, (1) : v = 0,1,...,u0 — 1}
being computed from (1). Then, this set is a Chebyshev system on any bounded
real interval | = (7,7 + 7 /w) with

w= max SAk,
1<k<o

QA being the imaginary part of cach A of A and any v € R.

We now extend and combine the above results with some of those given in
section 2.

Lemma 5

Consider:
(a) Any integer number p > 0 and a choice of posilive integer numbers
(P'l P2y =p0) such that p= 2Z=1 Pk
(b) The set of square matrices A(A) C RP*? with spectrum A and c(\x) =
pr (k= 1,2,...,0), with p, = ppr il Ay and A are conjugate complex
eigenvalues of A € A(A).
(c) A real interval I as defined in Lemma 4.
Then, the following propositions hold.
(i) For any A € A(A), there exists a unique set of real functions of real variable
{au(t) :u=0,1,...,p— 1}, calculated from (2), which only depends on A, p and
{p1,p25---,ps} (but not on the particular matrix A) and

p=1

exp(At) = Z au(t)A"

u=0

on I.
(ii) This set is a Chebyshev system on 1.

Proof. Take eqn. (2). For the set {o(t) : v = 0,1,...,p — 1}: Unicity follows
from Theorem 1. Independence of the particular A € A(A), but not of A, p and
{pP1,p2---sPa}, follows from Corollary 1.1. Realness follows from ‘I'heorem 2 since
e(Ax) = ¢(Apr) if Ag and Ap are conjugate complex eigenvalues. This proves (i).
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To prove that the set {a,(t):u=0,1,...,p — 1} is a Chebyshev system, take
any A* € A(A) with e¢(Ae) = pe = pe (K = 1,2,...,6). The sets {a,(l) : u =
0,1,...,p — 1} in the expansions of exp(At) and exp(A*t) are identical since the
spectrum and pr = pr = ¢(Ar) (B = 1,2,...,0) arc identical for both matrices.
Now, by computing the set {a,(¢t) :u=0,1,...,p— 1} for the matrix A* and using
Lemma 4, it follows that {a,(t) : « = 0,1,...,p — 1} is a Chebyshev system on 7
and the proof is complete by using Theorem 2 for the expansion of exp(At). This
completes the proof of (ii). O

The above result can be extended for a class of matrices having complex entries
as follows.

Lemma 6
Consider:
(a) Any positive integer numbers p and p.
(b) Two choices of positive integer numbers (ji1, fi2,. .., i) and (p1,p2,...,pc)

with
o [
= Z Jhi and p= Z Pk-
k=1 k=1

(c) The set of square matrices of any order A(A) with complex entries and
spectrum A, such that for any A € A(A), 0Py (A) = p and the multiplicity
of cach A\ € A in Pp(A) is p (k=1,2,...,0).

(d) The set of square matrices A(A) C C*** with spectrum A and e¢(\) = p
(k=1,2,...,0).

(e) For any pair of conjugate complex eigenvalues A\, and A\ of any A € A(A)
(or A € A(A)) their multiplicities in Pp()\) and Po()) fulfill juy = py and
Pk = Pk'-

Then, results in Lemma 5 (i) hold for the sets of functions {ay,(t) : v =

0,1,...,0— 1} and {@&,(t) : v = 0,1,...,p — 1} being assocaited, respectively,

with A(A) and A(A).

Proof. The proof of Lemma 5, under the current hypothesis, is given using Theo-
rems 1 and 2. This proof folows since Theorem 1 is applicable to complex matrices
A with spectrum A. OO

Remark 3.2. We have shown for the moment that unique sets of Chebyshev systems
of cardinals 9P, (A) and 9P.(A) can be used to compute exp(Al) if A has real
entries (Lemmas 4 and 3) or if it has complex entries and spectrum A when the
multiplicities of the cigenvalues which are complex conjugate either in Py, ()) or
P.(X) are identical (Lemma 6). In all these cases the Chebyshev systems are formed
by real functions of real variable.



Extended Chebyshev systems 211

A problem which remains unsolved is that which occurs when the sets {0, (%) :
v =0,1,...,p — 1} contain complex functions (see the example of Section 2). Our
next main result in this section extends previous results to this context for the case
when A has real entries but

[
P=D Pk Pk 2k
k=1

with pg # pw if Ap = Ap (K, k' = 1,2,...,0).

Theorem 5

Consider:

(a) Definitions (a) to (c) of Lemma 6 with u = p, except for the fact that
matrices A have order n X n and have real entries. The set of matrices is
denoted by An(A).

(b) A real interval I defined as in Lemma 4.

Then, there exists a unique set of (in general complex) functions of real variable

{ou(?): u=0,1,...,p — 1}, which are uniquely determined from (2), such that
p~1
exp(AD) = Y eu(t)4",

u=1

which are a Chebyshev system on I, which are dependent on p, and identical for
each particular A € An(A), provided that the same integer is used for the expansion.

