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1. INTRODUCTION: Spaces of entire functions endowed with
various topologies are considered. First of all, we endow the space of
all entire functions represented by Dirichlet Series with four topologies
which are shown to be equivalent and then we show that it is a
MonTEL Space under one of them. Next, we consider the space of
entire functions of finite Ritt-order and finite type, endowed with a
certain topology under which it is a FRECHET space. On this space
we characterize the form of linear continuous functionals. Finally, we
give a method of constructing total sets in this space.

2. PreELIMINARIES:. Let X denote the set of all entire functions
f where

(2.1) fi$)=2Y a, ™ s=0+ it

n=1

and where further

(2.2) 1 <Aoo <2y (A - o0 as n — o0)
(2.3) fim 2 =D < w; fm (A, —M) =h>0,
H—>0 l" #—» 00

and that

(2.4) fim 08181 _ _

#n—>00 7"
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It is to be noted that (2.4) is an «f and only if» condition for f(s)
in (2.1) to be an entire function represented by the Dirichlet series
in (2.1).

If u is a topology on X, the notation X', stands for the family of
all continuous linear functionals on X,,.

To recall a few results obtained earlier by one of us [5], assume
that {#;} is a non-decreasing sequence of positive numbers, 7, - o
with 7. Let for each fe X

(2.5) Hfll=Yla,| e™;i=1,2, ..

then || f|| »; exists for each ¢ on account of (2.4) and it is easily
seen that this is a norm on X. It is clear that || f|],, <] f][,H_1 for
all + > 1. With these countable norms |[|f|l,, (/! > 1) we define a
metric topology on X, with metric d:

L If—gline .
2.6 d =Y — X.
2.6 (/- &) 3{1 2 1+||f_g||r,?’f’gE

Since || f|| # S [| f1l #:yy for each 4, it is clear that the metric
topology defined by d is the sup topology which is locally convex
and the following result is a consequence of a known fact, namely

(2.7) Xa=UX") -
s=1

3. Various topologies on X: Let us recall that the function fe X
is the additive zero of X if and only if @, = 0 for each » > 1. Now
define for each f ¢ X, the following functions:

(3.1) p(f) =sup|a, 1*;
n=1
(3.2) | flls = sup {| , |17}

Observe that (3.1) is defined in view of (2.4). Then the functions
p (f) and || f||; are paranorms on X. Let us further denote by s
the metric generated by the para norms in (3.2) as in (2.6). Then
as || fll; < || flliz:, the topology given by s is the sup topology. The
three topologies given by d, s, and p are equivalent as shown
below:
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LeMMA 1: We have d =5 = p.

Proof: First we show that d = p. Let {f,} ¢ X and that f,, - f
in the paranorm p, where f ¢ X. Then if

f;” (S) =22:d a”'m) esin, f (S) = 2 a, 851”,
n

n=>1
we have for an arbitrarily large 2 and all » > 1,

| a,™ — a, [V < kl , for all m > my = m, (R)

= “fm —f|i71<élexp {(7’1' —]ng) }‘n}; m2m0)1’21
< e} (1) e-—).; log VE
-~ O as B - o0, for each 7 > 1.

Therefore f,, — f under each norm || f|| #;, and hence f,, - f in the
metric d. On the other hand, suppose f,, — f in the metricd = f,—~ f
under each norm || f| |7; and therefore for a given ¢ > 0

| 2, —a, | <ePneTr; m>mg(e); 4, n>1
sup | @, — a, | < 77 sup (elfs), m > mg, 2 > 1
n "
S &, m Z mo >

by choosing ¢ sufficiently large. Consequently f, — f in the para-
norm p. Hence d = p.

To prove the other part of the lemma, let f,, - f in the paranorm p.
Then for arbitrarily large %

la,™ —a,| <k, m>my, n>1
sup l“n(m) —a, 11/An < sup (k—u’ k—h’)
n<i n<t

<k lL,m>my, t>1,

= fn —f in the metric s

= §SCp.
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Similarly p >'s, = p = s. This completes the proof of the lemma.
The convergence under p(f) is equivalent to convergence in every
finite vertical strip, for:

LeMMA 2: A sequence {f,} ¢ X converges to an fe X under
p (f) if and only if it converges to f on every finite rectangle.

