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ABSTRACT
In this note we compute the symmetric Martindale algebra of quotients of a
prime associative algebra with nonzero socle. Then we use this result to get,
via Zelmanov’s theorem for prime nondegenerate Jordan algebras, a shorter
proof of the structure theorem of Osborn and Racine for prime Jordan algebras
with nonzero socle.

1. Computing the left algebra of quotients and the symmetric algebra of guotien

Let A be a prime associative algebra (possibly without 1) over a commutative a
sociative ring ® with 1. Consider the set of all (f,U), f: aU — 4A being a le
A-module ®-linear function and where U ranges over all nonzero (two-sided) idea
of A. Two such functions (f,U) and (g, V) are said to be equivalent if they agr
on their common domain U NV which is nonzero since A is prime. It is easy to s
that it is an equivalence relation [6, Lemma 1.1]. Let [f,U] denote the equivalen
class of (f,U) and let Q1 = Q1(A) be the set of all such equivalence classes. Und
the usual operations:

£, U1+, V]=lf+9,UnV], olf,Ul=[af,U], [£,Ulls,V]=1fg, VU

Q. becomes an associative ®—algebra with 1 called the left Martindale algebra
quotients of A. The mapping a — [Ra, A] (bR. = ba, b € A) is an embedding of
into Q1. Moreover, under this identification, we have
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>roposition

Let A be a prime associative algebra and let Q1 be the left Martindale algebra
f quotients of ‘A. ,

(i) Given q € Q1 there exists a nonzero ideal U of A such that Uq C A.

(ii) If ¢ € Q1, U is a nonzero ideal of A and Uq = 0, then ¢ = 0.

(i) Every subalgebra B of @, containing A is prime. ‘

Proof. (i) and (ii) follow from [6, Prop. 1.2]. To show (iii) suppose that g1 Bgs = 0
or ¢1,q2 € B. By (i), there exists a nonzero ideal U of A such that Ugq; C A,
; = 1,2. Then Uq AUg; = 0 implies Ugqy = 0 or Ugy = 0 since A is prime. Hence,
sy (i), ¢t =0 or g2 = 0. I ’

Following [6], the symmetric Martindale algebra of quotients of A is the subal-
sebra @,(A) of Q1(A) given by '

Qs(A) = {g€ Q1(A): Uq+ qU C A for a nonzero ideal U of A}.

Since A is contained in Q,(A), we have by Proposition 1 (iii) that @s(A) is prime.
Suppose now that A has an involution * : A — A. Then * can be extended to an
involution of Q,(A) as follows:

For ¢ € Q,(A) choose a nonzero *-ideal U of A such that Uq+ qU C A and
define ¢* = [g, U], where zg = (qz*)*, = € U. Since

(az)g = (q(a.’z)”‘)’== = ((qw*)a*)* = a(qz*)* = a(zg) (a€ A, z€U),
g — ¢* defines an involution on @,(A). This extension is unique. Let #:Q4(4) —

Qs(A) be a new involution extending * : A — A. Given ¢ € Q,(A) choose a nonzero
*_ideal U of A such that qU + Uq C A. Then for u € U,

g u* = (wg)* = (ug)* = ¢*v* = (¢* —¢*)U = 0 = by Proposition (ii) a* = ¢".

Let (X,Y,¢) be a pair of dual vector spaces over a division associative ®-
algebra A, i. e., X is a left vector space over A, Y is a right vector space and
¢ : X xY — A is a nondegenerate bilinear form. A linear operator a : X - Xis
said to be continuous (relative to the dual pair (X,Y, ¢)) if there exists a (necessarily
unique) linear operator a¥* .Y — Y such that |

p(za,y) = p(z,a¥y), z€X,yevY.

The set of all continuous linear operators is a prime associative algebra Ly(X)
whose socle (the sum of all minimal right (left) ideals) coincides with the ideal of all
finite-rank continuous linear operators Fy(X). Conversely, every prime associative
algebra A with nonzero socle is isomorphic to a subalgebra of Ly(X) containing
Fy(X). If A has an involution * : 4 — A, then the dual pair comes from a self-dual
vector space X relative to a hermitian or alternate inner product {-,-), and * is the
canonical adjoint involution: (za,z') = (z,z'e*) [3, p. 13].
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Thporem 1

f (i) Let A be a prime associative algebra with nonzero socle. Then there exists
a pair of dual vector spaces (X,Y, @) over a division associative algebra A such that
Ql(A) = EndA(X) and Qs(A) = Ly(X)
(ii) Suppose now that A has an involution * : A — A. Then there exists
a hermitian or alternate self-dual vector space (X,{,-)) such that (Q,(A),*) is
isomorphic to Ly(X) with the adjoint involution. -

Proof. (i) By above we may assume that A is a subalgebra of Ly(X) containing
Fy(X). Write M = Fy(X). Then M is a simple ideal of A and a right ideal of
Enda(X). The latter follows since M is the linear span of all continuous linear
operators y @ z (x € X, y € Y) defined by z'(y ® z) = ¢(2',9)z, 2’ € X. Hence we
have that the mapping a — [Ra, M] is a monomorphism of Enda(X) into Q1(4).
We must prove that this is onto.

