ARITHMETICAL NOTES, VII. SOME CLASSES OF EVEN FUNCTIONS (mod r)

by

ECKFORD COHEN

1. Introduction. With n and r representing integers, r > 0, a complex-valued function f(n, r) is defined to be even (mod r) if f((n, r), r) = f(n, r) for all n. Here (n, r) has its usual meaning as the greatest common divisor of n and r. The class of even functions (mod r), to be denoted E_r , was discussed in [2], [3], [4], [5].

In this note we consider some subclasses of E_r . It will be observed that for a fixed divisor δ of r, $E_{\delta} \equiv E_{\delta}(r) \subseteq E_r$. We define the class $B_{\delta} \equiv B_{\delta}(r)$ to consist of the functions of E_r contained in E_{δ} but not contained in E_D for any proper divisor D of δ . The classes E_{δ} and B_{δ} are characterized in § 2 (Theorem 2.1) in terms of Fourier expansions. This criterion is applied to the classification of some important functions of E_r . In particular, we consider the functions $\theta_s(n, r)$, $P_t(n, r)$, $S_m(n, r)$, defined for positive integers s, t, m, as follows: $\theta_s(n, r)$ is the number of solutions (mod r) of

$$(1.1) n \equiv x_1 + \ldots + x_s \pmod{r}, (x_i, r) = 1,$$

 $(i = 1, \ldots, s)$; $P_t(n, r)$ is the number of solutions (mod r) of

(1.2)
$$n \equiv p_1 y_1 + \ldots + p_t t_t \pmod{r}$$
, p_i prime, $p_i \mid r$, $(y_i, r) = 1$,

(i = 1, ..., t); and $S_m(n, r)$ is the number of solutions (mod r) of

$$(1.3) n \equiv z_1^2 + \ldots + z_{2m}^2 \pmod{r}, \quad (r \text{ odd}).$$

If n is viewed as an element of the residue class ring J_r of the ring of integers (mod r), then the above functions can be interpreted in the following manner: $\theta_s(n, r)$ is the number of representations of n as a sum of s units of J_r ; $P_t(n, r)$ is the number of representations of n as a weighted sum of t prime elements of J_r ; $S_m(n, r)$ is the num-

ber of representations of n as the sum of squares of an even number (2m) of elements of J_r .

Section 3 is devoted to generalizations of the congruence (1.1) and includes some explicit formulas. For a discussion of some other classes of functions of E_r , we mention McCarthy [8].

REMARK 1.1. In this paper r is to be assumed fixed. However, in the arithmetical inversion theory of the papers referred to above, r must be treated as an integral variable.

2. Classification of even function (mod r). Let c(n, r) denote Ramanujan's sum and place $\phi(r) = c(0, r)$, $\mu(r) = c(1, r)$, the Euler and Möbius function, respectively. The function c(n, r) is contained in E_r ; moreover, we have the following characterization [2, Theorem 1] of E_r in terms of the Ramanujan sums: A function f(n, r) is contained in E_r if and only if it is representable in the form

(2.1)
$$f(n, r) = \sum_{d|r} \alpha(d, r) c(n, d);$$

the coefficients $\alpha(d, r)$ are uniquely determined ([2, (7)].

This result may be restated in the alternative form: E_r is a vector space over complex field with basis c(n, d), d ranging over the divisors of r. This result leads directly to the following criterion for the subclasses of E_r defined in the Introduction.

THEOREM 2.1. Let δ denote a divisor of r. A function f(n, r) is contained in E_{δ} if and only if it possesses an expansion (2.1) in which $\alpha(d, r) = 0$ for each d which is not a divisor of δ . A function f(n, r) is contained in B_{δ} if and only if it possesses an expansion (2.1) in which $d + \delta$ implies that $\alpha(d, r) = 0$, but such that for each proper divisor D of δ there exists a D', D' + D, for which $\alpha(D', r) \neq 0$.

