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1 Let f (2) be a meromorphic function in the plane and » (7, f) be
thenumber of poles of f (2) in |z| <7, and let

N = ’f_(’;—f) dx.

In this paper I wish to investigate a few results on the growth of the
NEevALINA characteristic function T (7, f) with certain other functions
like N (r, f), N (r, 1/f) and M (7), the maximum of the modulus of
f(2), whereas in the last article f(z) is taken to be an entire function.
The results will be clear from the context. First I start with an alter-
native proof of the following result given in Hayman’s Meromorphic
Functions ([2], p. 101):

2. THEOREM A: Let f (2) be meromorphic in the plane and of
finite non-integral order ¢. Then

T NONENGA L (prl—oe—p)
= T ) 2 (p+1) (2+1og (p+1)

where p = [p], the integral part of p and less than o.
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REMARK: Theorem A reduces to a result of Shah [5], when
0<o<l.

Proor oF THEOREM A: We have the representation of f(2)
given by

IE (p, za,)

f (&) =z exp {p (2)} E 0. ;:/b,)_ ,

where E (p, 2) is the Weierstrass well-known primary factors,
a,(u=1,2...) are the zeros and b, (v = 1,2, ...) are the poles of
wil <o < ... < |b,| — oo with »), P (2) being the polynomial
of degree at the most p. Therefore

7 (x)
xp1

dx 4 r?™1 J’ ﬂ—x—de} + O (#?) 4+ O (log ),

xPT

T, f) <4 (p) {PJ

where
nx) =nxf) —nf)+n@x1/f) —nl,1/f);

A(p)=1ifp=0;4(p)=2(+1)2+1lg(p+1)ifp=1

Now we have #n (x) dx = xd N (x) where N (x) = N (x, f) + N (x, 1/f)
and so from (2.1) we find

N N (x

T, f) <4 (o) {prr | P ax 1 (p+1) | %dx}w ).
J xe o, X

We assert that

(2.3) A — Q ,

where A = lim,_,., log N (7)/log 7, for if A <o (obviously 4 % ) then
from (2.2) one has for all » > 7y, the inequality

T (r, f) < Kr*; A < g, K is a constant,

and so

Hlog (@ f)

=1<op,
r—oo  log 7
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and therefore a contradiction and hence (2.3) holds. We notice that*
N (») is non-decreasing and continuous for » > o0 and so we can cons-
truct the proximate order g () in terms of N (#), see for instance
Theorem 16 ([3], p. 52), to satisfy the following conditions:

(i) im o (r) = o; (ii) N (r) <20, for all » > ry;

r—>00

(iii) N(r) =" r =7, (n > 1) - o0 with »; (iv) lim 7o’ (») log » = o.

7—>00

Making use of the relations (i) — (iv), we find that

"N (%) ' @)-p—1
J A deO(l)—l—{xO P71 dy
0

1

e(r) 7
NV :A (7),(7'-—7”),
e—p o—p
also
0 A7 =) y0(r)
[ _Z\'__(x_) dx < 20" =2 dy AL 4 — N (7’) , (y = 711) .
xP+2 p+1—0o p+1—0p

Therefore from (2.2), we have for y = y; the inewuality (valid for
large #n)

(24) T(r.f) <A(p) {prui?_lo

Now one easily verifies that N (») /7 > o as # = 7, > o0 and so (2.4)
leads to the required result.

Next, I state and prove a result of somewhat different nature
(see remark 2)

}N (»)+O (r?), r =7, (n > o)

THEOREM B: Let f (2) be meromorphic in the plane, having a

finite non-integral order o, then
fim T @, f) _2(p 1) 2+ log (p+ 1)
700 (N, (1 f) + N, (r, L)y 7% pH1—o¢

* The integral representation of N (v) suggests that N (¥) is a convex
function of log 7, since n (v,f) + » (v, 1/f) is a step function and tends to infi-
nity with », and a convex function is non-decreasing and continuous.
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where

N, (r, f) = I n (%, f)x;ln (0, f) dx,

and a similar expression for N, (r, 1//) and that the other terms in-
volved in stand as in the previous theorem.

Proor: Tet

Ny (1) = Ny (r, f) + Ny (7, 1) = ( :P(")l dx.

