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INTRODUCTION

The idea of overconvergence may be illustrated by considering
the following example set out by M. B. PorTER [21] in 1906. This
work of PORTER incidentally, marked the discovery of the phenomenon
of overconvergence. Let the series

(1) E a"k 2" with N1 > 2n,
have radius of overgence 1. The series
(2) F(w) =Y a,, w" (14 w)"

converges uniformly then in the interior of the lemniscate (Cassi-
NIAN) defined by

(3) |0 (14 w) | =1

13 — Collectanca Mathematica
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and diverges at each point outside. The series (2) converges absolu-
tely for |w| (1 + |w]) < 1, and (2) defines I'(w) as an analytic func-
tion inside the region L defined by (3). Rearrangement of (2) as a
power series in w therefore yields

(4) F(w) = Y ¢, w"

The radius of convergence of (4) is that of the largest circle con-
tained in L, having as center the point w = 0. There is no overlap-
ping of powers when one forms (4) from (2); consequently the se-
quence of partial sums of the series in (2) is a subsequence of the se-
quence of partial sums of the series in (4). Hence (4) has a subsequence
of partial sums which converges inside L, and therefore at points
exterior to the circle of convergence of (4). We note also that the
convergence of this subsequence of (4) is uniform in any closed sub-
region of L. Whenever a power series has a subsequence of partial
sums converging uniformly to a limit function in a neighborhood of
a point on the circle of convergence, the series is said to be over-
convergent at that point. As it will become apparent, a series which
is overconvergent at a point has the same property at each regular
point of the circle of convergence. The limit function to which such
a subsequence converges is analytic in any region where the conver-
vergence is uniform (WEIERSTRASS' theorem), and must therefore
coincide with the fuction defined by the series. Overconvergence thus
affords a method, though not a practical one, of effecting the ana-
lytic continuation of certain fuctions, defined by power series and
regular at some point on the circle of convergence.

The convergence of a particular sequence of partial sums of a
power series in domains exterior to the circle of convergence was
rediscovered twice before POrTER received credit for making the
first observation. It was ALEXANDER OSTROWSKI who conceived
the main ideas of the theory of overconvergence. Before proceeding
with his development, we must mention a result due to J. HADAMARD
which contains the germ of OsrTrOwskI's fundamental theorem and
to which we shall have occasion to refer later.

(5) Let
(2) =Y cu 2Pn

Assume also that $,,; > (1 + 0)p, for some 6 > 0 and for all
sufficiently large 7.
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Then the circle of convergence is a natural boundary of f(2).[6].

This theorem is commonly called HADAMARD'S gap theorem.
Eventually the only remaining terms in the series (5) are at the ends
of ’long’ gaps. OsTrOWSKI modified the severity of this condition
and was able to arrive at his first overconvergence theorem.

(6) If
f(z) =Y cu 2™

has radius of convergence 1, and ¢, = Owhen#n, <n <N, (k= 1,2,..)
where {#n,} and {N,} are two sequences of positive integers such that
N; > (1 4 0)n, for some positive 6, then the subsequence of partial
sums

#i
S, (2) = %) € 2,
n=0

converges uniformly in the neighborhood of each regular point on the
circle of convergence.

Section 1 of this thesis consits in a new proof for this theorem. It
may be added here that we may speak of overconvergent DIRICHLET
series also ; however, we will be concerned throughout with power
series only.

Ranges of zero coefficients of the type hypothesized above are
known as HADAMARD gaps. One need look no further than PORTER’S
example (1), with #n,,; = 21, 4+ 1 to see that HADAMARD gaps are
by no means necessary for a series to possess overconvergence pro-
perties. Indeed, one can always add a series with convergence radius
greater than one to the series in (6) and get an overconvergent series
having no gaps. In the literature, a power series which can be written
as the sum of two power series, one with HADAMARD gaps, the other
with radius of convergence greater than the given one is said to have
a lacunary structure. The connection between this type of series and
the overconvergence theorem :

(7) Every series ¥, ¢, 2" which has an overconvergent subsequence
of partial sums has a lacunary structure.