Let $v_k(r)$ denote the maximal (k+1) — free divisor of r, for each positive integer k, and place $v(r) = v_1(r)$. We note the following chain of function classes,

$$(2.2) E_{\nu(r)} = E_{\nu_1(r)} \subset E_{\nu_2(r)} \subset E_{\nu_3(r)} \subset \ldots \subset E_{\nu_e(r)} = E_r,$$

where e = e(r) is the maximum exponent to which any prime divides r. The class $E_{\nu(r)}$ was discussed in [3] under the name of *primitive* functions (mod r). For a more precise classification of functions we have the hierarchy of classes,

$$(2.3) B_{\nu(r)} = B_{\nu_1(r)}, B_{\nu_2(r)}, \ldots, B_{\nu_r(r)} = B_r;$$

note that $B_{v_i(r)} \subset E_{v_i(r)}$, while for each f(n, r) in $B_{v_i(r)}$, it follows that $f(n, r) \notin E_{v_{i-1}(r)}$, $i = 1, \ldots$, e, if $v_0(r) = 1$. Proceeding from left to right in (2.3), (or 2.2)), one passes from the class of functions with the simplest structure, $B_{v(r)}$ (or $E_{v(r)}$), to the class with the most complicated structure, B_r (or E_r).

In order to identify the functions $\theta_s(n, r)$, $P_t(n, r)$, $S_m(n, r)$ in terms of the above classification, we recall their expansions of the form (2.1), that is, their Fourier expansions as even functions (mod r). Placing $\alpha = (-1)^m$ and letting (α/d) denote the Legendre-Jacobi symbol, we have [1, Theorem 11, s = 2m],

$$(2.4) S_m(n, r) = r^{2m-1} \sum_{d|r} \left(\frac{\alpha}{d}\right) \frac{c(n, d)}{d^m} (r odd).$$

Let $\omega(r)$ and $\varrho(r)$ denote respectively, the number and sum of the (distinct) prime divisors of r and place $\varrho(d, r) = \omega(r) - \tau(d)$, $\mu^*(r) = (-1)^{\omega(r)}$. Also define

$$\pi(r) = \left\{ egin{array}{ll}
otin & r =
otin ^2 d,
otin & prime,
otin & square-free,
otin + d,
otin & otin &$$

Then by [5, Theorem 4]

$$(2.5) \quad P_{t}(n,r) = \frac{\phi^{t}(r)}{r} \left\{ \sum_{d|r} \left(\frac{\mu(d)Q(d,r)}{\phi(d)} \right)^{t} c(n,d) + \sum_{d|r} \left(\frac{\pi(d) \, \mu^{*}(d)}{\phi(d)} \right)^{t} c(n,d) \right\}.$$

Finally, by [2, Theorem 6 (Note)], we have

(2.6)
$$\theta_s(n, r) = \frac{\phi^s(r)}{r} \sum_{d|r} \left(\frac{\mu(d)}{\phi(d)} \right)^s c(n, d).$$

By the definition of the functions $\mu(r)$, (α/r) , and $\pi(r)$, the following result follows on applying Theorem 2.1 to (2.4), (2.5), and (2.6).

THEOREM 2.2.

$$(2.7) S_m(n, r) \varepsilon B_r, (r odd),$$

$$(2.8) P_t(n, r) \varepsilon B_{\nu_2(r)},$$

(2.9)
$$\theta_s(n, r) \in B_{v(r)}$$

Let now g(n, r) denote a function of E_r with Fourier expansion,

(2.10)
$$g(n, r) = \sum_{d|r} \beta(d, r) c(n, d).$$

It is recalled from [4, Theorem 1] that

(2.11)
$$\sum_{n \equiv a + b \pmod{r}} f(a, r) g(b, r) = r \sum_{d \mid r} \alpha(d, r) \beta(d, r) c(n, d).$$

We apply this result to the function $Q_{s,m}(n,r)$, defined to be the number of solutions (mod r) of

$$(2.12) \quad n \equiv x_1 + \ldots + x_s + z_1^2 + \ldots + z_{2m}^2 \pmod{r}, \ (x_i, r) = 1,$$

 $i=1,\ldots,s$. In particular, application of (2.11) with $f(n,r)=\theta_s(n,r)$, $g(n,r)=S_m(n,r)$, leads on the basis of (2.4) and (2.6) to

THEOREM 2.3. If r is odd, then for s > 0,

$$(2.13) Q_{s,m}(n,r) = r^{2m-1} \phi^{s}(r) \sum_{d|r} \left(\frac{\mu(d)}{\phi(d)} \right)^{s} \left(\frac{\alpha}{d} \right) \frac{c(n,d)}{d^{m}};$$

in particular, $Q_{s,m}(n, r) \in B_{r(r)}$.