Proof: Let {f,} converge to f on every finite rectangle. Then
for a given ¢ > 0, there corresponds an my = mg(e), such that

[ fn () =S () | <& m=myg

for all s in that rectangle. Then

| (@, — a,) 4816 | < &, m >my, n > 1
= l an(ﬂl) —a, I <Le e—lan(s), m Z mo’ n 2 1
(3:3) or, p (fu —f) < & m > my.

Let now (3.3) hold. Then for all » > 1
[ a,™ — a, | < &, m >m,
or, | 4, — a, | < e7**, k is arbitrarily large.

Therefore for m > m, and s in a finite rectangle

[ (8) — F(s) | < X exp {(R1(s) — &) 4.}

n=1

123

kAl k
< e 2 21 exp{{Rl (s) ——5}2,,}

n=

= O (1) exp (_ fh), (Since % is arbitrarily large).

Consequently, if ¢ > 0 is given in advance, then we can determine an
mq (€), such that for all m >mg, | fu (s) — f(s) | < e, for all sin a
finite rectangle. Thus f,, — f uniformly on every finite rectangle.
This completes the proof.
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We now show the completeness of the space X under various
topologies established above. Observe that it is sufficient to establish
the completeness under one of them, in view of Lemma 1.

LemMA 3: The space X, is complete.

Proof: Let {f,} be a s-Cauchy sequence in X. Then to a given
1 > ¢e> 0, there exists a Q = Q (¢), such that

k21 28 1 4 || fp = folla <eforallpg20

Then
| 4, ® — a, 0 |V < g5 p, g >0, n <k k>1.
Obviously &; is related with ¢ and &; - 0 as ¢ — 0.
Hence the sequence {a,”} in p tends to a, for each # > 1. Now
la, | <1a,? —a,|+|a,? |
<ea+la?;p>0 n>1
<ey+ e, m > ny (k)
= |a, [ < ek n > mn, (R).

Thus if

f(s) = 2 a, en,

n>1

then f is an entire function. Hence

Hfi’ _le = SuP Eau(p) — a, |ll)'” < &, all j) 2 Q
' nst

Hence

= 1 fy—fl e Lo
ErTrig = iy 22

where fe X. The result is, therefore, proved.



208 Taqdir Husain and P.K. Kamthan

CoroLLARY 1: The spaces X,, X;, X,, and the space X endowed
with the compact open topology (as in Lemma 2) are FRECHET
spaces and consequently are barrelled spaces (see [2], p. 19).

CororLARY 2: X, is a separable FRECHET space.

Proof— Since the exponential polynomials with rational coef-

ficients are dense in X, the corollary follows.

CoroLrLARY 3: Every o (X';, X,) — bounded sequence in X',
contains a convergent subsequence (see [3]).

CoroLLARY 4: Every o (X';, X;) — bounded set in X’ is rela-
tively sequentially compact.

Proposition 1— The dual of X, is the inductive limit of X’;,
where each X; is endowed with norm topology || ... ||,;.

Proof— Since || fl,; < || f ll,,,, for any entire function fe X
and each 7 > 1, it follows that X, c X', ,.

Hence U X’; is a linear space which is the limit of X'/s.

i=1

Hence by a well known result ([1], p. 218)
X,= U X.
i=1
Proposition 2— The space X, is a MONTEL Space.

Proof— For the definition of a MONTEL space, see for instance
P. 32 [2]. In view of remark 2 following lemma 2, it is sufficient to
prove that each uniformly bounded subset F ¢ X on a finite rectan-
gle is equi-continuous. So let D be a strip of width 4 and length 7.
Let 6 > 0 be an arbitrary fixed number. Let D’ denote the rectangle
of width A 4 26 and length T + 28.

Clearly D c D'. Now by hypothesis
| f(s)| <kp

for all fe F and s € D, where &p is a constant depending on D.
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Let s € D and y be the circle with centre at s and radius 4.

