CERTAIN OPERATORS IN THE SPACE ANALYTIC DIRICHLET TRANSFORMATIONS

Вy

P. K. KAMTHAN AND S. K. SINGH GAUTAM

1. Introduction. Let \mathbf{C} denote the field of complex numbers equipped with the usual topology. Denote by χ , the family of all transformations $f \colon \mathbf{C} \to \mathbf{C}$, such that

(1.1)
$$f(s) = \sum_{n=1}^{\infty} a_n e^{s\lambda_n}; \ s = \sigma + it \varepsilon;$$

where $0 < \lambda_1 < \lambda_2 < ... < \lambda_n \rightarrow + \infty$ with n, and further,

(1.2)
$$\lim_{n\to\infty} \sup \frac{\log |a_n|}{\lambda_n} = -\infty;$$

(1.3)
$$\lim_{n\to\infty} \sup \frac{\log \lambda_n}{n} = D < \infty.$$

The topological aspect (in various directions) of this space has been studied in details by one of us and Husain (see [2], [3]). However, in an earlier paper of ours [4], we have considered two topologies on χ , namely:

(i) The topology τ_1 generated by the family of semi-norms (indeed, norms), $\{M(\sigma, f); \sigma \text{ real}\}$, where

$$M(\sigma, f) = \sup_{-\infty < t < \infty} |f(\sigma + it)|;$$

and

(ii) The topology τ_2 generated by the family of semi-norms (indeed, norms), $\{p\ (\sigma, ...), \ \sigma \text{ is real}\}$, where $p\ (\sigma, f) = \sum_{n=1}^{\infty} |a_n| \ e^{\sigma \lambda_n}$. We have carlier denoted $p\ (\sigma, f)$ by $||f; \ \sigma||$.

From the well-known Cauchy-Ritt inequality, namely

$$|a_n| \leq M(\sigma, f) \exp \{-\lambda_n \sigma\};$$

valid for all real σ , it follows that

$$M(\sigma, f) \le p(\sigma, f) \le C(k) M(\sigma + k, f), k > 0.$$

C(k) being a constant depending on k only. Hence one finds that the topologies τ_1 and τ_2 are equivalent. To falicitate our work, we recall few things more from our earlier work [4]. A sequence $\{f_1: n \geq 0\} \subset \chi$, is said to be a *base* if to each $f \in \chi$, their corresponds a unique sequence $\{a_n\}$ in \mathbb{C} such that

$$f = \sum_{n=0}^{\infty} a_n f_n$$

A base $\{f_n: n \geq 0\}$ is called a *genuine base* if the corresponding coefficients in the expansion of an f satisfy (1.2). A sequence $\{f_n: n \geq 0\}$ is called an *absolute base* if it is a base in χ and the infinite series corresponding to each $f \in \chi$ is absolutely convergent with respect to τ_1 (or equivalently with respect to τ_2). A sequence $\{f_n\}$ in χ is called a *proper base* for χ if it is a genuine as well as an absolute base for χ . We have earlier shown that if $\{f_n\}$ is a proper base, then([4] Theorem (2.1))

$$\lim_{n\to\infty}\sup\ \frac{\log\ M\left(\sigma,f_{n}\right)}{\lambda_{n}}<+\infty,$$

for each real σ .

Our aim in this paper is to characterize certain continuous linear operators on χ and use them in the determination of praper bases in χ . Our two main results stated and proved below are in the form of theorems.

2. Characterisations: Let $\delta_n \varepsilon \chi$, where

$$\delta_n(z) = e^{z\lambda_n} (n \ge 1)$$
, then we have;

THEOREM 2.1: Let $\{\alpha_n : n \geq 1\}$ c χ . Suppose T is a linear operator from χ into χ , such that $T(\delta_n) = \alpha_n$; $n \geq 1$. Then if T is continuous then,

(2.1)
$$\lim_{n\to\infty} \sup \frac{\log M(\sigma, \alpha_n)}{\lambda_n} < + \infty;$$

for all real σ .

Conversely, if (2.1) holds good, then there exists a continuous linear operator $T: \chi \to \chi$, such that

$$T(\delta_n) = \alpha_n, n \geq 1.$$

PROOF. Suppose T is a continuous linear operator from χ into χ with $T(\delta_n) = \alpha_n$, $n \geq 1$. Then for a given σ , there exists a Δ (all reals) such that

$$M (\sigma, T \delta_n) = M (\sigma, \alpha_n) \le K M (\Delta, \delta_n)$$

= $K e^{A\lambda_n}$

Hence

$$\lim_{n\to\infty}\sup\;\frac{\log\;M\left(\sigma,\;\alpha_{n}\right)}{\lambda_{n}}<+\;\infty$$

Thus (2.1) follows.