To obtain a product representation of $Q_{s,m}(n,r)$, we recall that c(n,r) is multiplicative in r and that for e>0 and primes p,

$$(2.14) c(n, p^s) = \begin{cases} p^e - p^{e-1} & \text{if } p^e | n \\ - p^{e-1} & \text{if } p^{e-1} | n, p^e + n \\ 0 & \text{otherwise.} \end{cases}$$

Hence (2.13) becomes.

THEOREM 2.3'. If r is odd, then

$$(2.15) \frac{Q_{s,m}(n,r)}{r^{2m-1}\phi^{s}(r)} = \prod_{\substack{p \mid (n,r)}} \left(1 + \left(\frac{\alpha}{p}\right) \frac{(-1)^{s}}{p^{m}(p-1)^{s-1}}\right) \prod_{\substack{p \mid r \\ p \mid n}} \left(1 + \left(\frac{\alpha}{p}\right) \frac{(-1)^{s+1}}{p^{m}(p-1)^{s}}\right)$$

3. Some further congruence problems. In generalizing the problem (1.1), we need the function $g_k(n, r)$, defined for positive integers k, by

$$(3.1) g_k(n, r) = \sum_{d|r} d\mu_k\left(\frac{r}{d}\right),$$

where $\mu_k(r)$ is the function, multiplicative in r, with the evaluation,

(3.2)
$$\mu_k \left(p^e \right) = \begin{cases} -1 & (e = k) \\ 0 & (e \neq k), \end{cases}$$

for primes p and positive integers e. Clearly, $\mu_1(r) = \mu(r)$, and by the well-known evaluation of c(n, r), $g_1(n, r) = g(n, r)$. For an equi-

valent trigonometric definition of $g_k(n, r)$, we mention [6, § 4 and (6.3)].

Evidently, $g_k(n, r)$ is even (mod r) and is multiplicative as a function of r; it is therefore sufficient to consider the case $r = p^e$, $n = p^l$, $0 \le l \le e$, where p and e have the same significance as above.

In particular, it is easily seen that

$$(3.3) g_k(p^l, p^e) = \begin{cases} p^e & (l = e < k) \\ p^e - p^{e-k} & (l = e \ge k) \\ -p^{e-k} & (0 \le e - k \le l < e) \\ 0 & (l < e < k \text{ or } e > k + l), \end{cases}$$

 $g_k(n, 1) = 1.$

Define now $\theta_{k,s}(n, r)$ to be the number of solutions of

(3.4)
$$n = x_1 + \ldots + x_s \pmod{r}, (x_i, r)_k = 1,$$

 $(i = 1, \ldots, s)$, where $(n, r)_k$ denotes the greatest common k-th power divisor of n and r. The following Fourier expansion of $\theta_{k,s}$ (n, r) as an even function (mod r) was proved in [6, (6.10)]:

(3.5)
$$\theta_{k,s}(n,r) = \frac{1}{r} \sum_{d|r} \left(g_k \left(\frac{r}{d}, r \right) \right)^s c(n, d).$$

Let r_k denote the product of the prime powers p^e such that $p^e|r$, $p^{e+1} + r$ and $e \ge k$. Then we have

THEOREM 3.1. The function $\theta_{k,s}(n,r)$ is contained in the class $B_{\nu_k(r_k)}$. Moreover, if k > 1, then $\theta_{k,s}(n,r) = 0$ if and only if s = 1 and $(n, r)_k \neq 1$.

