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In this article we will investigate the following problem, some-
tines called a three-space-problem:

Let X be a topological vector space (or a locally convex space)
and L ¢ X a linear subspace such that L and the corresponding
quotient space X /L possess a certain property I’; does X also pos-
sess P?

For several properties P this problem has an easy solution even
in a more general setting. For instance, let X be a topological space
and R an equivalence relation on X such that all fibres Rix] (v € X)
aud the quotient space X /R are I'j-spaces. Then also X is a T'j-space.
The same statemcnt holds for the propertics separable, connected,
or totally disconnected (sce 725], 12.20).

Turthermore, if X is a uniform space and R an cquivalence re-
lation on X which is in a cerlain sense conpalible with the uniform
striucture (sce 257, 4.10), then the completeness (resp. precompact-
ness) of all fibres R.x] (v € X) and of X/R implics the completeness
(resp. precompactness) of X (see i25], 12.1, 12.5). Thus a topological
group X is complete (resp. precompact) if it contains a subgroup G
such that G and X/G are complete (resp. precompact). The same
is true for docally compacty (sec [25], 12.19).

On the other haud, Kalton has shown in [18] using very delicate
methods that a topological vector space X need not be locally con-
vex if it contains a straight line L such that X/L is locally convex.
Another example of that kind has been given by Ribe [22].

In the present article we are going to investigate the above men-
tioned problem for several other well-established properties of to-
pological vector spaces or locally convex spaces, such as certain
completeness and barrelledness properties, semireflexivity, DF- and
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Schwartz space, local boundedness and quasinormability, — We re-
strict oursclves to the case of lincar spaces although some of our
results allow a natural extension to topological groups.

0. NOTATIONS AND TERMINOI,OGY

FFor a topological space Z and ac Z we denote by u,(Z) the
filter of all ncighbourhoods of & in Z.

K always denotes onc of the ficlds R or €. All lincar spaces are
supposed K-linear. I'or a subset A of a lincar space X let I'A denote
its absohttcly convex hull and [4] its linear span. We do not tacitly
asstune topological vector spaces to be Hausdorif,

Let X, Y be topological vector spaces. We call a linear map

f:X - Y almost continuous, il for every U ¢ 1y(Y) the sct }(U)
(the bar denoting the closure) belongs to Uy(X).

Furthermore, we call a sequence (%,)aen in a topological vec-
tor space X a local null sequence (resp. a local Cauchy sequence) if
there exists a normed space Y, a continuous lincar map g: Y - X,
and a null sequence (resp. & Cauchy sequence) (y,)aeny in Y such
that g(y,) = %, for all #eN. We call a topological vector space X
locally complete il every local Cauchy sequence in X converges. A
thorough investigation of these notions can be found in P. Dierolf [8],
where the terminology «au sens de Mackeyy instead of docaly is used.

Let X he a topological vector space. A sequence (77,) gen 0f closed
balanced and absorbing subsets of X such that 7, ., -1, T,
for all €N, is called an ultrabarrel in X. An ultrabarrel (7,)pen
in X is called bornivorous il every T, is bornivorous (z € N). X is
called ultrabarrclled (resp. quasi-ultrabarrelled) il for cvery ultra-
barrel (resp. bornivorous ultrabarrel) (77,)uen in X the set 77 is a
zero-nbhd. in X (sce W. Robertson [23], p. 249, and Iyahen |16},
p- 293 and p. 300). — According to Iyahen [16], p. 298, a topological
vector space X is called ultrabornological il [or cvery scquence
(T,)nen Of balanced bornivorous subsets of X such that 77,,; -
+T,.1 € T,(®mcN) the set T; belougs to Uy(X). - According to
Bourbaki |3], Ch. III, § 3, exercice 11, a locally convex space X is
called ultrabornologique if every convex subset of X which absorbs
all absolutely convex, sequentially complete, and bounded subsets
of X, belongs to y(X).
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1. COMPILETENESS PROPERIIES

.1 Lemma. Tt X, Y be topological vector spaces and let f: X - Y
be a linear and open map, such that N : = ker f is complete. Then
f satisfies the filter condition of W. Robertson 23], p. 243, i.c., for
every Cauchy [ilter § on X such that f(§) converges to apoint ycY

~1
there is % € f(y) such that § converges to xin X.

Proor. @G:= {(I'--U:Feg, Uecsy(X)} is a Cauchy filter on X,
For cvery U ey(X) there is Fe§ such that f() c f(U) <y
whence IF ¢ U + f- 1(y). Conscquently, @] j l(y') r = {G n;‘ l(}’) G e’
is a [ilter, henece a Cauchy filter on ;‘l(y). By the completeness
-1 - -
of f(y) there is xe f(ly) such that ®|f (ly) converges to x. Thus x
is an adherent point of ®, which implics that ® and hence § con-
verge to x.

As an immediate consequence we obtain
1.2 Proposition. ILet X be a topological vector space, L ¢ X a com-
plete lincar subspace, and let ¢ : X - X/L denote the quotient map.
Assume that a subsct 4 ¢ X satisfies one of the following two con-
ditions

(a) A is closed (resp. sequentially closed) in X and every Cauchy
filter (resp. Cauchy sequence) in g(d) converges in X/L;

(b) 4 is closed (resp. sequentially closed) in 4 -+ L and g(4) is
complete (resp. scquentially complete).

Then A is a complete (resp. scquentially complete) subset of X.

1.3 Proposition (cf. Bourbaki [2], Ch. III, § 3, cxercice 9; cf. also
1251, 12.2).

Let X be a topological veetor space and L ¢ X a complete linear
subspace. If X/L has one of the properties:
complete, quasicomplete, sequentially complete, locally complete,
convex compactness property 1),

then X has the same property.

1) i.c., the closed absolutely convex hull of every compact subset is com-
plete.
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Proor. FYor the first four properiics we observe that the quotient
map ¢:X - X/L maps Cauchy filters (bounded scts, Cauchy se-
quences, local Cauchy sequences) onto Cauchy filters (hounded sets, ...)
and apply [.1.

