A NOTE ON THE DIMENSION OF THE RING OF ENTIRE FUNCTIONS

by

EDGAR ENOCHS

Aguiló Fuster in [1] states that the dimension of the ring of entire functions is 1. The purpose of this note is to correct this statement.

Let A be the ring of entire functions. Then we have: Prop. dim $A \geq 2$.

Proof. Let \mathcal{U} be a non-trivial ultra filter on \mathbf{C} (the set of complex numbers) such that $S \in \mathcal{U}$ for some denumerable set S. Then if \mathcal{M} is the set of $f \in A$ such that $Z(f) \in \mathcal{U}$ (where Z(f) is the set of zeros of f) then as was shown by Aguiló Fuster, \mathcal{M} is a maximal ideal of A. Now let P be the set of $f \in \mathcal{M}$ such that $Z(f,n) \in \mathcal{U}$ for each $n \geq 0$ where $Z(f,n) = \{z \mid z \text{ is a zero of } f \text{ of order } \geq n\}$. Then P is a prime ideal. For if $f \cdot g \in P$ suppose $Z(f,n) \notin \mathcal{U}$. Then $C \cdot Z(f,n) \in \mathcal{U}$. Now $Z(f \cdot g, 2n) \in \mathcal{U}$ so clearly $Z(g,n) \in \mathcal{U}$. Thus for each n, either $Z(f,n) \in \mathcal{U}$ or $Z(g,n) \in \mathcal{U}$. Clearly one or the other holds for each n so $f \in P$ or $g \in P$.

Note $\mathcal{P} \neq \mathcal{M}$, 0. For obviously $\mathcal{P} \neq \mathcal{M}$ since there is an element of \mathcal{M} with $Z(f, 2) = \emptyset$ (we only need use the Mittag-Leffler theorem on S). For the same type reasoning $\mathcal{P} \neq 0$.

This says dim $A \ge 2$. It seems to be an open question whether dim A = 2.

REFERENCES

AGUILÓ FUSTER, RAFAEL. — Estudio de los ideales del anillo de las funciones enteras, Collect. Math. 17 (1965), 105-134.