Conversely, assume that (2.1) is true. Let $\alpha \in \chi$, then, α is represented by

$$\alpha = \sum_{n=1}^{\infty} a_n \, \delta_d,$$

where the coefficients a_n 's satisfy (1.2). Since (2.1) holds, therefore there exists a $M=M(\sigma)$, depending on σ , such that

$$rac{\log M\left(\sigma,\ lpha_n
ight)}{\lambda_n} \leq M \quad ext{for all} \quad n \geq n_0,$$

or,
$$M\left(\sigma,\;\alpha_{n}
ight)\leq e^{M\lambda_{n}}$$
 for all $n\geq n_{0}$

Therefore, noting that (1.2) is already valid for the coefficients a_n 's, we find that

$$\sum_{n=1}^{\infty} a_n \, \alpha_n$$

is absolutely convergent in χ and as χ is complete, we find that the proceeding series converges in χ and so it represents an element of χ . Hence there is a natural transformation $T:\chi\to\chi$, such that

$$T(\alpha) = \sum_{n=1}^{\infty} \alpha_n a_n, \ \alpha = \sum_{n=1}^{\infty} a_n \delta_n.$$

Clearly $T(\delta_n) = \alpha_n$, n = 1, 2, 3, ... We are now required to show that T is continuous on (χ, τ_1) . To do this it is sufficient to prove that T is continuous on (χ, τ_2) . The norms $||..., \sigma||$ are continuous on χ , therefore given any real σ , we find

$$||T(\alpha); \sigma|| = ||\lim_{N \to \infty} \sum_{n=1}^{N} a_n \alpha_n; \sigma||$$

$$\leq \lim_{N \to \infty} \sum_{n=1}^{N} |a| \cdot ||\alpha_n; \sigma_n||$$

$$\leq \lim_{N \to \infty} \sum_{n=1}^{N} |a_n| e^{\Delta \lambda_n}, \Delta = \Delta(\sigma)$$

$$= ||\alpha: \Delta||$$

Thus $T: (\chi, ||..., \Delta||) \to (\chi, ||..., \sigma||)$ is continuous and as σ is arbitrary, we find that $T: \chi \to \chi$ is continuous.

Next, we prove

Theorem 2.2: If T is a linear operator on χ to itself, such that T and T^{-1} are continuous. Then $\{T\left(\delta_{n}\right):n\geq1\}$ is a proper base in the closed subspace $T\left(\chi\right)$ of χ . Conversely, if $\{\alpha_{n}:n\geq1\}$ is a proper base in a closed subspace Y of χ , then there exists a continuous linear operator $T:\chi\to\chi$, such that $T\left(\delta_{n}\right)=\alpha_{n}$.

PROOF. Suppose first that T is the one as mentioned in the hypothesis. Then $T(\chi)$ is a closed subspace of χ . Let $T(\delta_n) = \alpha_n$, $n \geq 1$. Let $f \in T(\chi)$, tehen

$$T^{-1}(f) = \sum_{n=1}^{\infty} a_n \, \delta_n$$

where $a_n's$ satisfy (1.2). Now

(2.2)
$$\sum_{n=1}^{M} a_n \, \delta_n \to T^{-1}(f) \quad \text{in} \quad \chi \text{ as } M \to \infty$$

But T is continuous and linear and so (2.2) implies,

$$(2.3) f = \sum_{n=1}^{\infty} a_n \, \alpha_n$$

Since (2.1) holds, this implies that $\sum_{n=1}^{\infty} M(\sigma, a_n \alpha_n)$ converges for every real σ . Also the representation of f in (2.3) is unique (since T^{-1} is continuous), we conclude that $\{\alpha_n \colon n \geq 1\}$ is a proper base for $T(\chi)$. Conversely, let $\{\alpha_n\}$ be a proper base for a closed subspace Y of χ . Hence (2.1) holds. Therefore from Theorem 2.1, there exists a continuous linear operator T on χ into itself, such that $T(\delta_n) = \alpha_n, n \geq 1$. Let $f \in \chi, f \neq 0$. Then f is represented by (1.1) whose coefficient a_n 's satisfy (1.2). Thus

$$T(f) = \sum_{n=1}^{\infty} a_n \, \alpha_n \neq 0$$

Therefore T is one-to-one. Hence T is a continuous algebraic isomorphism from χ onto Y. Now by applying Banach theorem ([1], p. 41) we see that T^{-1} exists and is continuous (observe that Y is complete). The proof of the theorem is now complete.

ACKNOWLEDGEMENT: The second author is grateful for a Ph. D. research scholarship awarded by I. I. T. Kanpur which supported this work.

REFERENCES

- [1] BANACH S. Théorie des opérations Lineaires, Warsaw (1932).
- [2] HUSAIN T., and KAMTHAN, P. K. Space of entire functions represented by Dirichlet series. Collectanea Math., 19, No. 3, (1968), 203-16.
- [3] KAMTHAN, P. K. F. K-spaces for entire Dirichlet functions; Collect. Math., 20, (1969), 271-80.
- [4] KAMTHAN, P. K. and GAUTAM, S. K. SINGH, Bases in the space of analytic Dirichlet transformations. (sent for publication).

Department of Mathematics Indian Institute of Technology Kanpur - 16, U. P., INDIA.