For the convex compactness property let £ ¢ X be compact.
Then [ 'q(_K_) is complete; thus, by 1.1, every Cauchy filter on I'K
converges in X which implics the completencss of I'K by Bourbaki
12], Ch. I, § 3, Prop. 9.

In order to give an example which shows that the completeness
assumption for L. in 1.3 is cssential, we need

1.4 Lemma. We consider two triples (X, f, a)), (Xa, Hj, ay),
where X, is a Hausdor[f topological vector space, IT, ¢ X; a dense
hyperplane, a; € X;\II;, and ¢,: X, » X[ ;] denotes the quotient
map (¢ = 1,2).

In the topological product X| x X, we define the one dimensio-
nal lincar subspace 4 generated by a: -= (qy, 4,), provide
Y:=H x Hy4 A c X| X Xy wilh the rclative topology and
X : .= Y|4 with its quotient topology. Then clearly the isomorphism
H{ x II; -~ X induced by the quoticnt map q: Y -» Y/A, is contin-
uous but not open. Moreover the following statements are valid.

i) jy:IH, > X, x->q((x,0)), is a topological isomorphism onto ils
image L :==j,(H).

(ii) ‘There is a lincar surjection p, : X -> Xj/la,] such that pyog =
= gy ¢ pra|Y (where pry: X X X, - X, denotes the canonical
projection). p, is continuous and open, aud ker p, = L.

Consequently, L is a closed lincar subspace of X topologically
isomorphic to fI, such that X/L is topologically isomorphic to X, /(4.

By symmetry the corresponding maps j,: Hy » X and p;: X -
> X1/[a] behave analogously.

Proor.

(i) The restriction ¢|(ZI; X {0} -- 4) induces a topological isomor-
phism 7 from (H, x {0} -- A)/A4 onto L; as H{ X {0} is a closed
hyperplane in H; X {0} 4- A we obtain that F|(H; x {0}): Hy X
X {0} > L is a topological isomorphism. This proves (i).
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(ii) As ker ¢ = .1 & ker(gp o pra), p3 is well-deflined; moreover
ker py == g(ker(ga o pra|Y)) = qfy x {0} |- 4) = L.

The relation p; 09 = g3 0 p75| Y immediately implics the conti-
nuity ol $,. Moreover, in order Lo show that 4, is open, it suffices
to prove that pry[Y : Y » X, is open. Tet U;elipg(X)), ¢ = 1,2,
and let x5 € Uj. Then there are 25 € 5 and 2 ¢ K such that x5 = 2, -i-

- Aay. As Hy is dense in X there is zy e, n (U -- Za,).

Now y:-=(21,2) -1-2acY n(U; X U,) and pry(v) = x5. Thus
Uy c pra(Y 0 (U x U75)) which proves that pr,lY is open. Lfinally,
L is closed in X, as Xjlia,l is 1ausdorft,

1.5. Example. 1ot X be a HHausdorff locally convex space contain-
ing the inwcomplete Montel space I constructed by I. Amemiya, V.
Komura 11, § 2, as a dense hyperplane and choose a; e X[l
Morcover let X5 denote the product space o 1. - K¥ (see Kothe 197,
p. 151), and choose a dense hyperplane Hy € X, and a, ¢ Xo\H,
arbitrarily,

We apply Lemma [4 to the triples (X, /M, «;) (¢ == 1,2) and
obtain a Hausdorll locally convex space X containing a closed linear
subspace L with the following propertics:

(a) L is a Montel space, henee quasicomplete and reflexive;

(b) X/L is topologically isomorphic to o/ ay!, hence to w and is
thus a Tréchet JMontel space;

(¢) X is not ceven locally complete, as it containg the closed metri-
zable and incomplete linear subspace jy(I1,) (see P. Dicroll {8,
Thm. 1).

2. BARRELLED AND BORNOLOGICAI, SPACES

We begin this section with a simple proof of a result of X.J. Vi-
lenkin (sce Graev [127, p. 17, Thm. 6, and Hewitt, Ross 143, p. 47,
(5.38) (c); cl. also 257, 12.12 and 12.13). The method developed by
us in this proof will turn out to be au essential tool in the rest of
this scction.

2.1. Proposition. Let X he a topological vector space, . ¢ X a

pseudometrizable linear subspace, and let ¢: X — X[L denote the
quotient map. Then for every subset 4 ¢ X and every x ¢ A such

2 — Colleclanea Mathematica
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that U, (g(4)) has a countable basis, also the nbhd.-filter U, (4)
has a countable basis.

In particular, il X/L is pscudometrizable, then also X is pscu-
dometrizable.

Proor. Tet A4 € X,xcA, and suppose thal U,e(g(4)) has a
countable basis. Then we find a sequence (V,),cn in Uy (X) such that

ﬂ') Vis- | Vn-:-l c .Vn (M EN)!
b)Y (L NnV,)ien is a basis of Uy(L);
¢) (q(l) ng(v -+ V.))uen is a basis of Uy (g(d)).

Let &7 e 1y(X) be given and choose W e 1y(X) satislyving W |- W e U.
There is #2¢N such that L nV, ¢ W, and there is mc N, > n,
such that g(.1) ng(x * V,Jjcgx--WnV, ). Then AnEx-~-V,)c
cx- WnaV,., - L whence

Anx ~V,)c?2x - WnV, ' Lnal, -V, Dex+ Wi
LW, ., -V, ycx -W-. LnV,cx |- W -Wex--1.
Thus (4 n (x--V,)men is a basis of 1,(d4) which is countable.

Before we start with the main subject of this section we insert
some auxiliary statements about the difting of local null sequencess.