Then y ¢ D and

, _ |1 [ flw)dw 1 » »
I e e e R CIIEY
S%)—',feF.

Thus for s,, s, e D
[ f(s1) = f(s2) | =1(F(s) + &) (s1—s2) |

g(k—”';—e) | s1 — sz}, for all feF.

This shows that I’ is equi-continuous. Now by a well-known ar-
gument we can select a subsequence of F which converges uniformly
on D to a function f. But each member of this sequence is analytic
in D and so is f (by Weierstrass Theorem) and since D is an arbitrary
strip it follows that f is entire and is representable by a Dirichlet
Series since X, is complete (See lemmas 2 and 3).

4. Functions of finite order and type

In the preceding results, the entire functions of finite proximate
order and proximate type do not occupy a privileged position. It is,
therefore. the purpose of this section to throw some light on the space
of entire Dirichlet functions having finite proximate order and pro-
ximate type (for definitions of proximate order and type see [4]).

Let now X be the space of those entire Dirichlet functions f,

J being represented by (2.1), for which

(4.1) fim 287 (0)

<4 < o,
ag—00 ooelo)

where z(o) is the proximate function satisfying the conditions

(i) plo)>pas o >0, 0<p<oo
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(ii) 69 (6)>0as o »w;
and that

m (@) = sup | f(o+it)].

—o<li<oo

The following result is known [4], namely (4.1) implies and is
implied by

(4.2) im @ (4) | a, (VA < (4 @ &)'h,

n—>20

where ¢(f) is the single solution (for ¢ < #,) of the equation

t=ce. g (log @) log ¢

Let now for each f e X,

@ (A) . *
+ l)Qe)) 92
q

where ¢ =1, 2, 3, ... Clearly || f]||, exists on account of (4.2) and
represents a norm on X for each ¢ > 1. We further note that
¢v= 2= 11 f11g2 =11 flley =11/ 1lss As before the family (|| f1lg:
g =1, 2, ..} induces on X a unique topology such that X becomes a
locally convex topological vector space and this topology is given by
the metric 2, where

flly=X Ianlg
nx1 ((A

1 f—gll,
4.3 Afe)=% « W —8&ls
(43) o) = T T =g

We write this space as X;. Then one has the following

THEOREM 1: The space X; is a FRECHET space.

Proof— It is sufficient to show that X; is complete. Let there-
fore {f,} be a 2-CaucHY Sequence in X and so for a given ¢> 0
there corresponds an mg, = m, (¢), such that || f, — f5 ||, & for all
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a, B > my and all ¢ > 1; consequently for these values of «, # and g,
we have

2y
(44) E Ian(a) - [l"(ﬁ) i ¢ 1 1o < g,
n=1 ( (A + ; ) 0 e)

and this shows that {4,/?} is a CAUCHY sequence in the complex plane
for each #» > 1 and therefore 4, — a, as « — oo, (# > 1) and so
letting f# — oo in (4.4) one has for all « > m,

(45) E I O(n(m) — ay I
n>1

; @ ()

l”
1 1/e S E,
((A +—) ee
( q )

>

and consequently taking o = m, in (4.5) we get for a fixed ¢

4 (Aﬂ) a < Iﬂn(’"") ! \ 4 (}'h) 'A” L
/ /e - e /e ,
L4, | ((A—i——;)ge)/ '((A-I-Ti)ge)/\
1
A4+ =
< 7 te,
a+ 1\
q

where g < $ and # is sufficiently large; and as ¢ is arbitrary, one finds
the an satisfies (4.2) and so f, with its representation as in (2.1), belongs
to X;. Hence using (4.5) again, we see that

Afo, ) <eg foralla > m,,

where fe X, and the result is proved.

5. Characterisation of continuous linear functionals on X, :

This section is devoted to characterising the forms of linear con-
tinuous functionals on the space X;.
Precisely, we have the following:
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THEOREM 2: A continuous linear functional ¥ on X, is of the
form

x(f) =Ean cn;f=f(3) =Ea,,es"n
nx1 n>1
if and only if
¢ (4) &

(G

for all » > 1, ¢ > 1, where K is a finite positive number and 1, is
sufficiently large.

