A note on the Köthe dual of Banach-valued echelon spaces

MIGUEL FLORENCIO, PEDRO J. PAUL AND CARMEN SAEZ*

Dpto Matemática Aplicada, E. S. Ingenieros Industriales, Av. Reina Mercedes s/n, 41012 Sevilla, Spain

Received 6/JUL/89

ABSTRACT

Several different ways of defining the Köthe α -dual of echelon spaces of Banach-valued functions are shown to be equivalent.

Let (E, Σ, μ) be a measure space where E is a locally compact topological Hausdorff space and μ a regular non-negative σ -finite measure defined on a σ -algebra Σ containing all Borel sets in E. Let g_1, g_2, \ldots , be an increasing sequence of non-negative measurable functions such that

$$\mu\{x \in E : g_k(x) = 0 \text{ for all } k = 1, 2, \ldots\} = 0.$$

For $p \geq 1$ the echelon Köthe space of order p associated to $(g_k)_k$ is defined as the space $\Lambda^p = \Lambda^p(E, \Sigma, \mu, (g_k)_k)$ of all measurable functions $f: E \to \mathbb{R}$ such that

$$p_k(f) := \left(\int_E |f|^p g_k d\mu\right)^{1/p} < +\infty \quad \text{for all } k = 1, 2, \dots.$$

With the system of seminorms $p_1, p_2, \ldots, \Lambda^p$ is a Fréchet space and its topological dual is the same as its Köthe α -dual $(\Lambda^p)^{\alpha}$ defined by:

$$(\Lambda^p)^{lpha}:=\left\{g:E o\mathbb{R}:g ext{ is measurable and }\int |fg|\,d\mu<+\infty ext{ for all }f\in\Lambda^p
ight\}.$$

^{*} The research has been partially supported by La Consejería de Educación y Ciencia de la Junta de Andalucía.

The theory of echelon Köthe spaces has been widely studied by J. A. López Molina [8-11], J. C. Díaz Alcaide [1-3] and K. Reiher [13,14]. This theory can be extended to functions with values in a Banach space: Let X be a Banach space with dual X', a function $f: E \to X$ is said to be μ measurable if it is the μ -a.e. limit of a sequence of simple functions [4, II.1]. We define the corresponding Banach-valued echelon Köthe space as follows:

$$\Lambda^p(X) := \{ f : E \to X : f \text{ is } \mu - \text{measurable and } ||f|| \in \Lambda^p \}.$$

When endowed with the topology defined by the system of seminorms $q_k(f) := p_k(||f||), k = 1, 2, ..., \Lambda^p(X)$ is a Fréchet space.

To extend the Köthe α duality to this setting, one can follow several approaches, see, e. g., [7], [12] or [15]. Our purpose here is to show that these approaches are essentially the same, namely:

Theorem

For a μ -measurable function $g: E \to X'$, the following are equivalent:

(i)
$$\int_E \|f\| \, \|g\| \, d\mu < +\infty \qquad \text{for all } f \in \Lambda^p(X).$$

(ii)
$$||g|| \in (\Lambda^p)^{\alpha}$$
.

(iii)
$$\int_E \left| \langle f(x), g(x) \rangle \right| d\mu(x) < +\infty \qquad \text{for all } f \in \Lambda^p(X).$$

To prove this, we need the following slight extension of a lemma which was stated in [6] and may be of independent interest. We include its proof for the sake of completeness. We shall make use of the following form of Luzin's theorem: "If X is a Banach space, $A \in \Sigma$ has finite measure, $f: A \to X$ is a μ measurable function and $\varepsilon > 0$, then a compact set $K \subset A$ there exists such that $\mu(A \setminus K) < \varepsilon$ and f is continuous on K" [5, 9.1 and 10.2].

Lemma

Let $g: E \to X'$ and $\varepsilon: E \to \Re$ be μ measurable functions, ε in addition strictly positive. Then there exists a μ -measurable function $n: E \to X$ such that

- (1) n is countably valued with values in the unit ball of X, and
- $(2) ||g(x)|| \le \langle g(x), n(x) \rangle + \varepsilon(x) \qquad \mu \cdot a.e. \text{ in } E.$

Proof. Since (E, Σ, μ) is σ finite, E can be covered by a sequence of pairwise disjoint sets all of them having finite measure and, by using Luzin's theorem repeatedly, we can find a sequence $(A_m)_m$ of compact, pairwise disjoint subsets of E such that $\mu(E \setminus \bigcup_m A_m) = 0$, and g and ε are continuous on each A_m . For every m we shall construct a simple function n_m satisfying conditions (1) and (2) on A_m . Then $n := \sum_m n_m$ will be the required n.

Fix $K = A_m$. For $x \in K$ there exists a vector $e(x) \in X$, with $||e(x)|| \le 1$ and such that

$$||g(x)|| < \langle g(x), e(x) \rangle + \varepsilon(x).$$

Now, for $x \in K$ the function

$$t \in K \longmapsto \langle g(t), e(x) \rangle + \varepsilon(t) - ||g(t)||$$

is continuous on K and strictly positive on x, therefore we can find an open neighbourhood of x, U(x), such that for $t \in K \cap U(x)$ we have:

$$||g(t)|| \le \langle g(t), e(x) \rangle + \varepsilon(t).$$

Now $\{U(x): x \in K\}$ is an open covering of the compact set K and therefore we may take a finite covering from it: $K \subset U(x_1) \cup \cdots \cup U(x_r)$. Take $B_1 = K \cap U(x_1)$ and in general

$$B_j = (K \cap U(x_j)) \setminus \bigcup_{i=1}^{j-1} B_i$$
 for $j = 2, 3, \dots, r$.