2.2 Remark. Jetl X, Y be topological vector spaces and f: X -» Y
a lincar map. If f satisfes the following condition

(*) Tor every local null sequence (v,)uen in Y there is a bounded
set B ¢ X such that {y,:neN} c f(B)

then for every bornivorous set 77 in X the set f(T) absorbs every
Tocal null sequence in Y and is henee bornivorous in Y. Analogously,
if [ satisfics

(® ILor every local null sequence (y,)ecn in Y there is a bounded

set B ¢ X such that {y,:neNy c f(B)
then for every bornivorous set 7 in X the set (1) is bornivorous in Y.

2.3 Lemma. 1.t X, Y be topological vector spaces, let f: X - ¥
be a linear open map, and assume that N : -= ker f is pscudometri-

2) I ¢z V, is such that » 4- v e 4, then there are we W n Vo, yel
such that ¥ + v =x - w -+ y whence y =v —weV, —Wn V,iy.
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zable. Then for every local null sequence (v, )pen it Y there exists
a local null sequence (x,),cn in X such that f(x,) =y, foralln eN. —
In particular, f satisfies condition (*) and hence condition (¥).

Proor. Let (V,)acn be a sequence in Hy(X) such that (N NV ,),en
is a hasis of Uy(N). We may assume that V, .. -V, V, for
all % e N. Tet (y,)acn be a local null sequence in Y. Then there exists
a scquence (a,),cn of positive reals converging to oo such that the
sequence (x,¥,)ncn converges to zero in Y. We may choose a strietly
increasing map A : N~ N such that xy,ef(V,) lor all #eN and
k = h(n). Then, for every # e N and every 2 e N such that 4(n) <
-1

It remains to show that the sequence (ey%,)r a2y converges to
zero in X, Let U < Uy(X). Then thereis jeNsuch that N n'V; € U,
and {here is & > 7 such that %Y SNV, ) lor all m >k et
1y ¢ N satisly Z(ng) > k. Then for every e = fi(ng) one has z,x,, ¢
Vi (UNV, - N) eV, yn(UnV; - N) whence a,x, &
cU4+NAWV,. =V, )cU NV, c U4 U
2.4 Proposition. Lel X, Y be topological vector spaces, let f: X —» YV
be a lincar open and almost continuous map, and put N : = ker /.

(@) If N and Y arc ultrabarrelled®, then also X is ultrabarrelled.

(b) If N is quasi-ultrabarrelled® and Y is ultrabarrelled, then
X is quasi-ultrabarrelled.

(¢) If N and Y are quasi-ultrabarrelled and if f satisfies condition
(*) in 2.2, then also X is quasi-ultrabarrelled.

Proor. Let {T',).ecn be an ultrabarrel or, in the cases (), (¢), a
bhornivorous ultrabarrel in X. Then, in all three cases, N n T, be-
longs to Uy(:V) for all # € N. Thus we may choose a sequence (U,)yen
of balanced zero-ubhds. in X such that U,. ;- U,.c U, and
NnU,+U,~ U, €T, for all #eN. Since [ is surjective, the
scquence (f(1, A U,))wen is an ultrabarrel in Y.

Morcover, in case (c), f satisfies (¥) whence the ultrabarrel
(J(T,, A T,))ucn is bornivorous in Y. Consequently, in any of the three
cases, f(T, N U,) belongs to Uo(Y) For every # e N. Since f is open,

3) 1In the sense of W. Robertson [237, p. 249.
4) 1In the sense of Iyahen 716, p. 300.
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one has (T, 005 € f{T5nlU,;--N); thus, by the almost conti-
nuity of f, the set. Vi — Uy N 75 N U5 -'- N belongs to Ug(X). From
Vel,n N (WnU,-T,nU, L+ N) we obtain that V e U3 n
wellyex)

NN WAU,- |- TonU - N0 Uy + 0, L U))eTy,nls~Thce
wcllg(x)
c T'). Thus Ty e Up(X) which completes the prool.

A straightforward docally convex simplificationy of the above
proof yields.

2.5 Proposition. Tet X, Y Dbe locally convex spaces, let f: X - Y
be a linear open and almost continuous map, and put N — ker /[

(@) TIf N and Y arc barrelled, then also X is barrclled.

(b) II.Visquasibarrelled and Y is barrelled, then X is quasibarrelled.
) If N and Y are quasibarrelled and if f satisfies condition (¥)

in 2.2, then also X is quasibarrelled.

(¢)

I'rom 2.4 and 2.5 we obtain with the help of 2.3

2.6 Theorem. Let X be a locally convex space (resp. a topological
vector space) and let L ¢ X be a lincar subspace.

(@) If L and X/L are barrclled (resp. ultrabarrelled), then X is
barrelled (resp. ultrabarrelled).

(b) If L is quasibarrelled (resp. quasi-ultrabarrelled) and X/L
is barrelled (vesp. ultrabarrelled), then X is quasibarrelled
(resp. quasi-ultrabarrelled).

(¢) If L is pscwdometrizable and X /L is quasibarrelled (resp. quasi-
ultrabarrelled), then X is quasibarrelled (resp. quasi-ultrabar-
relled).

Next we prove an analogue to 2.5 for the properties ¢countably
barrclleds and «countably quasibarrelledy introduced by Iusain in
(15;, which will have an application to JI7-spaces in scection 3. [A
locally convex space X is called countably (quasi)barrelled if for
every sequence (U)nen of closed and absolutely convex zero-nbhds.
in X the interscetion 7°: = nN U7, belongs Lo Uy(X) whenever T

ne
is absorbing (resp. bornivorous).] We mention that the above two
propertics coincide with «nfrabarrelledy and «dnfraevaluabley, rte-
spectively, introduced by De Wilde, Houet in [7], p. 257.
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2.7 Proposition. It X, Y be locally convex spaces, let f: X Y
be a lincar open and almost continuous map, and put N : = ker /.

(1) I N and Y arc countably barrelled, then also X is countably
barrelled.

(b) T N is countably quasibarrelled and Y is countably barrelled,
then X is countably quasibarrelled.

(¢} TF.N and Y are comntably quasibarrelled and if f satisfies con-
dition (¥) in 2.2, then also X is countably quasibarrelled.

