By

JOHN DECICCO

ROBERT V. ANDERSON

1. Introduction. Let T represent a cartogram between two Riemannian spaces V_n and \overline{V}_n each of dimension $n \geq 2$. That is, T represents a one to one point correspondence between V_n and \overline{V}_n such that in any admissible coordinate system (x) corresponding points are given by the same set of curvilinear coordinates $(x^i) = (x^1, x^2, \dots, x^n)$. It is assumed that the quadratic differential forms $ds^2 = g_{ij} dx^i dx^j$ and $d\bar{s}^2 = \bar{g}_{ij} dx^i dx^j$ of V_n and \bar{V}_n are both positive definite.

The scale $\varrho = e^{\omega} = d\bar{s}/ds > 0$, of such a cartogram T is given by the equation

(1.1)
$$\varrho^2 = e^{2\omega} = \left(\frac{d\bar{s}}{ds}\right)^2 = \bar{g}_{ij} \frac{dx^i}{ds} \frac{dx^j}{ds} > 0.$$

Relative to the geometrical operations of V_n , the variation $d\varrho/ds$ of the scale ϱ with respect to the arc length s of a curve C of V_n is given by the equation

$$(1.2) \qquad \varrho \, \frac{d\varrho}{ds} = e^{2\omega} \, \frac{d\omega}{ds} = \frac{ds}{ds} \frac{d^2\bar{s}}{ds^2} = \bar{g}_{ij} \frac{dx^i}{ds} \, \varkappa^j + \frac{1}{2} \, \bar{g}_{ij,k} \frac{dx^i}{ds} \frac{dx^j}{ds} \frac{dx^k}{ds} ,$$

where K^i is the contravariant form of the geodesic curvature of C. A scale curve C(1) of this cartogram T is a locus of a point P on the Riemannian space V_n along which the scale does not vary.

2. Some Geometrical theorems concerning scale curves. From equation (1.2) it is readily seen that the system of scale curves

C of a cartogram T between two Riemannian spaces V_n and \overline{V}_n , for $n \geq 2$, obeys the single ordinary differential equation

$$(2.1) \ddot{g}_{ij} \varkappa^i \frac{dx^j}{ds} + \frac{1}{2} \ddot{g}_{ij,k} \frac{dx^i}{ds} \frac{dx^j}{ds} \frac{dx^k}{ds} = 0.$$

Therefore a curve C in V_n is a scale curve C if and only if its contravariant tangent vector is orthogonal to the covariant vector

$$(2.2) U_i = \ddot{g}_{ij} \varkappa^j + \frac{1}{2} \ddot{g}_{ij,k} \frac{dx^j}{ds} \frac{dx^k}{ds}.$$

The following result is deduced from the preceding discussion.

Theorem 2.1 If two Riemannian spaces V_n and \overline{V}_n , for $n \geq 2$, correspond by a cartogram T for which the scale is $\varrho = e^\omega = d\bar{s}/ds > 0$, and if at a point x of V_n the scalar geodesic curvature $\varkappa(2)$ of a scale curve C is $K = |K^i| > 0$, and if Θ with $0 \leq \Theta \leq \pi$ is the angle between the covariant vector $p_i = \overline{g}_{ij} \, dx^j/ds$ for which $p = |p_i| > 0$ and K^i then

(2.3)
$$p \varkappa \cos \Theta + \frac{1}{2} \bar{g}_{ij,k} \frac{dx^i}{ds} \frac{dx^j}{ds} \frac{dx^k}{ds} = 0.$$

At any point x of V_n construct the tangent Euclidean space π_n generated by the set of contravariant vectors with initial points at x. In π_n the scale ellipsoid Σ_{n-1} of the cartogram T is defined by the equation

(2.4)
$$\bar{g}_{ij}(X^i - x^i)(X^j - x^j) = |.$$

A cartogram T is locally conformal at a point x if and only if the scale ellipsoid Σ_{n-1} constructed in the tangent Euclidean space π_n at x is a sphere Σ_{n-1} . It is known that a necessary and sufficient condition for local conformality is that the characteristic equation of T, namely

$$|\bar{g}_{ij} - u g_{ij}| = 0,$$

possesses a root of multiplicity n at the point x.