Let [f,M] € Q1(A) and fix 0 # y; € Y, 0 # z; € X such that ¢(z1,91) = 1.
Then e; = ¥, ® =1 is a nonzero idempotent in M. For every £ € X we have that
e1(y1 ® 2) = y1 ® = and hence

ne)f= (o) f=ea((1®2)f)=n®u

for a unique u € X. Write u = za. We show that a : X — X is a linear operator
For z,z' € X we have ’

n®+ele=(ne@+a))f
=(n®r+noz)f
=moz)f+(nez)f
=y ®zat+y1®z'a
=y ® (za + z'a).
Thus (z + z')a = za + z'a. ’
For z € X, a € A we have

n ®az = (y1 ® az)(y ® )

and hence
1 Q (az)a = (11 ® az)f

= (11 ® az1)(11 ® 2)) f
= (1 ® oz1)((11 ® z)f)
= (11 ® az1)(%1 ® za)
=y ® a(za).
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Thus (az)a = a(za).

Finally, we prove that [f, M] = [R,, M] by showing that ¢ € Enda (X) does not
depend on the choice of ;. _

Let 0 # y2 € Y. There exists ¢ € M such that c#(11) = ye, 50

pRr=c 1)z =cn ®z).

Then

(129 2)f = (c(y1 ®2)) f = c((31 ®2)f) = c(11 ® za) = y2 @ za

which proves that a € Enda(X) does not depend on the choice of y;. Hence

(Zyi®mi)f=zyi®xia= (Zyi@)xi) R,.

Suppose now that ¢ = [R,, M] € Qs(A) with a € Enda(X). For all z € X,
y € Y we have that a(y ® z) € M, so there exists w € Y such that

a(y@z)=wQz.

Hence op(z'a,y) = ¢(z',w) for all z' € X. This proves that a € Ly (X).
(ii). It follows from (i) and from the uniqueness of the extension of the involution

to Qs(4). O

Remark. The symmetric Martindale ring of quotients of a semiprime associative
ring with essential socle has been also considered by P. Ara [1].

2. Prime nondegenerate Jordan algebras with nonzero socle

All the algebras we consider in this section are over a field F' of characteristic different
from 2. A (nonassociative) algebra J satisfying:

(i) zy =y

(if) (2?y)z = z%(yz)

for all z,y € J is called a Jordan algebra (our standard references for Jordan algebras
are [4], [8]). Every associative algebra A (with product zy) gives rise to Jordan
algebra AT under the new multiplication defined by '

z.y = 1/2(zy + yz).
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Jordan algebras which are subalgebras of a Jordan algebra AT are called speciai
Jordan algebras. For every associative algebra A with an involution *: A — A, the
set of all hermitian elements H(A,*) = {a € A : a* = a} is a subalgebra of A%, and
therefore special. Another important class of special Jordan algebras is obtained
as follows. Let V be a vector space over a field F' with a symmetric bilinear form
(-,-) : V XV — F. Consider the vector space direct sum J = F @V and define

(e,2)(B,y) = (2B + (z,9), 0y + fz).

Then J with this product is a special Jordan algebra (J is a Jordan subalgebra o:
the Clifford algebra C(V,(-,+))). If (-,-) is nondegenerate and dimp V > 1, then J
is a simple Jordan algebra.

Every Jordan algebra wich is not special is called an exceptional Jordan algebra
Let C be a Cayley-Dickson algebra over F (C is an 8-dimensional alternative algebr:
obtained by doubling a quaternion algebra @ by the Cayley-Dickson process). Ther
the set

Hg(C,’)’) = H(M3(C),*)

of all 3 X 3 matrices with entries in C' which are hermitian under the involutio
X* = 471Xty (v = diag(m1,72,73) for '7, .# 0 in F) is a simple 27-dimensiona
exceptional Jordan algebra.

Let J be a Jordan algebra. For any element a € J, U, denotes the linea
operator U, : J — J defined by

U,z = 2a(az) — o’z

for all z € J. The Jordan algebra J is said to be nondegenerate (respectively, prime
if U,J = 0 implies a = 0 (respectively, UrS = 0 implies T =0 or § =0, T, § ideal
of J). For an associative algebra A, the Jordan algebra A% is nondegenerate if an:
only if A is semiprime. Moreover, if A is prime then A" and H(A,*) are prime fo
every involution * : A — A.

The centre of a Jordan algebra J is defined by the set

Z(J)={z€ J: (2z)y = z(zy) for all z,y € J}.