Proor. Let (U )sen be a sequence of closed amd absolutely convex

zero-nbhds. in X, whose intersection T7:-- ] U, is absorbing or,
2EN

in the cases (b), (¢), bornivorous in X,
Then, in all three cases, N N7 e Uy(V), and we find U = 10U e
e o (X) satisfyving N N30 ¢ 1.
As fis open, the set f(U N 17,) belongs to Wy(Y) for every # e N.
Morcover, f(CnT) e N fUNC,)c N2/(UNT). J(UnT)is
% (N #CN

clearly absorbing; in case (¢), f satisfies (¥) whence the barrel
F(U'NT) is even bornivorous in Y. Consequently, in any of the
three cases, () (U7 N U,) and henee 2 N} /(U7 n U,) belong to Uy (Y).

nCN nCN
As fis almost continwous, V:—=0Un (T NU, - N)is a zero-nbhd. -
neN
in X. Now, for cveryncN, onchas Ve Un  (UnW4-Un
well(X)
NU, -N)whenee Velin | TnW--UnU,+-ANn30) c
e Uo(X)
cUnl, T c2U, Thus ¥ € ) 2U, = 2T, which proves that

nCN

2.8 Remarks.

(a) Given an infinite cardinal number ¢, let us call a locally con-
vex space X c-(quasi)barrelled if for every family (U7)er in Up(X)
such that U, = L'V, (= T) and card (1) < ¢, the intersection 7': ==

-- ﬂl U, belongs 10 Ug(X) whenever T is absorbing (resp. bornivoros)
18

in X. The proofl of 2.7 shows that all the statements in 2.7 remain
valid if «countably (quasi)barrelleds is replaced by «c-(quasi)barre-
ltedy for a fixed infinite cardinal number c.
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(b) Proposition 2.7 has an (obvious) analogue for topological vector
spaces X, Y and the propertics «countably (quasi-)ultrabarrelledy
introduced by Iyahen in 117, p. 610, which is proved by combining
the methods of the prools of 2.4 and 2.7. We do not explicitly {or-
mulate this analogue.

Our next aim is to give an example which shows that the «addi-
tionaly assumptions of (b) and (¢) in 2.5 to 2.7 arc cssential. To do
this, we need a lemma whose simple proof is omitted (cf. also 10,

(2)).

2.9 Lemma. Let (X,T) be a topological vector space, let L € X be
a linear subspace, and let € be a lincar topology on X/L which is
finer than the quotient topology /L. T.et 3 denote the initial topo-
logy on X w.r. to the identity map id: X -» (X, ) and the quotient
map ¢q:X ->(X/L, €). Then the lincar topology 8 satisfies 3 o E,
the rclative topologies 'L and 3L coincide, and the quotient topo-
logy 8/L on X/L is equal to S.
If T and € are locally convex, then also 8 is locally convex.

2.10 Example. Let (X, T) be a barrclled Hausdorfl locally convex
space, containing a dense linear subspace L of countably infinile
codimenston, such that every bounded sct in (X, ) has finite di-
mensional linear span. (See for example, I. Amemiya, V. Xomura
1], § 2.) Then L with its relative topology T!L is barrelled by Val-
divia "27], Thm. 3. Thus (L, L) is even a Montel space.

Now fix an arbitrary norm topology € on X/L and provide X
with the initial topology 3 w.r. to id: X -~ (X, ) and the quotient
map ¢:X - (X/L, €). By 2.9, (X,8) is a Hausdorff locally convex

space satisfving 3|L — T L and 3/L-= 3. Trom this we obtain

(a) (L,8IL) is a Montel space;

(b) (X/L,3/L) is normable, hence quasibarrelled;

(¢) (X, 8) is nol cven countably quasibarrelled. In fact, as (X/L,
/L) is not countably barrelled by De Wilde, Houct 7], Cor. 3
(recall that dim (X /L) is countably infinite and that € is not the
finest locally convex topology on X/L), also (X, B) is not coun-
tably barrclled. As all bounded sets in (X, Z) and hence in
(X, 8) are finite dimensional, the last statement implics that
(X, 8) is not countably quasibarrelled.
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Before we turn to bornological spaces, we insert the following
statements about weak and Mackey lopologics.

2.11 Proposition. Lot X, Y be Jocally convex spaces, let [ X ->Y
be a linear open ad almost continuous map, and pul V@ — ker f.

(a) IF AN and Y carry weak tonologies, then also X carries a weak
topology.

(b) I N and Y are Mackey spaces, then also X is a Mackey space.

Proor. Tet g: X > X[V denote the quotient map. As fis surject-

ive, there exists an isomorphism j from X/ onto Y such that

[ =Jjeq. It is casy lo sce thatl j is open and almost continuous.

If Y carries a weak topology, then also XN (7~ HY)) carrics
a weak topology by Bourbaki (3!, Ch. IT, § 6, exercice 1. Next sup-
pose that Y is a Mackey space and let U e X/N bhe a zero-nbhd.
for the Mackey topology of X/N. We may assume that U is closed
in the original topology of X /N, Siuce 7 is opaen, 7(17) belongs to 1y(Y),
and since j is almost continuous we obtain that U :-j I(j(U)) is
a zero-nbhd. for the original topology of X /N, Thus XV is a Mackey
space,

Let 2 denote the original topology of X, o ils weak topology,
and 7 its Mackey topology. I1 follows from Kothe 7191, p. 276 (1) and
p. 277 (3), that the rclative topology ¢'N on N and the quotient
topology oV on XN coincide with the weak topologies correspond-
ing to TLY and T/N, respectively. rom Kothe 719°, p. 277 (3), we
deduce that /N cquals the Mackey topology corresponding to T /.
Tinally, il (N, 2N) is a Mackey space, then /N = LV holds by
Kothe 19, p. 277, line 23 to 25.