Then
P _n(_x)l dx - ol [ de =7’ N, (r) + 1’1"”J

| yp 2
70 “r 1

= 7P N, () + "1 {[%@‘I oo+ (WM dx}

x x2

“d N, (1
X

-1, Yy

N
= yp+1 [ —Z\ﬁ )-6) {lx,

x2
Yr

since for large x

No®) 0 (1) 4 41 -0

(.\' gote—p—1
X J

wete ™1l gy =0 (1) + —-—
ot+e—p

as ¥ - o (¢ < p + 1). Therefore using (2.1) we get

Ef’_z(_@ dx + O (r?) + O (log 7).
x

T, ) <A@ |

Let 6 > 0, then

N, (x) = 0 (x#+579), (5 > o)
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and therefore there exisrs a sequence {R,}, R,—oo with %, such that
N, (x) R,#H070 < N, (R,) 9%, (x> R,).

Consequently

A (p) R

T (R, [) < R 270

J N, (R,) x0"7¢72dx 4+ O (R,?) + O (log R,)
Rn

(14-0(1)) 4 (p) Ny (R,) R,

p+1—p0p—96

and as § is arbitrary, we get

im T(.f) __ A(p)
ro0 N, () ptl—o

REMARK 1@ If0 << o << 1,then p = 0 and so 4 (p) = 1 and the
above result once again reduces to a result of SHAH [5].

REMARK 2: Neither of the results, Theorems A and B seem to
follow from each other. I, however, offer certain possibilities under
which Theorem A follows from Theorem B. Infact, we find that

N, () = J n (%) Jat 1 dx = NTEx) +p J N® g,
0

xp1
0

But for § > 0, lim N (x)/x°7% = o0, and so for x < o, (5, - ©
A—>00

with %), we get
N (x)/x27% < N (0,)/0,27°.

Therefore

N, (o) <X ) 4 Mo j "1
0‘”{’ Gng_a
0

0—0 No)
e—p—96 ot ‘
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The probability that {¢,} coincides with {R,} above for large =
or a subsequence {o,,} of {0,} coincides with {R,} for sufficiently
large ¢, gives that

im T(,f) _ e 1tm T f)
r—>0o N(r) ~ o—pr—>o0 N, (7

04 (p)
Tle—p(p+1—0’

which is nothing but Theorem 4.5 of HavuaN [2]. We have for all
% < o, (however n large may be) that

L _ e-3 1
N(o) ~p—p— 02N, ()

e—0 A(p)+9
Ce—p—0p+1l—0p

A

(T (B, )7

and so for Theorem A to hold good we should have

n—co T (0, f)

and which is, therefore, another probability. We would certainly pre-
fer the second probability and it is an open question to deal with.
2(i1). To continue the study further in the theory of meromorphic
functions, I proceed to find an upper bound for m (v, f) + m (7, 1/f),
where f (z) is a meromorphic function and

27
o f) = - { tog | (re)| do.
]

Precisely we have:

TaEOREM C: Let f(z) be a meromorphic function of non-integral
order p and let g be an integer, ¢ < p << ¢+ 1, then

_ 7 (x) “n(x) 4 = 1
4 Q{M(%f)+7n(7,1/f)}Sfmdx+rj mder;m}:]ozm_l_l

0 r
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{ijr @) dx + r¥ ZJ‘OO @) dx} 4+ 0(1).

’,2m o xq—-Zm -1 x2m+q-i>3

Proor: Since f (2) is of non-integral order, therefore
fe) = 2" exp (P () ITE (z/a)] ITE (2/b),

where P (2) is a polynomial of degree < ¢q;¢q = [o]; E (#) = E (u, q)
is the Weierstrass primary factor, a’s and &'s are the zeros and poles
of f (2). Let {d} be the sequence composed of zeros and poles of f (2),
such that 0 < |d;| < |d,] < ..., Also

Y 1l=n@)=n(@0 +n{ o).
ldn| <7
Now

m @, f)+m(r, 1/f) < § {m (v, E (z/d,)) +m (r,1/E (z/d,,))} + O (»9),

n=1
and now following EDREI and Fucas ([1], p. 300), we have:

[oe]

mir, f) +m e 1f) < B [t g @) dt 4+ 0 (),

n=1

(2.5) m (7, f)+m(r,1]f) <#? 2; I.Oot“’_l @ (tr)dt +77 Y Ioot_’ifltp(t/r)dt—l—O(r").