Then $K = \bigcup_i B_i$ and, for $e_i = e(x_i)$, we have for all $t \in K$

$$||g(t)|| \leq \left\langle g(t), \sum_{i=1}^r e_i \chi_{B_i}(t) \right\rangle + \varepsilon(t).$$

Finally,

$$n_K(x) := \sum_{i=1}^r e_i \chi_{B_i}(x)$$

is the desired function on K. \square

Proof of the theorem. Bearing in mind that for $f \in \Lambda^p$ and $u \in X$ we have $fu \in \Lambda^p(X)$, a straightforward computation proves (i) \iff (ii) \implies (iii). To prove (iii) \implies (ii), take a μ -measurable function $g: E \to X'$ such that

$$\int_{E} \left| \left\langle f(x), g(x) \right\rangle \right| d\mu(x) < +\infty$$

whenever $f \in \Lambda^p(X)$. Let $(E_n)_{n=1}^{\infty}$ be a sequence of pairwise disjoint, measurable sets, all of them having finite measure, that covers E and take

$$\varepsilon(x) := \sum_{n=1}^{\infty} \frac{\chi_{E_n}(x)}{2^n \left(\mu(E_n) + 1\right)}.$$

Then $\varepsilon(x) > 0$ for all $x \in E$, ε is μ -measurable and

$$\int_{E} \varepsilon(x) \, d\mu(x) \le \sum_{n=1}^{\infty} \frac{1}{2^{n}} = 1.$$

Take $h \in \Lambda^p$ arbitrary, and apply the lemma above to ε and hg: there exists a μ measurable function n from E into the unit ball of X such that:

$$||h(x)g(x)|| \le \langle h(x)g(x), n(x) \rangle + \varepsilon(x)$$
 μ - a.e.

Now, since $||h(x)n(x)|| \leq |h(x)|$, we have that $hn \in \Lambda^p(X)$ and therefore:

$$\int_{E} |h(x)| \|g(x)\| d\mu(x) = \int_{E} \|h(x)g(x)\| d\mu(x)$$

$$\leq \int_{E} \langle h(x)g(x), n(x) \rangle d\mu(x) + \int_{E} \varepsilon(x) d\mu(x)$$

$$\leq \int_{E} \langle g(x), h(x)n(x) \rangle d\mu(x) + 1$$

$$< +\infty.$$

Since h was arbitrary, we have that $||g|| \in (\Lambda^p)^{\alpha}$. \square

DEFINITION. According to our theorem the Köthe α -dual of $\Lambda^p(X)$ is defined as the space of all μ -measurable funtions from E into X' satisfying either (i), (ii) or (iii).

Remark. For the case of echelon Köthe spaces, our result extends [12, Prop. 12] where the Banach space was assumed to be separable and reflexive. Also, (iii) provides a new characterization of the topological dual of $\Lambda^p(X)$ when X' has the Radon-Nikodým Property, see [4, IV.1] or, more generally, [7, Thm. 5].

References

- 1. J. C. Díaz Alcaide, Subespacios y bases K-monótonas en los espacios escalonados de Köthe, Tesis Doctoral, Univ. Granada, Granada, 1985.
- 2. J. C. Díaz Alcaide, Strictly regular echelon Köthe spaces, Arch. Math. 46 (1986), 360-367.
- 3. J. C. Díaz Alcaide, A structure theorem for the echelon Köthe spaces, Preprint (1988).
- 4. J. Diestel and J. J. Uhl, *Vector Measures*, Mathematical Surveys no. 15, American Mathematical Society, Providence, 1977.
- 5. N. Dinculeanu, Integration on Locally Compact Spaces, Noordhoff, Leyden, 1974.
- 6. M. Florencio, P. J. Paúl and C. Sáez, Barrelledness of spaces of Bochner integrable functions, *Preprint* (1989).
- 7. C. Jordán Lluch and J. R. Torregrosa Sánchez, A characterization of the duals of some echelon Köthe spaces of Banach valued functions, *Collect. Math.* 38 (1987), 229–248.
- 8. J. A. López Molina, The dual and bidual of an echelon Köthe space, *Collect. Math.* 31 (1980), 159-191.
- 9. J. A. López Molina, Reflexividad en los espacios escalonados de Köthe, Rev. Real Acad. Ci. Madrid 75 (1981), 213-232.
- 10. J.A. López Molina, Subespacios de un espacio escalonado de Köthe, Rev. Real Acad. Ci. Madrid 75 (1981), 597-624.
- 11. J. A. López Molina, Caracterización de los subretículos K-complementados en un espacio escalonado de Köthe, Rev. Real Acad. Ci. Madrid 75 (1981), 1133-1163.
- 12. N. Phuong-Các, Generalized Köthe function spaces I, Math. Proc. Cambridge Phil. Soc. 65 (1969), 601-611.
- 13. K. Reiher, Weighted inductive and projective limits of normed Köthe function spaces, *Resultate Math.* 91 (1988), 17-30.
- 14. K. Reiher, Zur Theorie verallgemeinerter Köthescher Folgen- und Funktionenräume, Dissertation, Univ. Paderborn, Paderborn, 1986.
- 15. R. C. Rosier, Dual spaces of certain vector sequence spaces, *Pacific. J. Math.* 46 (1973), 487-501.

	•	