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by
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1. InTRODUCTION. With # and 7 representing integers, » > 0,
a complex-valued function f(n, 7) is defined to be even (mod 7) if
f((n, 7), ¥) = f(n, 7) for all n. Here (n, 7) has its usual meaning as the
greatest common divisor of # and 7. The class of even functions
(mod 7), to be denoted E,, was discussed in [2], [3], [4], [5].

In this note we consider some subclasses of E,. It will be observed
that for a fixed divisor d of 7, E; = E; (r) C E,. We define the class
B; == Bs(r) to consist of the functions of E, contained in E; but not
contained in Ej for any proper divisor D of 8. The classes E; and B,
are characterized in § 2 (Theorem 2.1) in terms of FOURIER expan-
sions. This criterion is applied to the classification of some important
functions of E,. In particular, we consider the functions 0, (%, 7),
P;(n,7), S,(n,r), defined for positive integers s, ¢, m, as follows:
6, (n, 7) is the number of solutions (mod 7) of

(1.1) n=x%-4+ ... +2% (mod 7), (%, 7) =1,

(=1, ..., s); P;(n, r) is the number of solutions (mod 7) of
(1.2) n=pv+ ... + 5t (mod 7), p; prime, $; |7, (y,-, 7) =1,
=1, ...,%); and S,, (n, ) is the number of solutions (mod 7) of
(1.3) n =22+ ... + 2,2 (mod 7), (r odd).

If n is viewed as an element of the residue class ring J, of the
ring of integers (mod 7), then the above functions can be interpreted
in the following manner: 0, (#, 7) is the number of representations of »
as a sum of s units of J,; P,(n, 7) is the number of representations
of # as a weighted sum of ¢ prime elements of J,; S,,(#, 7) is the num-
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ber of representations of # as the sum of squares of an even number
(2m) of elements of J,.

Section 3 is devoted to generalizations of the congruence (1.1)
and includes some explicit formulas. For a discussion of some other
classes of functions of E, we mention McCarthy [8].

REMARK 1.1. In this paper 7 is to be assumed fixed. However,
in the arithmetical inversion theory of the papers referred to above,
7 must be treated as an integral variable.

2. CLASSIFICATION OF EVEN FUNCTION (mod 7). Let ¢(#n, 7) denote
Ramanujan‘s sum and place ¢(r) = ¢(0, 7), u(r) = ¢(1, 7), the EULER
and Mobius function, respectively. The function c¢(#n, ) is contained
in E, ; moreover, we have the following characterization [2, Theorem 1]
of E, in terms of the Ramanujan sums: 4 function f(n, r) is contained
in E, if and only if it is vepresentable in the form
(2.1) fn, ) = ; a(d, 7)c(n, d);

r
the coefficients a(d, v) are uniquely determined ([2, (7)].

This result may be restated in the alternative form : E, is a vector

space over complex field with basis ¢(#, 4), 4 ranging over the divisors

of 7. This result leads directly to the following criterion for the sub-
classes of E, defined in the Introduction.

THEOREM 2.1. Let & denote a divisor of r. A function f(n, 7) is
contained in Eg if and only if it possesses an expansion (2.1) in which
o(d, ¥) = 0 for each d which is not a divisor of 8. A function f(n, 7) is
contained in Bj if and only if it possesses an expansion (2.1) in which
d + 6 implies that a(d, r) = 0, but such that for each proper divisor
D of & there exists a D', D' + D, for which (D', ) 5 0.

Let v, () denote the maximal (& + 1) — free divisor of 7, for each
positive integer 2, and place » () = »; (). We note the following
chain of function classes,

(2.2) Eu(r) = Ev;(f) c Ei'z(f) c EV:(’) c...c E"e(’) = E,

where ¢ = ¢(7) is the maximum exponent to which any prime divides
7. The class E,,) was discussed in [3] under the name of primitive
Junctions (mod 7). For a more precise classification of functions we
have the hierarchy of classes,

(23) Bv(r) = Bvl(r): sz(r); ey Bve(r) == Bi:
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note that B, . C E, xer while for each f(n, 7) in B,.», it follows
that f(n, 7) ¢ E,1 10 i=1, ..., e, if vy (#) = 1. Proceeding from left
to right in (2.3), (or 2.2)), one passes from the class of functions with
the simplest structure, B, (or E,), to the class with the most
complicated structure, B, (or E,).

In order to identify the functions 6;(n, »), P;(n, 7), S,,(#, 7) in
terms of the above classification, we recall their expansions of the
form (2.1), that is, their Fourier expansions as even functions (mod 7).
Placing o = (— 1) and letting («/d) denote the I,EGENDRE-JACOBI
symbol, we have [1, Theorem 11, s = 2m],

— y2m—1 C(’}’L d)
(2.4) Spln, r)=7r d%(d) p (r odd).

Let w(r) and o(») denote respectively, the number and sum of the
(distinct) prime divisors of 7 and place Q(d, 7) = w(r) — =(d), u*(r)
= (— 1)*", Also define

p if r = p2%d, p prime, d square-free, p +d
m(r) = :
0 otherwise.

Then by [5, Theorem 4]

_ POV 3 (#d0E)) n(d) p* (d)
(2.5) P,(n,7)= » {%‘r( ) ) -{—%( 4 )c(n,d)}.

Finally, by [2, Theorem 6 (Note)], we have

(2.6) 0, (n, 7) — ¢£’) %(% ) c(n, d).