Now the statements (a) and (b) follow from a special case of T,em-
ma 1 in "1T:

Two comparable linear topologics  and T on a lincar space X
coincide il X contains a lincar subspace L such thatl 2/ == IL
and /L --/L.

s and let

2.12 Proposttion. Tet X, Y be topological vector spac
F: XY bea continuous linear map satisfving condition (%) in 2.2.

I N = ker fand Y are ultrabornological®, then also X is ultra-
bornological.

5) In the sense of Iyvahen (167, p. 298,



24 W. Roeleke and 8. Dicroll

Proor. Let (Teen be a sequence of balanced bornivorous sets in
X such that 7, ., --T,.{ c I, (neN).

Since NV is ultrabornological, there exists a sequence (U )nen of
balanced zero-nbhds. in X such that Nn (7, *-U) e 7T, and
C, 1. U, 1 €U, forall wcN.

As fsatisfies (%), the sets f(1, n U7} are bornivorous in Y (# & N).
Y being ultrabornological, we obtain that in particular f{T, 0 Uy) ©
a (YY), whenee V= U0 (TN Uy 4 N)elpg(X). Because of
Veloan(THhnlU,- Ny | UNeTy-! Ty !y, we have
that T Delongs to 1y(X), which finishes the proofl.

Similarly as in 2.4/2.5 a docally convex simplifications of the
above proof yvields.

2.13 Proposition.  Let X, Y helocally convexspaces and let [0 X - Y
be a continuous linear map satislyving condition (¥) in 2.2.
IEN = ker fand YV are bornological, then also X is bornological,

In particular, by 2.3, a locally convex space X is bornological
il it contains a pscudometrizable lincar subspace L such that X /L
is boruological.

2.14 Remark. Proposition 2.13 has the Tollowing analogue for the
property «wltrabornologiques introduced in Bourbaki {37, Ch. TII,
§ 3, exercice 11.

Tet X, Y be locally couvex spaces and let /: X Y be a con-
tinwous lincar map satisfying the following condition

(- ) Tor every sequence (3, )aen in Y which is «trés convergentey in
the sense of De Wilde "5, p. 55, there exists a bounded Banach
disk® B in X such that {v,:n e N} c f(B).

(Cf. the «Théoréme de Relevementy in 7’57, p. 61).

Then X is ultrabornologique if N : == ker fand Y are ultraborno-
logique.
We omit the prool which is very much like that of 2.13.

The following example shows that in 2,12, 2.13, and 2.14 the
hypotheses about the conditions (¥) and (| ), respeetively, cannot he
dropped.

6) Jde, B =T, and ' provided with the 2Minkowski functional pp
is a Banach spacc.
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215 lLixample. Toet Xyi— {(%)rer € KR: there is 2 ¢ K such that
the set {7 ¢ Ry, 52 2y is countable} ¢ KR he provided with the
relative topology induced by the product topology of KR, X is not
bornological, as Hy: == {(x,),er ¢ KR: {# ¢ R: %, -~ 0} is countable} is
a deuse hyperplane in Xy which is sequentially complete. Thus also
X1/ a;} is not bornological with a;::= (1),;re X\H;. — On the
other haud, Hy is ultrabornological in the sense of Ivahen 716,
p. 298, according to {91, 2. Prop., hence also ultrabornologique in
the sense of Bourbaki [3], Ch. ITI, § 3, exercice 11, since His lo-
cally convex and sequentially complete (¢f. loc. cit. b)).

Let X, be the Ililbert space 1,5, and fix a dense hyperplane H,
in X, and a; € X5\H,.

\We apply Lemma 1.4 to the triples (X;, H;, a;) (¢ —1,2) and
obtain a Hausdorff locally convex space X containing a closed linear
subspace L with the following properties:

() L is topologically isomorphic to M, hence ultrabornological
and ultrabornologique;

(b) X/L is a Iilbert space, henee also ultrabornological and ultra-
bornologique;

(¢} X is not bornological, as it has (via p;) a quotient space which
is topologically isomorphic to X /Ta;], hence not bornological.

3. LOCALLY BOUNDED SPACES AND DF-spacus

We reeolleet that a topological vector space is called locally
bounded if it contains a bounded zero-nbhd.

3.1 Proposition. Tet X, Y be topological veetor spaces and let
f:X Y be an open linear map such that N: — ker f is locally
houndcd.

(a) For every bounded sct B ¢ Y there is 2 bounded set € € X such
that B = f(C). (Cf. De Wilde (67, Cor. 2.)

(b) TI, in addition, f is almost continuous, then for every hounded
zero-nbhd. B in Y there is a bounded zero-nbhd. ¥ in X such
that B c f(V).

Proor. Tt U = Uy (X) be balanced and open such that ' n (7 - U)
is bounded. Tet B ¢ Y be bounded. Since f i3 open, there is e N
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suich that B c nf(l). The set C:.=nlU n'_/l(b’) clearly satisfies
J(C) — B.

We first. show that C is bounded. Given W e Uy (X), W bualanced,
there is m e N such that N (U -} U) e m W and there is E<N,
2> m, such that B ¢ 2 /(0¥ n U). Trom C c n U n k(W n U) -i- N)
we gt CcnlnERMWal)4-Na@nU -rU)eckW +Nn
NET -UN)c kW - tmW < km(W - ). This proves that Cis
bhounded.

If fis almost continuous and if B < Ug(Y), then Vi w1 U A f (B)
belongs to Uy(X) and f(V) o B; morcover, V is bounded in X since

VenlU nfl(B) = ¢ by the openness of L.

By Kathe [197, p. 433, 5., there exists a I'réchet Montel space
admitting the Banach space 1; as a quotiend space. This example
shows that 3.1(a) fails if N is assumed to be metrizable instcad of
locally bounded. Cf. however 2.3.

From 3.1(b) we immediately obtain

3.2 Theorem. A locally convex space (resp. a topological vector
space) X is seminormable (resp. locally bounded) if it contains a
lincar subspace L such that L and X/L are seminormable (resp.
locally bounded).