Other conditions on the coefficients of a power series are sufficient
for producing overconvergence in the neighborhood of regular points
on the circle of convergence. In 1934, MACINTYRE [14] showed that
the theorem of VIVANTI-BOREL-DIENES could be generalized in a
way involving overconvergence along a radius. In Section 2 it is
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shown that overconvergence in a neighborhood is implied by Ma-
CINTYRE'S hypothesis, which is essentially that |arg ¢, | < a < 7/2
for n, <n < (1 + 0)n;. Evidentelly this condition is implied by
¢, = 0 for the corresponding ranges of #. The transformation z = w?
(1 + w)/2 used in Section 2 was already employed by MORDELL to
prove HADAMARD'S theorem and by ESTERMANN 5] in his demonstra-
tion of OSTROWSKI'S first theorem.

In Section 3, there is stated a group of overconvergence theorems
which hypothesize certain restrictions on the distribution of sign chan-
ges occuring in the real parts of the coefficients of the series. Variations
of these conditions have been used by a number of authors — PoLva,
I'aBrY, and LLANDAU among them — to establish the existence of a
singularity on a specified arc of the circle of convergence. One could
say that the overconvergence results in Section 3 and the FABRY type
theorems are related in somewhat the same way as OSTROWSKI'S
first theorem and HADAMARD’s gap theorem. Consider also other
theorems of the type which conclude that such and such a point on
the circle of convergence is a singular point of the function. It is possi-
ble that these theorems might establish overconvergence in the neigh-
borhood of the point were it a regular one.

Without becoming too precise at the moment, we can see from
the proof of OsTROWSKI'S second theorem (see Section 5) that if the
gaps in the series (6) occur too frequently, then it is not possible to
have overconvergence of the subsequence {s,, (2)}. Another way of
looking at this is to consider the intervals between gaps; if these
are not 'long enough’ so to speak, then there is no overconvergence.
Section 4 deals with this idea in what is throught to be a novel way,
making use of a system of linear equations and an elementary dis-
tance property of points distributed on a circular arc. The results
obtained generalize HADAMARD'S theorem and show also that in
the series (6), lim #;,,/N, must be greater than 1 if the sequence
{sn, (2)} overconverges.

Section 5 is concerned with a slight improvement in the proof of
OsTROWSKI'S second theorem given by DIENES [4, p. 370]. The theo-
rem is then thought of as applying to overconvergent series with
HADAMARD gaps, enabling one to estimate numerically a lower bound
for lim 7, ,.1/N,, referred to in the last paragraph. This lower bound, as
it turns out, is dependent on the inner mapping radius of the region
in which the series is overconvergent.

Finally, it was thought worthwhile including in Section 6 a few
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of the other basic results on overconvergence. In the course of these
observations some attempt is made as well to point out several possi-
bilities for further investigation.

1. A NEW PROOF FOR OSTROWSKI'S FIRST THEOREM

Many proofs have been devised for this theorem since it was ori-
ginally done in 1921. See, for example [2, p. 12], [11], and [7, p. 311]
among others. The range of difficulty among these proofs is quite
wide, some demanding considerable preparation. OSTROWSKI'S initial
method rests on HADAMARD’S three-circles theorem, while what
may be the simplest method is based on MORDELL’S proof of HADA-
MARD’S gap theorem and can be found in [2, p. 17]. The present ef-
fort is mainly computational and depends on nothing more formi-
dable than a linear transformation.

TaEOREM I. Let

(1) f(z) =

"
Cp 2

i

0

have radius of convergence 1. Let {#n;} and {N,} be two sequences
of positive integers such that

(1 4+ 0)n, < N, and n, < Ny < #544.
Assume also that
ca=0 for my<n <Ny, k=1, 2, ..,

where 6 is a fixed real number greater than zero. Then the subse-
quence

2) S 2) = 3 € 2"

n=0

of partial sums of (1) converges uniformly in a neighborhood of each
regular point on |2| = 1.