PROOF. The first statement of the theorem results from (3.3), (3.5) and Theorem 2.1. Using e, l as in (3.3), a computation based on (3.5) yields, for prime factors p of π_k).

$$(3.6) \frac{p^{e} \phi_{k,s} (p^{l}, p^{e})}{p^{(e-k)s}} = \begin{cases} (p^{k} - 1)^{s} + (-1)^{s+1} & \text{if } k > l, \\ (p^{k} - 1) [(p^{k} - 1)^{s-1} + (-1)^{s}] & \text{if } k \leq l. \end{cases}$$

By the multiplicativity of $\theta_{k,s}(n,r)$ as a function of π , the proof is now complete.

REMARK 3.1. Since $\theta_{1,s}(n,r) = \theta_s(n,r)$, the first statement of Theorem 3.1 reduces to (2.9) in case k = 1. A complete discussion of the solvability of (3.4) in this case is contained in [7].

For positive integral h, k, s, t, let $\phi_{h,s}^{k,t}(n,r)$ denote the number of solutions of

(3.7)
$$n \equiv x_1 + \ldots + x_s + y_1 + \ldots + y_t \pmod{r}, (x_i, r)_h = (y_j, r)_k = 1,$$

 $(i = 1, \ldots, s; j = 1, \ldots, t).$ Applying (2.11) with $f(n, r) = \theta_{h, s}(n, r),$
 $g(n, r) = \theta_{h, t}(n, r),$ it follows by (3.5) that

(3.8)
$$\theta_{h,s}^{k,t}(n,r) = \frac{1}{r} \sum_{d|r} \left(g_h \left(\frac{r}{d}, r \right) \right)^s \left(g_k \left(\frac{r}{d}, r \right) \right)^t c(n, d).$$

Let e and l have the same meaning as in (3.6). Then by (3.3) and (3.8), with $h \le k \le e$, it can be verified that

$$(3.9) \quad \frac{p^{e} \, \theta_{h,s}^{k,t} \, (p^{l}, p^{e})}{p^{(e-h)s} + (e-k)t} = \begin{cases} (p^{h}-1)^{s} \, (p^{k}-1)^{t} + (-1)^{s+t+1} & \text{if } h > l, \\ (p^{h}-1) \, [(p^{h}-1)^{s-1} \, (p^{k}-1)^{t} + (-1)^{s+t}] & \text{if } h \leq l. \end{cases}$$

Clearly (3.7) is solvable if k > e, $r = p^e$; therefore, by (3.9) and multiplicativity one obtains.

REMARK 3.2. If max (h, k) > 1, then (3.7) is always solvable.

REMARK. 3.3. The formula (3.6) determines $\theta_{k,s}$ (n, p^e) , $k \ge e$, while (3.9) evaluates $\theta_{k,s}^{k,t}$ (n, p^e) , $k \le e$. The excluded case, k > e, is of course trivial.

The result in Remark 3.2 can also be verified directly.

BIBLIOGRAPHY

- 1. ECKFORD COIDEN, Rings of arithmetic functions, II. The number of solutions of quadratic congruences, Duke Mathematical Journal, vol. 21 (1954), pp. 9-28.
- 2. ECKFORD COHEN, A class of arithmetical functions, Proceedings of the National Academy of Sciences, vol. 41 (1955), pp. 939-944.
- 3. ECKFORD COHEN, Representations of even functions (mod r), I. Arithmetical identities, Duke Mathematical Journal, vol. 25 (1958), pp. 401-422.
- 4. ECKFORD COHEN, Representations of even functions (mod r), II. Cauchy products (mod r), Duke Mathematical Journal, vol. 26 (1959), pp. 165-182.
- 5. ECKFORD COHEN, Representations of even functions (mod r), III. Special topics, vol. 26 (1959), pp. 491-500.
- 6. ECKFORD COHEN, A class of residue systems (mod r) and related arithmetical functions, I. A generalization of Mobius inversion, Pacific Journal of Mathematics, vol. 9 (1959), pp. 13-23.
- J. D. DIXON, A finite analogue of the Goldbach problem, Canadian Mathematical Bulletin, vol. 3 (1960), pp. 121-126.
- 8. P. J. McCarthy, The generation of arithmetical identities, Journal für die reine und die angewandte Mathematik, vol. 203 (1960), pp. 55-63.

The University of Tennessee.