Proof: Iet g ¢ X';, clearly means if o, - « in X,, then
% (o) = % («). Now Let

% (s) =X a, ehn,
n>1

where a, satisfies (4.2). Suppose
-l
Ly(s) = X a, e
n=1

then we claim that «, — « in X, (observe that «, € X;). To ascer-
tain this, it is sufficient to prove that «, — « as m — oo under the

norm || ... ||, for each ¢ > 1. Let g be a fixed integer. Choose ¢ such
that 0 <e< 1 .
q

Then we can determine an integer m = m (¢) such that

((4 +¢)ge)tl
@ ()

and it follows that

An
| @ | S{ } , for all » >m + 1, (from 4,2),

" A + e Aple
a— Y aeh)| < X 1
n=1 q n=>m+1 A + il
\ q




Spaces of entire functions represented by Dirichlet Series 213

< ¢, for sufficiently large m, and this ascertains our claim. Hence
from the continuity of x, lim x (,) = x («) in the topology ind
uced by A. e

Note that
m
% (o) = X a, % (e™9).
n=1
Let
e = % (en),
then |¢,| = x (¢*») |. Since x is continuous on X . llg for each

g > 1, there exists a K > 0 (independent of g)

leal <K IS, @@= 1),

where f is given by f (s) = e*» and so using the definition of the norm
[l flly, we get

a by
W ES R
e

1) lal<EK

Hence

(@)= X a,c,
n>1

where ¢, satisfies (5.1).

To prove the other part, let now c, satisfy (5.1), then we have

@ (A) P
x(a)<K2|anI 1 1/e ;qu
= ((A +—>ee)
q
and so
2@ <Kl|lall, =1
and therefore x ¢ X' || ... ||, (¢ = 1) and from (2.7) x € X, .

This completes the proof of Theoreni 2.
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6. Construction of total sets in X,.

Definition— If X is a locally convex topological vector space,
then a set E ¢ X is said to be fofal if and only if x € X’, such that
x (E) = {0} implies that ¥ = 0.

We give in this last section a method of constructing total sets
in X;.

Proposition 3— Consider the space X; of Section 5. Let fe X
and that

f(s)=Xa,e™, a, #0 for n>1.
n>1

Suppose G is a subset of complex plane which has at least one finite
limit point. Define f, by

fu ) = Banetia = 3 (o, 0%0) e
nal =1

Lét E = {f,: u €¢G}. Then E is total in X,.

Proof: 1Is sesily follows that on account of (2.4) f is an entire
function represented by Dirichlet series; further

1?11 @ (ln) I a, s ll/).n < (A 0 e)llo ERI",

Hn—>oC
and so
fim %8 M ) 4 exp (o R1 ()} < o0,
>0 ecoela)

where M, (¢) = sup | f, (s)|, and therefore f, ¢ X,. Let now x be
—o0<¢<oo

a continuous linear functional on X, such that x(f,) = 0. Then
there exists a sequence {c,}, such that (see Theorem 2)

% (g) =n§la,, Cn g (5) = X a, e

n=1



Spaces of entire functions represented by Dirichlet Series 215

where

@ (As) i
((A+§)ee)”'"

len | <K ,n>1,9>1

and where further K is a constant and 4, is sufficiently large.

Now suppose that for every u eG
x (f#) = 2 Ay Cy e*n = 0.
n2>1

Next consider the function L, where

L(s)=Ya,c, e,

n>1

then ([4], p. 277) for large »

1 A
—— log [—"] = log ¢ (4,)
e (o) Are
and consequently
1 n “n
8 1@l | asno oo
2

and so L is an entire function represented by Dirichlet series.
Furthermore,

M)l ay, e, |V < (Aoe)e+ &) (1 + 0(1)), for all » > n,
@

and consequently L € X,. Also L (u) = 0 for each u € G. This shows
that L (s) = 0 for all s in the complex plane. Hence a, ¢, = 0 for all
n>1and asa, 20 forn >1,=¢, =0 for » > 1. Hence x = 0.
This completes the proof,

15 — Collectanea Mathematica
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