Proof. For any integer number 5 > p and any set of integer numbers (f1,52,-.-,00)
such that

p=> A and  p2pe (k=1,2,...,0)
define the sct of square matrices A(A) such that for any A € A;(A):
A = spectrum A; (Pm(A)) =p2p

- d (14)
c(’\k)zﬁk?_ﬂ'k (k=1,2,...,0'); aPc(A)=/3=ZP~k
k=1

and assume the additional constraint gy = pr if Ak, Apr € A with Ay = Mg any
integer 1<k < 0.
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It is obvious from Theorem 1 that there exist unique scts
{eu(t):u=0,1,...,p—1},

{au(t):u=0,1,...,p -1},
{@u(t):u=0,1,...,p— 1}

of functions of real variable which satisfy

=1 p—1 -1
exp(At) = ) af (A" =) au(t)A* =) @y(1)A” (15)
u=0 u=0 u=0
- p_l ~ ij_l -~
exp(At) = Y ay(t)A* = au(t)A (16)
u=0 u=0

for any matrices A € A,(A), 4 € .A,,(A) Now, consider the two polynomials of
coefficients in C

p—1 p—1
gA) =Y @AY G =D Eu(t)A" (17)
u=0 u=0

for any t € R. Since 8Pp(A) = p, it follows [5] from (16) and (17) for any A\x € A
(k=1,2,...,0) that

g M) =40 P00 =d9N) (=1,2,...,06—1; k=1,2,...,0). (18)

From (17) and (18), one obtains the following identities in a,(t), @.(t)
(v=0,1,...,p— 14 =0,1,...,p—1)

) p—1 -1
3 au®XE =Y Gu(t)AL ]
u=0 'u.=0
| i i il > (19)
ST (= e)ou(e)ry™ Z I] (u - e)au(e)ry™
u=j e=0 u=j e=0
(k=1,2,...,0; 5=1,2,...,px — 1). J

Fquations (19) can be rewritten for each t € R as

‘aft) = Pa(t) (20)
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where P € C?*? and o(t) € C*X', both being defined in (4) (Theorem 1), P € Cr*?
is defined in the same way by making the change p — j in (4), and a(t) — a(t) €
CP*1 with

a(t) = [Go(t) () ... @-—1(t)]

Because of its structure, P is nonsingular. Therefore M = P~1P such that a(t) =
M &(1) exists and is full row rank. Since, forall A € A,(A), px = pr holds if A = Ay
(k,k'=1,2,...,0, k # k"), the functions {G,(t) : u=0,1,...,5— 1} are real and a
Chebyshev system on I = I; from Lemma 6. Now, from Lemma 3, since M is full
row rank, the set of complex functions of real variable {a,(¢):u =0,1,...,p— 1}
is also a Chebyshev system on I, C I and the proof is complete. [J

IFrom Lemma and Theorem 5, the two following results follow trivially.

Corollary 5.1

If, in Theorem 5, py = py+ for each Ag, A € A such that Ay = A, then the set
{au(t):u=0,1,...,p— 1} is a Chebyshev system on I and has real elements.

Proof. It is obvious since M = P~'P and the set {@,(t): u=0,1,...,5 — 1} have,
respectively, real entries and elements. O

Corollary 5.2

Define An(A) as in Theorem 5 with the modification that a;; € C (i,j =
1,2,...,n). Then, Theorem 5 applies mutatis-mutandis.

Proof. Proceeding as in the proof of Theorem 5, a full row rank matrix M can be
found which maps the Chebyshev system {&,(t):u =0,1,...,5 — 1} into {a,(¢):
u=0,1,...,p—1}. 0O

In this proof it is crucial from ‘definition of A’ to note that A € A, (A) has
always pairs of complex conjugate eigenvalues (non necessarily having the same
multiplicities).
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4. Applications in some Control Theory problems

The preceding results of sections 2 and 3 have applicability fields in discretization
of the equations in Linecar Control Theory. For instance, consider a square matrix
A € R®™™ and a free linear and time-invariant differential system:

#(t) = Ax(t), Viello,d],  =(fo) = zo.

From Theorem 1, for any integer p > Pp,(A), the solution is

p—1
z(t) = exp(A(t — &) zo = Z ay(t —1p)A¥zo, Vvt € [to, 1)

u=0

From Lemma 4 and Theorem 5, the set of functions {e(t) : v = 0,1,...,p—1}
is a Chebyshev system on I = [{p, %] N (6,6 + 7/w), where

w = max SAg,
1<k<o

and the Ag’s belong to the spectrum of A in C, for any real number § such that I is
nonempty.

This result is useful to improve the errors associated with the numerical re-
sults in the observability problem (namely, computation of z(ip) from z(t)) when
approximating the problem via discretization by using a set of samples

{z(to),z(tr),. .. 2(tpo1) s ti #£ 55 3,5 =0,1,...,p—1; i # 5}

of z(t) on (fo,%] which belongs to I even if p > &Pn(A4). The Chebyshev system
structure of {a,(¢): v =0,1,...,p — 1} ensures (Theorem 4) that

det(oz,-(1:_,-))09.'1.5‘0_1 #0

so that the discretized system is observable when the continuous one is observable
(results for p = 0Py, (A) were proved in [3]).

The parallel control problems of controllability for a non-free differential system
and identifiability were studied in [6] and [7], respectively, although the structure of
Chebyshev system was not proved.
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5. Conclusions

Using standard algebraic tools, several new results concerning the expansion of the
maltrix function exp(At) and Chebyshev systems have been proved. In particular,
we have proved that

(1) For any matrix A having o different eigenvalues,

p—1

exp(At) = Z ay()A",

u=0

with unique functions of real variable which can be complex even if A is real and
which are only dependent on p > u, and on a certain weak condition for the choices
of sets of integers (py,...,ps) with

c
> pe=p.
k=1

(2) The set {ay(t): v =0,1,...,p— 1} is a Chebyshev system on certain real
intervals even if p is arbitrarily large and the a,(t) are complex, provided that A
has real entrics. These properties also stand when A has complex entries and the
spectrum of A contains all the possible pairs of complex conjugate eigenvalues.

Up till now, the only known results on the subject were concerned with A
having real entries and p = degree of the minimal or characteristic polynomial of A.
Therefore, the results presented can be very useful in extensions of certain Control
Theory problems.
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