Proof : The linear transformation

I

|
maps the circle |w | = 1 into the circle 1 z—~| =17=p/2 in the
|

1
5



198 Harold George Mushenheim and A. J. Macintyre

z-plane. The origins correspond under this transformation and the
points w = 1 and w = — 1 are mapped into z = % + 7and z =% —7
respectively. By hypothesis,

(1) has radius of convergence 1. ILet us assume for the moment
that f(z) is regular at z == 1. Therefore f(z) is regular in and on a cir-

cle C having center z = ;‘and radius 7 > -; . Set p =27 and

A = (02 — 1)/20. Then
@) F (w) = f (Aw/u —1”>)

is regular in and on the unit circle. Hence F(w) has a power series
expansion about w = 0, namely

(ee]
(5) F(w) = E bm w™

m=0
having radius of convergence R > 1. We can obtain the b,, explicitly
by substituting the right side of (3) in (1). That is,

m . m — l / .
(6) = Seai (70 o
i‘:l m— 1 /
It is useful to note that (2) is also a regular functionin and on C.
So that

Su, () = s, (Aw/(l — %))

is a regular function of w in and on |w | = 1. Therefore

. oo min(ng,in) o — 1 / .
(7) S, (w) =13 ud,w", where ,d,= ¥ ¢ A’< ) [t

m=0 i=1 m — 1

has radius of convergence R’ >1. Note that Sy, (@) is not the sum
of the first n;, terms of (5). We would like to arrive now at an estimate
for the absolute value of sums of the form

®) (a) » c,-Af(m_l) / and

1igim m— 1

(b) Y oo Ai (m — 1 ) // Qm_i’

2amKiSm m — i
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where for a given m, A; and 1, are such that 1/m < 1, < 4, < 1.
First of all, for any & > 0 there is a number K = K (¢) such that
lcn| <K (1 -+ g)*. This means that the absolute value of (8a) is
less than or equal to

K(e)(1+e" ¥ Ai(m — ! )/ o

1<i<Am m—1
while a similar expression may be written for (8b). If we form quo-

. . . ; 1y / ,
tients of consecutive terms of the finite sequence A* ( " ) / o™t
m—1

for 2 =1, 2, ..., m, we [ind that the maximum term occurs when
1 = [m(e®> — 1)/(0* + 1) + 11 in which the squarc brackets denote
the greatest integer function. Choose some A such that 1/m <1 <
< (0% — 1)/o% 4+ 1). Certainly then

E Ai (7‘I’L —1 )// Qm—i S m AP ( m — 1 ) /I Qm—[?.u-}
/

Igizpm A\ — 1  m — [Am]

< mAPm ( m ) / o=,
- m — [Am] /),

and upon making use of

e (kle)k < k! < ek (R[e)*, (k an integer)

we find, after some calculation — routine but somewhat lengthy, that

N 1) / 1/m
(9) im { 2 Al ( m 1 )/ Qm—i} S A},/QI»-Z (1 _ }')(1—).) l}..
m —1 )

M—>00 l:f,islm

On the other hand, if A is chosen so that (02 — 1)/(02+ 1) < A< 1

then
2 ‘41' ( m— 1 )/ Qm——i _<_ HZA[}"”] ( ki )
Pnl<i<m mo— 1 m — [Am]

and further,

_____ _ 191 — 1\ / Y Um
(10) fim { YA ( m—1 )/ o } <
HM—>00 wm — 1)/

Aml<i<m \ 7
Al/el—l (1 — A)1=% 22,
Consider now the function

(l) — A;‘/()l_l(l _ l)(lv—u y
g
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which is continuous and differentiable on (0,1). It is easy to see that
its maximum is reached when A = (o2 — 1)/(e? 4+ 1) and that
g((e2 — 1)/ (02 + 1)) = (0% + 1)/20. Also g(2) increases in the interval
(0, (02 — 1)/ (0% 4+ 1)] and decreases in [(02 — 1)/(0% + 1), 1).

If the sequences {#;} and { N} and the real number 0 satisfy the
hypotheses given above, it is always possible to find for each

sufficiently large %k, an integer p, and a real number u = u(6)
with 0 < u < 1 such that

e < (1 — w) pp < pp < (1 4 p) pr < Oy < N

For example, p, = [n, (1 + 6)/2] and p = (0 — 1)/(0 + 1) will do.
Set ' = (1 — p)(e® — 1)/(e* + 1) and A" = (1 + u) (0* — 1)/(e* + 1).
Then max {g(%), g(A")) == 0 < (g® + 1)[20. Put &, = (o® — 1)/(? + 1)
and define G,, (w) as