3.3 Proposition. Tetl X, Y belocally convex spaces and let f: X > Y
be a lincar open and almost continuous map such that N : - = ker [
is seminormable.

(a) I, in addition, fis continuous and if X/L has a fundameutal
scquence of bounded sets?”, then also X has a fundamental se-
quence of bounded scts.

(b) If Y is a DI'-space, then also X is a DI%-space.

iRecall that a locally convex space is a Dl-space il and only
if it is countably quasibarrelled and has a fundamental sequence of
bounded sets.]

Proor. (a) Let (B,)een be a fundamental sequence of hounded scts
in Y, and choose an absolutely convex zero-nbhd.  in X such that
N n U is bounded. It {follows from the proof of 3.1 that C,,: — 2 U N

7) In the sense of Kdéthe {195, p. 392.
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n_/TéB,.,- is hounded in X for every # « N. On the other hand, led
C ¢ X be hounded. Using the continuity of [ we find 2, 1 = N such
that f(C) € B,, and C c . Thus C € Crax {mny -

We have proved that (C,y 1s a fundamental sequence of boun-
ded sets in X
(b} Tet T denote the given topology of Y and let 2 denote the
final topology on Y w.or. o f: X -~ Y. As [ is lincar and surjective,
(Y, ) is a locally convex space and the map f: X - (Y, 8) is con-
tinwous and open, Moreover, one verifics casily that £ 5 2 and that
the Z-closure of every zero-nbhd. in (Y, T) bhelongs to 0,(Y, 3).
Tt (Been be o Tundamental sequence of bhounded sets in (Y, €),
and Tet A, denote the elosed absolutely convex hull of B, in (Y, &)
(< N). By 8 we denote the finest locally convex topology on Y
such that 3id, .- il for all 2 < N. I'rom Grothendieek 3], p. 69,
Cor. 1, we get that T o 8 o 2. We first show that 8 — €. In fact,
let U7 =uy(Y, 8). By 1247, p. 58, Lemma |, we may assume that UV
is closed in (Y, 3). Since in particular, U o 0y(Y, €), we obtain that
the S-closure of U7 and hence U belong to Uy (Y, €). — Now "24;, p. 64,
Thm. 4, implics that (1), (x is a fundamental sequence of bounded
sets in (Y, 8) -: (Y, 3).

Statement (a) now implies that X7 has a fundamental sequence of
bounded sets; and from 2.3, 2.7(¢) we obtain that X is countably
quasibartelled.

Reyark. Tet X - {((v)een ¢ KN {2 c Noy, -0 s finite}, let €
be its relative topology induced by the produet topology of KN, and
let T denote the weak topology o(X, X*, where X# denotes the
algebraic dual of X. Then id: (X, 2) » (X, T) is open and almost,
continuous, as can casily be verified; morcover, (X, ) has a funda-
mental sequence ol bounded sets, and (X, ) has not. —— This exam-
ple shows thal the continuity-assumption in 3.3(a) is cssential.

The following two examples show that 3.3,(a) resp. (b), fail if
we only assume that L has a fundamental sequence of bounded sets
resp. that I is a D I7-space instead of assuming that L is seminorma-
ble.

3.4 Example. T.et L be a linear space of conntably infinite dimen-
sion. Tet L* denote its algebraic dual, and let X denote the algebraic
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dual of L*. Then X provided with the weak topology o @ = ¢(X, L*)
is topologically isomorphic to the product space Kiimi* ~ KR and
contains L as a densc lincar subspace. The rclative topology il
equals o(L, L#), whenee every bounded set in (L, o.L) has finite di-
mensional lincar span. Since dim L is countable, (7., ¢|L) has a fun-
damental sequence of hounded sets. — Lix an arbitrary norm topolo-
gy 3 on X/L (we can even choose € such that (X/L, €) is a Banach
space as dim X[/, — card (2R)). Let 3 denote the initial topology on X
w.r, to id: X > (X, o) and the quotient map ¢: X - (X/L, 8). By
2.9, (X, 8) 1s a Llausdorll Jocally convex space satislving 8!L —
= ¢g|L and /L — €. From this we get

~
o
—

(L, 3:1.) has a fundamental sequence of bounded scts;
(X/L,3/!L) is a normed space;

(X, 8) docs not have a fundamental sequence of bounded sets.
In fact, because of § o o it suffices Lo show that KR is not a
union of a sequence of bouuded sets, But this is clearly true, as
KR iy a nonnormable Baire spacc.

T
-~

3.5 Example. TLet Y Dbe an infinite dimensional Iréchet Montel
space admitting continuous norius, aind let X : — Y’ bhe its topolo-
gical dual. Then X provided with the Mackey topology 7: — 7(X, Y)
is a nonnormable complete hornological DI-space containing a total
bounded set. Lot (B,)sen be a fundamental sequence of bounded
sets in (X, 7) such that [By] is dense in (X, 7). Since 713,] -+ X for
all » e N, we may assume that [B] 1B, .} (# €N). Then we can
easily construct a dense lincar subspace L of countably infinite co-
dimension in (X, 7) such that dim(L -4+ TBY/L is finite for cvery
#eN.

By Valdivia “27], Thm. 3, and [28], Cor. 1.3, the subspace (L, z|1)
is a harrelled and bornological DJ-space.

Tix an arbitrary norm topology & on X;L and provide X with
the initial topology 8 w.r. to id: X - (X, ) and the quoticnt map
g:X - (X/L,8). By 2.9, the ITausdoril locally convex space (X, 3)
satisfics 3|L = 7| and 8/L =8, and we obtain

(a) (L, 38|L) is a barrclled and bornological DIFF-gpace;

(b) (X/L,3}/L) is a normed space;

(¢) (X, 3)is not a DI-space. In fact, assume that (X, 8) is a DF-
space and let B be a bounded zero-nbhd. in (X/L, 3/L). Then
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by Kéthe [197, p. 401, line 36-38, there is # ¢ N such that B ¢
c ¢(B,), whence "g(B,)] is dense in (XL, 3/L). Thus [B,]-|- L
is dense in (X, 3). But this is a contradiction since, by (b), L
is closed in (X, 8) and dim(L + [B,))/L is [inite.