It is easy to see thast Z(J) is a subalgebra of J, that can be zero. Suppose no
that J is prime and that Z(J) # 0. Then J has o zero divisor in Z(J), so we ca
consider the central localization (Z(J) — {0})" 'J which is a Jordan algebra ove

the field (Z(J) — {0}) " Z(J) [8, p- 185].
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A Jordan algebra J with 1 is called a division Jordan algebra if U, is invertible
for every 0 # = € J. In this case there exists a unique y € J, the inverse of x, such
that U_! = U,. By [4, p. 179, every simple exceptional Jordan algebra which is
finite-dimensional over its centre Z is either a division Jordan algebra or a Jordan
algebra H3(C,v), where C is a Cayley-Dickson algebra over Z. In both cases J is
27-dimensional over its centre. This follows since the scalar extension Jx = K ®z J,
K being the algebraic closure of Z, is a finite-dimensional simple exceptional J ordan
algebra over the algebraically closed field K. By [3, p. 204], Jx = H3(C,*), where
C is the (unique) Cayley-Dickson algebra over K. Hence dimz J = dimg Jx = 27.

The classification of all prime nondegenerate Jordan Jordan algebras was
achieved by Zelmanov [7].

Theorem 2 (Zelmanov)

For every prime nondegenerate Jordan algebra J one of the following conditions
holds:

(i) Z(J) # 0 and the central localization (Z(J) — {0}) ~1J is the simple Jordan
algebra of a nondegenerate symmetric bilinear form on a vector space Y over the
field (Z(J) — {0}) ™" Z(J).

(i) Z(J) # 0 and the central localization (2(J) - {0})_1J is a simple 27-
dimensional exceptional Jordan algebra-over the field (Z(J) — {0}) _IZ(J).

(iii) J contains an ideal I isomorphic to the Jordan algebra A*, where A is a
prime associative algebra such that

At 4T C Q. (A

(iv) J contains an ideal I isomorphic to the Jordan algebra H(A,*), where A
is a prime associative algebra with an involution % : A — A such that

H(A,x)<J C H(Qs(A),*).

An innerideal of Jordan algebra J is subspace K of J such that UyJ C K for all
¢ € K. For a nondegenerate Jordan algebra J, the sum of all minimal inner ideals
K of J is an ideal Soc(J) called the socle of J. If J contains minimal inner ideals
then Soc(J) is a direct sum of simple ideals each of which contains a minimal inner
ideal [5]. If A is a semiprime associative algebra then the socle of the nondegenerate
Jordan algebra A% coincides with the socle of the associative algebra A. Moreover,
if A has an involution * : A — A then Soc(H(A,*)) = H(Soc(A),*) [2, Prop. 2.6].

Prime nondegenerate Jordan algebras with nonzero socle were classified by Os-
born and Racine [5]. To finish we derive the following result from Theorems 1 and 2.
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Theorem 3 (Osborn-Racine)

Let J be a prime nondegenerate Jordan algebra with nonzero socle. Then one
of the following conditions holds: _

(a) J is a simple 27-dimensional exceptional Jordan algebra over its centre.

(b) J is the simple Jordan algebra of a nondegenerate symmetric bilinear form.

(c) There exists a pair of dual vector spaces (X,Y, ) over a division associative
algebra A such that

Fy(X)t aJ C Ly(X)*.

(d) There exists a hermitian or alternate self-dual vector space (X, (- )) over

A such that
H(Fx(X),*)<J C H(Lx(X),*)

where x : Lx(X) — Lx(X) denotes the adjoint involution.

Proof. Suppose (Zelmanov’s theorem, cases (i), (ii)) that Z(J) # 0 and that the
central localization (Z(J) — {0}) ~1J is a simple Jordan algebra. Set M = Soc(J).
Since J is prime, M is a simple ideal. Then for every 0 # z € Z(J) the mapping
z — zz (z € M) is a bijection from M onto M. Hence M remains ideal in the
central localization (Z(J) — {0})—1J which is a simple algebra. Thus
J=M=(2(J)-{0H~'J

is either a simple 27-dimensional exceptional Jordan algebra or the simple Jordan
algebra of a nondegenerate symmetric bilinear form on a vector space Y over the
field Z(J),dimzn(Y) > 1.

Suppose now (Zelmanov’s theorem case (iii)) that J contains an ideal I isomor-

phic to the Jordan algebra A1, where A is a prime Jordan algebra such that
At aJ C Q,(A)T.
Since Soc(A4)* = Soc(J) is a simple ideal of J [2, Prop. 2.5 and 2.6], we have
Soc(A)t «J C Q,(A)T.
Then, by Theorem 1, there exists a pair of dual vector spaces (X,Y,¢) such that
Fy(X)+ aJ C Ly(X)+.

Suppose finally (Zelmanov’s theorem case (iv)) that J contains an ideal [ iso-
morphic to the Jordan algebra H(A,x*), where A is a prime associative algebra witt
an involution * : A — A. By [2, Prop. 2.5 and 2.6] again, Soc(H (4, *)) = Soc(J) i
a simple ideal of J . Then H(Soc(A),*) <«J C H(Qs(A),*).

Hence, by Theorem 1, there exists a hermitian or alternate self-dual inner space
(X,{-,-)) such that H(Fx(X),*)«J C H(Lx(X),*), *: Lx(X) — Lx(X) being
the adjoint involution.
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