(11) Gy, (w) = Yy b,wt

0sSms P2,
a partial sum of the series in (5). Form the difference

(12) Spk ('LEV) - GP}; (ZU) = _: ﬁkdm w" — E bm w”

m=0 0<m< Pyf2,

co
= E p kdm w™ - E pkdm w™
0Lm< Py Pr<m

- ¥ bpwr— ¥ b,
0<m< Py P.<m=< P2,
which by (7) is valid at least for |w| < 1. We see also from (7) that
the first and third sums on the right side of (12) are equal. Thus the
left hand side of (12) becomes, on writing out the expression for b,, and
breaking up the last sum

d " oo‘ d o™ ~ % “ 4% m—1 m—i
Pr m @ + }‘ P w0 — L w EC[A ) Y

P <mg Pyl Pfa<m Pr<m< Pyl2, i=1 \m —1/|
m
: o m— 1 :
— }: wm 2 C,;A' ( ) )/ Qm—t'
Pr<m<P[A i> P m —1/|

Now the first and third sums are equal so that taking the defi-
nition of ,,4, into account again we have
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°<i m o i m—1 m—1i
Sy (@) — Gy, (©) = Y 0" Y ;A o
m> Pl i=1 m —1

» (m—1 :
— E 0™ E C,‘AL( ) / Qm—z'
Pi<mZ Pi[2 i> Py m — 1 /
Because of the zero coefficients these sums may be written in the
form

oo Pi(1—p) Sm—1 _
SPk (‘(I)) - GI’/; (w) = h: w™ 2 C; Al ( )/ o™

m> P, [, i=1 m —1

m —
— }: w™ E ¢ Ai (”1' 1)/ em——i

Pr<m< Prld, i> Pr(l+p) m —1

== E Pm w” — 2 Om w™,
m> PrlAy Pr<m< Prfd,

the notation being evident. In the first sum on the right side of
the last expression ¢ <9, (1 — u) and m > p,/A,; therefore i/m
< A (1 — p) = 2. In the second, 7 > Pu(1 + u) and m < P[4, so
that i/m > (1 + u)A, = A”. Hence by (9) and (10)

lim | P, Y=< (1 + &)o =« and lim |Q,, | < (1 + &) o == a.

m—>00 m—>00

By taking & small enough « can be less than (2 4 1)/20. (See
the definition of o above.) Therefore

oC
¥ P, w” and ¥ 0, wm
m> PilA, Pr<m< PyA,
tend uniformly to zero as & — oo, in and on a circle of radius R; with
center the origin such that R; > 2o/(o2 + 1). Consequently

| Spp (@) — Gpr () |

tends uniformly to zero with increasing % in and on a circle C, with
center the origin and radius R, = min (R, 1). Since

[ Spy () — F(w) | < | Sp, (@) — Gp, (@) | + [ Gy, (w) — F (@) |

and the second term on the right side tends uniformly to zero in and
on |w| =1, the left hand side tends to zero uniformly in and
on C,. This means that |s,, (2) — f(z)| tends to zero unifor-
mly in and on the image circle of C, under (3). Now C, con-
tains w = 20/(p%+ 1) in its interior and 1 is the image of w = 2¢/(0 + 1)
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under (3). Hence 1 is contained in a neighborhood throughout which
the partial sums s,, (z) of the series (1) converge uniformly to f(z).
But because of the zero coefficients sy, (2) = s5, (2) and the result
is established for z = 1. If one replaces z by z = ¢% in the series, the
zero coefficients are not changed. That is, if z = ¢* is a regular point
of the given series, the new series will have z =1 as a regular point,
and the previous proof applies to it. This remark establishes the theo-
Tem.

2. OTHER COEFFICIENT CONDITIONS IMPLYING OVERCONVERGENCE

While commenting on the material in chapter 5 of [9], Dr. Ma-
CINTYRE shows that Xc, 2" has a subsequence of partial sums which
converges uniformly in some interval [1, 1 + ] of the real axis if
f(z) = 2¢c, 2" is regular at z =1 and ¢, > 0 for n, < n <ni(1 4 0) [14].
Here {n;} is an increasing sequence of integers and 0 is a real number
greater than zero. It is shown here that this result may be extended
to convergence of the subsequence in a full neighborhood of z = 1.
This turns out to be an immediate consequence of the following
section, but it is of interest that the conclusion is available upon the
use of considerably less demanding methods than those employed
there.