By the definition of the functions u(7), («/7), and 7(r), the follo-
wing result follows on applying Theorem 2.1 to (2.4), (2.5), and (2.6).

THEOREM 2.2.

(2.7) S,(n, 7) ¢ B,, ( odd),
(28) Pt (%, 7) € sz(r))
(2.9) 0s(n, 7) € B,y.

Let now g(n, 7) denote a function of E, with Fourier expansion,

(2.10) gn, )= X B4, 7) ¢ (n, d).

dlr



84 Echford Cohen
It is recalled from [4, Theorem 1] that

(2.11) ¥ fla,v) g, ry=r 1121':' w(d, r) B(d,7) c (n, d).

n=a-+b(mod r)

We apply this result to the function Q; ,, (#, 7), defined to be the
number of solutions (mod 7) of

(2.12) m=x4+ ... + 2+22+ ... + 2,2 (mod 7), (x;, ¥)=1,
¢t =1, ..., s. Inparticular, application of (2.11) with f (, 7) = 0, (n, 7),
g(n, 7) = S,,(n, 7), leads on the basis of (2.4) and (2.6) to

THEOREM 2.3. If 7 is odd, then for s > 0,

(213)  Qum(n, )=r""1¢(r) %(;ﬁ% ) ( ; )

¢c(n, d)
dm

wn particular, Qs ,,(n, 7) € B,y.

To obtain a product representation of Q, , (#n, 7), we recall that
¢ (n, ) is multiplicative in » and that for ¢ > 0 and primes 7,

pe— 1 if pein
(2.14) ¢c(n,p%) = —p1 if pe—lin, 2 +n
0 otherwise.

Hence (2.13) becomes.
THEOREM 2.3'. If 7 is odd, then
— 1) _ s+1
@19 e Gl L 0+ G )
3. SOME FURTHER CONGRUEMCE PROBLEMS. In generalizing

the problem (1.1), we need the function g, (», 7), defined for positive
integers %, by

- 7
(3.1) Gln =% du (),
dlr a
where p(7) is the function, multiplicative in 7, with the evaluation,
- — 1 (e=k)
3.2 ¢) =
(3.2) mi={ oon

for primes p and positive integers e. Clearly, u,(7) = u(?), and by
the well-known evaluation of ¢(n, 7), g(n, ¥) = g(», 7). For an equi-
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valent trigonometric definition of gx(n, #), we mention [6, § 4 and
(6.3)].

Evidently, gu(n, 7) is even (mod 7) and is multiplicative as a func-
tion of 7 ; it is therefore sufficient to consider the case » = $¢, n = #/,
0 <! < ¢, where p and ¢ have the same significance as above.

In particular, it is easily seen that

p° l=e<k)
0 l<e<khore>~k+1),
gr(n, 1) = 1.
Define now 0, ;(n, 7) to be the number of solutions of
(3.4) n =20+ ... +x (mod 7), (%, 7)=1,
(¢=1, ..., s), where (n, 7); denotes the greatest common k-t4 power

divisor of # and 7. The following FOURIER expansion of 6 ; (n, 7)
as an even function (mod 7) was proved in [6, (6.10)]:

3 (5] e

d

(3.5) By s (. 7) =
4

Let 7, denote the product of the prime powers $¢ such that 4|7,
$p¢*! 4+ 7 and e > k. Then we have

THEOREM 3.1. The function 6, ; (n, 7) is contained in the class
B,y Moreover, if k> 1, then 0y  (n, 7) = 0 if and only if s =1
and (n, 7)y # 1.

Proor. The first statement of the theorem results from (3.3),

(3.5) and Theorem 2.1. Using e, / as in (3.3), a computation based
on (3.5) yields, for prime factors p of m).

(3.6) P Pns (B 7°) _ { (B — 1 + (— 1y it k> 1,
' ple—s (Bt — 1) [(B* — D=1+ (— 1] ifk <L

By the multiplicativity of 6, , (», 7) as a function of #, the proof
is now complete.

REMARK 3.1. Since 0y (n, 7) = 0, (n, 7), the first statement of
Theorem 3.1 reduces to (2.9) in case £ = 1. A complete discussion
of the solvability of (3.4) in this case is contained in [7].
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For positive integral 4, &, s, ¢, let ¢ffj : (n, 7) denote the number
of solutions of

(3'7) n Ex1+ v +xs+y1+ B +yt(m0dr))(xi:7)h=(yﬁ 7)k= l)
(t=1,...,s;9=1, ...,1). Applying (2.11) with f (n, 7) = 04 ; (n, 7),
g(n, ¥) = 04, (n, 7), it follows by (3.5) that

(3.8) oi:::<n,r>=§%}(gh(§,r))s(gk(g,r))‘c(n,d).

Let ¢ and / have the same meaning as in (3.6). Then by (3.3) and
(3.8), with 2 < k& < ¢, it can be verified that

(3.9) POk () _ { (B 1) (5 —1)-(— 1)1 i h> 1,
. 75(e--h)s-f-(fz—k)t (757;_1) [(ﬁh—-l)s—l (pk—l)’{—(—l)s”] it h <L

Clearly (3.7) is solvable if & > e, » = $*; therefore, by (3.9) and
multiplicativity one obtains.

REMARK 3.2. If max (h, k) > 1, then (3.7) is always solvable.

REMARK. 3.3. The formula (3.6) determines 0, ; (n, $°), & > e,
while (3.9) evaluates ijﬁ (m, %), h <k < e. The excluded case, &> e,
is of course trivial.

The result in Remark 3.2 can also be verified directly.
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