The following example, which is of similar type, shows that a lo-
ally convex space X neced not he quasinormable® if it contains
a closed linear subspace L. such that L and X/I are quasinormable.
(CI. however Proposition 4.5.)

3.6 Lxample. Tt (X, T) be a Ilausdor{l locally convex space with
the [lollowing properties:  is a weak topology, every bounded set
in (X, ) has finite dimensional lincar span, and (X, T) contains
a dense lincar subspace L of infinite codimension. (For cxample,
the incomplete Montel space constricied by I. Amemiya, Y. Komura
17, § 2, satisfies all these conditions). 1ix a norm topology & on
XL and provide X with the initial topology 3 w.r. to id: X - (X, €)
and the quotient map g: X -> (X/L, 3). Then, by 2.9, the Hausdorff
locally convex space (X, 3) has the following propertics:

(a) 8'L =L is a weak topology, whence in patticular (L, 8iL) is
a Schwartz space and thercflore quasinormable by Grothendieck
[133, p. 116, Prop. 17;

(b) (X/L,3/l.) is a normed space, henee quasinormable;

() (X, B) is not quasinormable. In fact, since every hounded set in
(X, 8) is [inite diinensional, (X, 3) is quasinormable if and
only il (X, 8) is a Schwartz spacc by {13], p. 116, Prop. 17.
On the other hand, the quotient space (X/L, 8/L) is infinite di-
mensional and normed, hence not a Schwartz space. Now [137,
p. 118, Prop. 18, implies that (X, 8} is not quasinormable.

3.7 Proposition. let X, Y bhe locally convex spaces, let f: X - Y
be a lincar open and almost continuous map, and put N : = ker f.
Let ¥ and Y be Schwartz spaces. Then also X is a Schwartz space.
In particular, a locally convex space X is a Schwartz space if it con-
tains a lincar subspace L such that L and X/L are Schwartz spaces.

Proor. Tet ¢:X - X/LN denote the quoticnt map. As in the proof
of 2.11 there is an open and alimost continuous isomorphism 7 : X/N —
-» Y such that f .= 7 o g. We first show that XLV is a Schwartz space.

8) In the sense of Grothendieck [13], p. 106, Déf. 4.
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Let U= 1"U e (X /N). Then j{L)ety(Y). As Y is a Schwartz
space, there is V e Uy(Y) such that V is a precompact subsct of the
seminormed space (Y, p;) (where p; ., denotes the Minkowski func-
tional of §(U)). Let W denote the closure of V in (Y, p;(,). Clearly
W is precompact in (Y, p,(y), whenee also j~1(W) is precompact
(and closed) in (X/N, p.). Moreover, j71{W) is in particular closed
in XL\ w.r. Lo its original topology, and j (W) o j=1(V). Thus, by
the almost continuity of j,7-1(W) belongs to Ug(X/N). We have
proved that X/V is a Schwartz space.

Let T denote the given Lopology of X and let $y denote the Schwartz
space topology on X associated with . Then Ty ¢ 2. It follows
lrom Swart {26], p. 268, 3.4, and p. 269, 3.7, that TEN = |V and
that Ty/N = I/N, since (¥, T,V) and (XLV, TLV) are Schwartz
spaces. Consequently Ty — T (see the end of the proof of 2.11), when-
ce X is a Schwartz space.

3.8 Proposition. let X be a locally convex space and L c X a
lincar subspace such that . and X,[ are nuclear. Then also X is
nuclear.

Proor. Given a scminormed space (Y, p), we call a sequence
(v, )nen in (Y, p) (absolutely) summable if (3, == {0})acn is (absolutely)
summable® in the associated normed space (Y, p)/{0}.

Lot U == TU elp(X). As L is nuclear, we find V = I'V & Uy(X),
V e U, such that every swmnable sequence in (£, prqp) is absolu-
tely summable in (L, pr.qu). As X/L is nuclear, we find W - I'W ¢
e Wp(X), W € V, such that every summable sequence in (X/L, p, )
is absolutely swummable in (X/L, p,()), where ¢: X > X/L denotes
the quotient map.

Let (%,)nen be summable in (X, py). Then (g(x,))nen is summable
in (X/L, py+), bence absolutely summable in (X/L, p,n).

As p,n(2) — inf {py(x): & e;]l (2)} for all ze XL, we find a se-

quence (V,)sen in X such that 31 py(y,) < o and such that ¢(y,) =
#CN

== g(x,) for every # e N. (¥,)nen is absolutely summable, hence swn-

mable in (X, p,). Because of W ¢ V, the sequence (x,).n is also

swamable in (X, p,). Consequently, (¥, — y,)nen is suwmmable in

(L, prav), which implics that (x, — y,)ucn is absolutely summable

9) In the sense of Pietsch [21;, p. 25 and p. 27.
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in (L, prav)- Since pylL <= prne, we obtain that ¥ py(x, --3,) < .
#eN
Because of V' ¢ U we have ¥ p;(3,) << oo, whence Y py(x,) < w.
neN neN
Thus (%,)scx is absolutely summable in (X, p;), which proves the
nuclearity of X.

We do not know if 3.8 can be extended to the more general case of
an open and almost continuous linear map f: X -» Y (instead of a
quotient map ¢: X - X/L).

4. SOME THRLE-SPACE-PROBLEMS FOR IRIECHET $PACLES

Axample 1.5 in particular showed that a locally convex space X
need not be semireflexive if it contains a linear subspace L such
that L and X/L are semireflexive. Our first aim in this section is
to contrast this example with a positive stalement. Before we do
s0 we will prove a slight generalization of a result of Grothendieck
J13], p. 75, Prop. 4.