TaEOREM I. Let

(1) f2) =Y a2

n=0
have radius of convergence 1 and be regular at z = 1. Let {n;} be
an increasing sequence of positive integers and 0 be a real number
greater than zero. If ¢, > 0 for n, < n < my(1 + 0) for k& sufficiently
large, then the sequence

1 (146)
(2) Y ez 8= (14 0)12 — 1

n=0

converges uniformly to /(z) in a neighborhood of z = 1.

Proof: We observe the fact that for p a positive integer
f(w?(1 + w)/2) is a regular function of w for |w| < 1+ o (o > 0) if f(2)
is regular for |2| < 1 and z = 1. We have
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f(w? (1 + w)/2) = § b,, w™ where

m=0

( n
bm - Y Cn 2"
m m—pn
m_ <n< 7 :

" o
p+1 TP

(3)

and the infinite series in (3) has radius of convergence » > 1 4+ .
From the structure of the terms we can see that ¢, enters into the
sum for b, if and only if

(4) ml(p + 1) < n < mjp.

If we consider the partial sum (2) and let z = w?(1 + w)/2,
then
n,(1+0) prg(1+0) (P + Dux(1+96)
(5) % Gwt(l+wp2="3% byw"+ N byrwm

n=0 m=0 pni(140)

The coefficients b,, in the first sum of the right side of (5) are the same
as in (3) above. Once m exceeds pn,(1 -+ 6) however, the b,, in (3) may
involve » larger than #,(1 + §), as shown by (4). The b, * differ then
from the b,, in the corresponding range in this, that the c, used in
the sum for b,, might not all occur in the sum for 4,,*. Those ¢, which
do affect b,,* appear with the same real coefficients as in the sum for
by For b, with m in the range pny(1 + 0) < m < (p + 1)ng(1 4 6), (4)
requires that » satisfy

pr(L+8) _ . _(p+ Um (1+9)

b+ 1 - p
If this last range of »# could be included in one for which ¢, >0,
then leaving some of these ¢, out when forming b,,* would serve to
make b,* < b,,. That is, we want

UL+ 0) me _ (p+ D (1+9)

ny < < <y (1 4+ 0).
p+1 4
In other words we have the conditions
6 @ “T2>1 and () (1+a>(1+1)31+e
1 _I_u_l_ \ P

P
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to satisfy. Given 6 > 0, we select ¢ such that (1 4+ 6) = (1 + 6)1/2.
Then choose an integer $ so large that 1 + ;I) <14 6. This ensures

that (6a) and (6b) are true. Working only with the second sum on the
right side of (5) we have

(7)1 2by @™ | S Z1b,* [ |w” | = Zb,* | 0" | < 2y, | w™],

the index m running between pn; (1 4 6) and (p + 1) n, (1 + 6).
By the uniform convergence of the series (3) in a circle |w| =1 + ¢’
for some ¢’ > 0, it follows that the left side of (5) tends to

pn. (1+40)
lim ) b, »”, in other words to f(w” (1 + ®)/2)

k=00 =0

uniformly in |w | = 1 + ¢’. Or what is the same thing

. ny(1+46)

lim ¥ ¢, 2" = [(2)

k=00 ;0
uniformly with respect to z for |z] < 1, and z in some neighborhood
of z=1.

If we make the assumption that |arg ¢,| <o < @/2 for n in

ny < n < m(l + 0) for sufficiently large 2, the same result holds.
Tor as explained above

g

e n n
bm* =  Cy 2" and bm = Cy /2"
112111 ( m — {)n )/ ”=E”x ( m — p’}'l )/

for suitably chosen #n, and ny with n, < ng. Then |arg b,*| < o < 7/2
and |arg b,| <« <z/2. Also R (b,*) <R (b,). Therefore |b,* |
< R(b,*) sec a, R(b,) sec a«<]b,| sec «. So that as in (7),
| 2 b,* wr| <sec a2 |b,| |w|™ and the concluding statements of
the proof above may be repeated.