THEOREM 2.2. If a cartogram T between two Riemannian spaces V_n and \overline{V}_n , for $n \geq 2$, is not locally conformal at a point x then, at x,

there is at least one unit contravariant tangent vector dx^i/ds such that there exists a curve C_0 passing through x in the direction of dx^i/ds , for which the contravariant vector geodesic curvature vector z_0^i at x, obeys the differential condition (2.1) and the set of n relations $p^i = rdx^i/ds$ is satisfied for some scalar r > 0. The scalar geodesic curvature of C_0 satisfies the equation

$$(2.6) p \varkappa_0 + \frac{1}{2} \bar{g}_{ij,k} \frac{dx^i}{ds} \frac{dx^j}{ds} \frac{dx^k}{ds} = 0$$

For, if dx^i/ds is a characteristic vector corresponding to a characteristic root u_0 of (2.5) then $p_i = \bar{g}_{ij} dx^j/ds = u_0 g_{ij} dx^j/ds$. Thus $p^i = g^{ij} p_j = u_0 g^{ij} g_{ja} dx^a/ds = u_0 dx^i/ds$. Hence $r = u_0$ and it is seen that p^i is parallel to dx^i/ds . Therefore, since dx^i/ds is orthogonal to z^i it follows that the angle Θ of Theorem 2.1 must be zero yielding (2.6).

THEOREM 2.3. (An analogue of Meusnier's Theorem) (3) If, under the conditions of Theorem 2.1, K > 0 is the scalar geodesic curvature of a scale curve C tangent to the curve C_0 at the point x and if Θ with $0 \le \Theta \le \pi$ is the angle between their two corresponding vector geodesic curvatures z^i and z_0^i , then

This follows immediately from a comparison of equations (2.3) and (2.6).

3. Some conformal properties of a non-conformal cartogram T. If T is a cartogram between two Riemannian spaces V_n and \overline{V}_n , for $n \geq 2$, then at a fixed point x the characteristic directions corresponding to the roots of the characteristic equation (2.5) decompose the tangent Euclidean space π_n into a union of disjoint mutually orthogonal Euclidean subspaces π_{pk} with $1 \leq p_k \leq n$ and $p_1 + p_2 + ... + p_n = n$. The dimension of each π_{pk} is p_k and equals the multiplicity of the corresponding characteristic root of (2.5). These Euclidean subspaces, for $m \geq 2$, intersect only at the point x. The cartogram T is locally conformal at x if and only if m = 1 and $p_1 = n$.

THEOREM 3.1. For a cartogram T between two Riemannian spaces V_n and \overline{V}_n , for $n \geq 2$, consider the set of all scale curves C of V_n such that each one passes through a fixed point of V_n and the scalar geodesic

curvature of each one at this point is $\varkappa > 0$. A scale curve of this cartogram T obeys the differential condition

$$(3.1) g_{ij,k} \frac{dx^i}{ds} \frac{dx^j}{ds} \frac{dx^k}{ds} = 0$$

if and only if its unit contravariant tangent vector dx^i/ds is in exactly one of the characteristic Euclidean subspaces of T at the point x.

The differential condition (3.1) is valid for every point x and every unit contravariant tangent vector dx^i/ds of V_n if and only if the map T is a conformal cartogram T between V_n and \overline{V}_n , for which the logarithmic scale is a point function $\omega = \omega(x)$.

For this situation the differential equation of the system of all scale curves C of a conformal cartogram T between V_n and \overline{V}_n whose logarithmic scale is $\omega = \omega(x)$ is

$$\frac{\partial \omega}{\partial x^k} \frac{dx^k}{ds} = 0.$$

If the two Riemannian spaces correspond by a non-homothetic conformal cartogram T then $\omega = \omega$ (x) is non-constant point function. Under these circumstances the system of all scale curves C of V_n is composed of all curves on the simple family of ∞^1 subspaces Σ_{n-1} defined by the equation

(3.3)
$$\omega = \omega (x) = \omega (x^1, x^2, \dots, x^n) = \text{constant}.$$

Finally, a map T between two Riemannian spaces V_n and \overline{V}_n , each of dimension $n \geq 2$, is a homothetic cartogram T if and only if every curve C of V_n is a scale curve C of the cartogram T. (4)

Illinois Institute of Technology Université du Québec à Montréal

REFERENCES

- KASNER, E. and DECICCO, J., «Scale curves in general cartography». Proceedings of the National Academy of Sciences, Vol. 30, No. 8, pp. 211-215, 1944
- 2. EISENHART, I., P., «Riemannian Geometry». Princeton University Press, 1949.
- 3. Weatherburn, C. F., "Differential Geometry of Three Dimensions". Vol. I, Cambridge University Press, 1961.
- 4. DECICCO, J. and Anderson, R. V., «Some theorems on isothermal families in Riemannian space V_n». Ricerche di Matematica, Vol. 16, pp. 192-201. Naples, Italy, 1967.