"n

where

7 2 1+ ¢fr
) () < - 1+ “log |~
w(/f)_t+y{ +n°g,1_m

Then

Now

2.6) 3 Jmt—wq,(z/y) P> J t“‘f‘l[l +5;f log{ L+ ir }J dat

<t
n "n

m<r

+ ¥ J t—q—_l[g—{-—?logj ! +7/t}:| dt

= 21 4+ 2, (say), B = 2/x.
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But
o0 lad ; N 2m
S=E-0t -+ X 20y (2) e
™m<rq m=0 2m + 1 m<r | , 7
(2.7) =J ()d LB Y : ( () g,
0 m=0 (21% + 1) 7,21:;_/ 507 1—»2m
Also
by [ B 10
mer) (¢ ¢ 1 —¢tfr
e oo \2m+1
Y[ r2arpy a2y L { (1) 12 gy
<t , ra<r m=0 21‘}’L + ]. t
2m-|-1
’}’l( ) —l— 2 Br }J L t 2m—=3=q ¢
(q+]) m= 02”1+lr<r
oy -0 g )

@+1)7r 9, Z@m+1) 2m+q+2)

Considering the second term, that is the sum involving 7, < 7, we have:

}dt

[ rgema<y [ o +& La i
m<r), w>r ) ¢ 1 — ifr

n

%) 1,2m+2

—_ —rl 1 2B t m—q=3 gt
l“ ); + ,,,2:() 2m + 1 'n};r . -
- - v‘oox—q—l d’}'L +2B E e .Oox—Zrn—q—Zd’n(x)
i LA er ") g o § 12 0)
g—+1 ) 72 m=o (2m+1) (2m—+q-+2)
(2.9)

co ’,2m+2 oo n (x)

+2B ¥ J

me +q+3

n:O 2m + 1
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Therefore from (2.6) - (2.8) and (2.9), we get

Y (O?"’_l ¢ (rlt)ydt+ X rot—q_‘ o (7/t) dtgfr M(ir + 7J°¢xi dx

n<r 'h>7 x"_l x7
] T 0 r
o —2m '’ 2im -2 o
7 nix 7 ni\x
+2B Y L( ) dx -+ E) dx.\ .
m=02m 41 ) xrtl=2m 2m +1 ) xPmrat3
- 0 Ty

The result now follows from the preceding inequality and (2.5).

I shall deal with the various applications of this theorem in a
next sequel of my work. The following is of independent interest.

THEOREM D: Iet f (2) be meromorphic, of finite non-zero order.
Let

M (r) = max |f (2)].

lz] =7
Then

lim

log M (x) dx =0,
r—>oorT (¥) ¢ (r) o
for all functions, ¢ () — co as 7 - oo, howerer increasing slowly.

Proor: We have ([4], p. 26):

’_[ log M (x) dx < C (&) T (kr), k> 1
V4
]

Since T (r) is continuous, non-decreasing for » > 0 and so a proxi-
mate order for T () can be constructed, satisfying the conditions (i)-
(iii) in §2, with N (») replaced by T (7). Now

T (kr) < (kr)e®), v > 7,

= ke 20 exp {(o (kr) — o (r)) log 7}.
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But,
24 kr ~kr
el —ot) = | ot ar<e| 2t [
g J xlogx  logr x
< ¢ log &
log 7
Therefore
T (kr) < Re™) 92") exp (&), & = ¢ log k
~ kT (7), r =7, #,~0.
Therefore

lJ log M (x) dx < C (k) ke T (v),

"o

for arbitrarily large values of » — co. This leads to the desired result.
3. ENTIRE FUNCTIONS: GROWTH OF T (7, f):

Suppose now f (z) is an entire function and 7T (r, f) be the
NEVANLINNA characteristic function corresponding to f (2). We write
T (v, f) as T (r). It is a well-known result that

(3.1) T(r)glog"‘M(y)g§+7T(R);O§7<R,
— 7
where
1. w. b.
M) ="""170@1.
|z| =7

For a non-constant entire function 7". Shimizu [6] has proved the
following result:

lim log M (v)
r—oo T (r) {log T (v)}*

(3.2) =0, k<1

The term (log T (7))* in (3.2) does not seem to be a sharp term, for
example see the remark 1 immediately following Theorem F. If
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f () is an entire function of non-zero finite order, this can be largey
improved. Precisely. one has the following

TuroreM E: Let f (z) be an entire function of non-zero finite,
order, then

lim log M ()

r—o T (r) ¥ (7)

where ¥ () — oo as 7 — oo is non-decreasing, however slow growth
be of ¥ (r) to increase with 7.