Going a little further, suppose that is is possible to find a real
number B, for each % so that

larg ¢, — Bi | Lo < @/, for nin w, < n <, (1 + 0).
Then |arg (b,* e ) | <o < m/2 and | arg (b, e | < a < 7/2.

Similarly, R (b,* e ) < R (b,, e ") and it follows that |b,* | =
| b,* e~ | < | b, e P |seca=|b,]| sec 2. These last remarks show
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that ¢, > 0 for n, < #n <, (1 + 0) may be replaced by |arg ¢, | <«
< 7f2 or |arg ¢, — fr | < o < /2 in Theorem I. The last condition
evidently includes the other two.

3. COEFFICIENT CONDITIONS OF THE FABRY-POLYA TYPE

There is a group of theorems associated with the name of FABRY
and further developed by FABER, Porva, I,ANDAU and others. These
results are concerned with certain of the coefficients of a power
series and their relation to the singularities on the circle of conver-
gence. In the present section, some of these theorems are recast so
that they yield sufficient conditions for overconvergence of the series.
The first theorem, included here for convenient reference, is a gene-
ralization of a basic result by FABRY and is due to Porva [1].

THEOREM I. ILet
() 1
(1) . ()= % fu2", im |f,[#»=1
n=0 n—>00

and {n,} be an increasing sequence of positive integers with the
following propetties :

1. For each n ¢ {n,} there is a real number B, such that

1
lm |f,]" =1, n & {n}
n—>00

where f', = R (f, ¢»).

2. The maximal density of those indices at which sign changes
of f'y.p= R(fs.,e®n) occur in the intervals — On <p <0n, n & {n;}
(A=1,2,..)is 4 where 0 < 4 < 1 and 6 is a real number indepen-
dent of #; such that 0 < 6 < 1. (Note that f, does not depend on $.)

Then on the arc |z| =1, |arg z| < An, there is at least one
singular point of f (2).

For the idea of maximal density and its use in this connection see
Porva [19]. By modifying the theorem just quoted, we can arrive
at a more general overconvergence theorem. First we prove.

TaeEOREM II. Let f(z) satisfy (1) above, 6 be a real number
such that 0 < 6 < 1, and {n;} be an increasing sequence of positive
integers with the following properties :
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1. Jarg fu.p | <a < @2 or |arg fuip — 7w | <a < #/2 for some fis-
xed «, for all » + ¢ satisfying — 0n < p < On and # e {n;}.

2. H{supuiﬁ}:l

k—oo | t1elx

where I, is the closed interval [(1 — 6)Y2 n;, (1 + 6)12 n,].

3. The maximal density of those indices at which sign changes of
['nip=R(fusp) occur in the intervals [(1 — 6) ny, (1 + O)n,] (=1,
2, ...)is A where 0 < 4 < 1. Then, on the arc |[z| =1, |arg 2| < A4 =,
there is at least one singular point of f(2).

Proof : In each interval I,, determine $’; so that
| fp, V0% = sup | f; |
ielg

Now define intervals I’; centered on $’; so that I’y = [(1 — o) 9’4,
(1 + 0)p’:] with o = (1 + 60)Y2 — 1. It follows that I', € [(1 — 0)n,,
(1 + 0)n;]; and hence the maximal density of those indices #» +
at which sign changes of f',., = R (f,.,) occur in the intervals
I'y (k=1,2,..)is 4 where 0 <A’ <A < 1. This follows from
the fact that the maximal density of a subsequence is never grea-
ter than the maximal density of the sequence. [19]. Also, by con-
dition 1, |R(fp,) | = |fp,| cos « so that

| R (fpr) [V2'% = | for |12 (cos a)UVP'k. As k — oo

we see that

m £, |V =1, n e{p’:}.
7—>00

The conditions of Theorem I are then satisfied with sequence
{ny} replaced by {$’;}, 0 by g, f, by 0, and 4 by A’. The conclusion
follows immediately on application of Theorem I.