For a dual pair (X, Y) let (X, Y), (X, Y), (X, Y) denote the
weak, the strong, and the Mackey topology on X, respectively. For
a locally convex space X we denote by X' its topological dual and
define the polar A0 of a subset A4 ¢ X by 40: = {feX": f(x)| < |
for all x & A}.

4.1 Lemma. ILet X be alocally convex space and L ¢ X a countably
quasibarrelled lincar subspace, whose strong dual is bornological.
Then on the quotient space X'/LO the strong topology g(X'/L9, L)
coincides with the quotient topology B(X’, X)/LO.

Proor. By Kathe 7197, p. 278, line 27, one has J{X'/LY, L) ¢
c (X', X)/Lo. We may identiiy L” and X'/L0 (19, p. 275, (1) (a)).
As (X'JLO, B(X’'/10, L)) is bornological by hypothesis, it suffices to
show that every B(X’'/LY, L)-bounded sequencein X'/L0is §(X'/X)/LO-
bounded. As L is countably quasibarrelled, every g(X’/L0, L)-bound-
ed sequence (f,)aen is cquicontinuous; by (197, p. 275, (1) (b), there
is an equicontinuous subset A in X' such that {f,:#eN} c ¢(4),
where ¢: X’ — X'|L0 deunotes the quotient map. This {inishes the
proof since g(A4) is clearly bounded with respect to g(X’, X)/Lo.
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4.2 Proposition. Iet X be a locally convex space and L ¢ X a
lincar subspace such that B(X’/L0, L) = §(X’, X)/L0. Assume that
L and X/L are semireflexive. Then also X is semirellexive.

Proor. We first show that L < L |- {0} (where the bar denotes
the closure in X). Let x e L. Because of

o(X'JLY, L) c B(X'/LY, L) € B(X', X)]LY == g(X’' /LY, L)

there is a bounded set B - I'B in L such that x ¢ B. Since Bn L
is (L, L')-compact hence o(X, X')-compact, we obtain that B ¢ B n
nJr -4 {_()T . Thus x ¢ L - '{-()}'. ~- Hence we may assume that L
is closed in X and that X is Hausdor(l,

Let I be a continuous linear form on (X', 8(X’, X)). As (L0, X/L)
is finer than the relative topology B(X', X)) L0 (Rothe 1197, p. 277,
line 23-25), the restriction /7!L0 is a continuous lincar form ou
(Lo, B(LY, X/L)). By 191, p. 276, (2) (a), we may identify (X/L)
and L0, As X/L is semircflexive, we therefore {ind ¥ ¢ X such that
I'(f) == f(x) for all fe L0

G: (X, BX', X)) --K, G(f): = I'(f) fl(x), is a continuous li-
near form which vanishes on L0, I'hug G induces a continuous linear
form G on the quotient space (X'[1.9, 3(X’, X)/LY). By hypothesis
we have that (X', X)[L0 — g(X'[Lo, L); and by [19°, p. 275, (1)
{a), we way identify L' and X'JL0. As L is semircflexive we thus
find y e L such that G(f) -= G(f -- LY) - f(y) [or all fe X',

It follows that F(f) — flx | %) for all feX'. This proves the
semireflexivity of X.

Remarks.

(a) The proof of 4.2 has been inspired by the proof given by Krein
and Smulian of their Thm. 14 in 201, p. 575.

(b) DF-spaces L obviously satisly the hypotheses of 4.1. Ifurther, a
reflexive I'réchet space L is countably quasibarrclled and its
strong dual (L', (L', L)) is bornological by Kothe [197, p. 400,
(4). Thus 4.1 and 4.2 immediately yicld
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4.3 Proposition. Lot X he a locally convex space and Le X a
lincar subspace which 1s a DF-space or a Fréchet space. If L and
X /L are semircflexive, then also X is semireflexive,

4.4 Proposition. Tet X Dbe a Iréchet space aud L € X a lincar
subspace such that L and X /L are Montel spaces. Then also X is
a Montel gpace.

Proor. ILet B € X be bounded. As X /L is a Montel space, the sct
g(B) is compact in X/L (where ¢: X » X/L denotes the quotient
map). By Kothe -191, p. 279, (7), there is a compact set € in X satis-
fying ¢(C) = q(B). Tromn Bc C - Lweget BcC | L a(B - C).
As L is a Montel space and L (B -- C} is bounded in L, the set
L A (B — () is compact. Thus B is contained in a compact subsct
of X. We have proved that X is a Semimontel space and hence a
Montel space.

The Tollowing proposition conlrasts Jixample 3.6.

4.5 Proposition. Lot X be a Fréchet space and L ¢ X a lincar sub-
space such that L and XL are quasinorimable. Then also X is quasi-
norinable.

Proor. Let Y be a producet of a sequence of Banach spaces contai-
ning X as a (closed) lincar subspace. Then Y is a quasinormable
réchet space. On account of Cholodovskii (47, p. 159, Thm. 1%, it
suffices Lo show that for every bounded set 8 € Y /X there is a boun-
ded set 4 € Y such that ¢(4) o I3, where ¢,: Y » Y [X denotes
thie quotient map.

Tetg,:Y >Y[L and g5: Y/L - Y[X denote the canonical con-
tinnous and open surjections, and let B c Y/X be bounded. Since
ker ¢3 is topologically isomorphic to X/L, which is a quasinormable
Frechel space, we obtain from De Wilde '6], Prop. 2, that there
is a bounded set € ¢ Y/L such that ¢;(C) o B. As L is also a quasi-
normable Fréchet space, 61, Prop. 2, again provides us with a boun-
ded set 4 € Y such that g,(1) o C. Now clearly, ¢,{1) = ¢3(g2(4)) o
o B

10) Let Z be a quasinormable and metrizable locally convex space, W e £
a lincar subspace, and let ¢: % — Z;37 denote the quotient map. Assuine
that for every bounded set B e Z/M there is a bounded sct 4 ¢ £ such that
g(d)o B. Then M is quasinormable.
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