Proor: The proof follows on the lines of Theorem D, since if
R =Fkr, R > 1, then

1

el
+

log M (y) < T (k).

=
l
.

As T (v) is continuous and non-decreasing and so a corresponding
proximate order for T (r) exists with the help of which we find that

T (kr) < O (1) T (), for arbitrarily large values of » — oo. Hence
the result follows.

REMARK I: In the above theorem, one can choose ¥ () to be
much smaller than (log T (r))%, for example let f (z) = ¢?, then log
M (ry=r; T (r)=r/n, and so log M (»)/T (r) (log T (r))* ==/(1+0(1))
(logr)k -0, y > oo ; while log M (r)/T () ¥ (r) = n/¥ (r). Let ¥ (r) =
= [, 7, where & is as large as we please but fixed.

REMARK 2: For a class of entire functions of infinite order the
result (3.2) can be easily obtained. For, let

(3.3) 0< Tim 08T _ . g s L) _

’

77— 4 r—>00 lOg 4

If the relation in (3.3) (the first relation) holds, then we have on
following Levin ([3] p. 52) that

T (r) <e*) all r >
T (751) = gmlm, ¥y —> 0O

rA(r) -0, (r > o)
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and where

lim 2 (r) = lim lo_gi@
r—>20 7—>3C 4
Then
T (‘1’ + 7]) S en/‘.(;u!»ﬂ).i-,.i.(r) ew(l(r»%-u)—i,(r)), all # Z %o
S AT (r) e®r =20,y =7,
Also
r+n
A+ ) — @) SJ edx _en
x 7

Therefore for » = 7,
T (r+n <A T().

Also 7, = log T (7,)/A(7,). Therefore

log M (r,) < Ay (140 (1) 2 T ().
1
Hence for &2 > 1

log M (7,)
T (r) {log T (r,)}"

<A,(14+al) n* =0 n> o0,

and so

lim log M (7)
r—oo T (r) {log T (v)}*

= 0.

Lastly we examine under what circumstances we can prove that
T (r+k)~T (), and log T (r) ~log log M (r), where % is a constant > 0.

In the former case we have:

TaEOREM I: If f (2) is an antire function of order p and lower
order A, such that ¢ — A < 1, then for any positive constant %,

T(r+kR ~T (), r > .
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Proor: As T (r) is convex with respect to log 7, we find that

T0) =Teo + [ 2P ar,

o

where o (x) is non-decreasing, tending to infihity with x.

Now
T (r) <rete, all ¥ >y =g (¢)

and so for u>1,

~ur
J w_(x)dx <0 (1)rete, 7 > 17,
x

7

Now for R > 7

T (R)<T () + o(R) log [1 n .R“’]

4

R —vr

<T () +0(l) Reve

Let R =7+ k (k> 0). Then
T(r+kB) <T@ +0(1)r etk (I+kr e
and as T (r) > »*7¢, for all » > », therefore for all sufficiently large »
T+ k) <{l+0() (14 krtjetepeit2e-li T (y)
or T+ <(1+0()T @), r=r,

and this, when combined with T (»r + &) > T (») yields the desired
result.

CoroLrary: If f (2) is of regular growth, then T (» -+ &) ~ T (») for
every positive k.

Coming to the second problem raised just before Theorem F, we
note first of all from the example

zﬂ

E,) =% — > a—1
2 (1 + an) k

Noh]
I



48 Pawan Kumar Kamthan

that T () ~log M (r), » — oo need not be necessarily true, for in this
case

log M (r) ~7%; T (r) ~—.

We, therefore, naturally think if Jog log M (r) ~ log T () is always
true. I have been in a position to give a partial answer to this question,
namely

THEOREM G: Let f(z) be an entire function of finite order. Then
there exists a sequence {7}, 7, — oo with #, such that

log log M (v,) ~log T (r,), n - 0.
Proor: Let £ > | Then following the proof of Theorem D
T (kr) = k¥ T (7)

for r=v,, 7, > o as n — oo . Hence from (3.1)

log M (1) <*+ i T (k7)
e —_—
ot, log M (r,) < [];Lij k) T (7,)
or, log log M (r,) < (1 + 0(1)) log T (7,)

and using (3.1) we get the result.
REMARK: This seems still an open question if
log log M (v) ~1log T (7)

as 7 — oo through all large values, holds for entire functions of all
orders.
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