THEOREM III. If f(2) = Xf, 2" has radius of convergence 1, is
regular on the arc |z| =1, |arg z| <4y with 0<4,<< 1, and if
conditions 1 and 3 of the preceeding theorem are satisfied for some 6,
0 < 6 < 1, some sequence {#;} and 4 = A4,, then there is a subse-
quence of partial sums of the series X'f, 2* which converges uniformly
to f(2) in a neighborhood of each regular point of f(2) on |z | = 1.
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Proof : By the previous theorem there must be some J, 0 < 6 < 1
such that

1
lim { sup ]f,-|7}§6

koo | (1—0)1/2 mp < i< (1--6)22 ny

so that for a suitable o << 1 and for all & > ko = & (¢) we have

1
|7:17<<p < 1 whenever i is in the intervals [(1 — 6)Y2 n,, (1 + 6)1/2 n,]
(=1, 2, ...). This means that f(z) has a representation as the sum
of two power series 2g,2" and 2%,2", the first of which has HADAMARD
gaps and radius of convergence 1 and the second has radius of con-
vergence greater than 1. Bracketing the terms of these two series
in the natural way and adding the resulting series term by term, we
see that by OsTrROWSKI’'S fundamental theorem that X'f, 2" has the
property stated in the conclusion of Theorem III.

If one refers back to Theorem II and there makes the assumption
(in place of 3) that the number of changes of sign of R (f,,,) for
n—+p e Ip) is g(ny) = 0 (n;), then he may conclude that 1is a singular
point of f(z). Effectively this is the case 4 = 0. To see this it needs
only to be noted that a subsequence {N,} of {#,} may be chosen
such that N,.; > 2N, (k= 1, 2, ...). The indices # 4+ p at which
changes of sign of R (f,.;) occur in — On < p < On, n € {N,} are
arranged according to size and denoted by {7r,}. If 7, lies in
[(1 — 6) N, (1 4+ 6) N;], then

m < g(Ny) +qg(Ny) + ... +9(Ni) =0(N; + Ny+4 ... Ny,
so that

i=0

m =0 (Nkij 1/2") = 0 (7,)-

Hence {,,} is of density zero and therefore of maximal density
zero. Applying Theorem II to this situation with {N,} ins place of
{n;} and with 4 = 0 yields

THREOREM IV. Let all of the conditions of Theorem II hold
except 3 which is replaced by

3’. The number of changes of sign of R (fs,4,) occuring for
n+pin [(1 — 0)m, (14 0)m] is g (m) = 0 (m).
Then 1 is a singular point of f(z).
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The corresponding overconvergence statement follows from the
last theorem just as Theorem III was obtained from Theorem II.
We have namely.

THEOREM V. Let f(2) = Zf,2" have radius of convergence 1,
be regular at z = 1 and satisfy for some increasing sequence of posi-
tive integers {#,} and some 0, 0 < 0 < 1, conditions 1 of Theorem II
and 3’ of Theorem IV. Then there is a subsequence of partial sums
of 2f,z" which converges uniformly to f(z) in a neighborhood of each
regular point of |z| = 1.

The distribution of the non-zero coefficients has an effect on the
singularities on the circle of convergence similar to that produced by
the distribution of the sign changes discussed above. An immediate
consequence of Theorem I is for example :

THEOREM VI. Let f(z) = 2f,2" have radius of convergence 1,
and let {#;} be an increasing sequence of positive integers satisfying
for some 0, 0 < 0 < 1, the following conditions :

1. lim (sup |f;|¥) =1

k—o0 16l
where I, is the interval [(1 — 6)72 n;, (1 + 0)12 n,].

2. 'The maximal density of the indices of the non-zero coefficients
f» with # in the intervals

[(1— 0)m, (1+ 0)m], (B=1, 2, ..) is 4 where 0 <A < 1.

Then on every arc of |z| = 1 of length 2w 4, f(2) has at least
one singular point.

Proof : Consider Xf, ¢* 2" with w a real number chosen arbi-
trarily. Now, as in the proof of Theorem II, select that ¢ in I, for
which

sup (| f; ['F)

ielx
is reached and call it §’;. Determine f; in each interval I, so that
R (fy, €'k er) = [y, €' h.

Therefore | R (fy, 6?4 €#t)| = |fy,| and the number of chan-
ges of sign of R (f,, e*?)2 ¢#%) for —on <p < on, ne{p’}is no
greater than the number of non-zero coefficients in the correspon-
ding intervals.
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(o is chosen as in Theorem II.) Applying Theorem I, one obtains the
result that f(z¢™) has at least one singular point on the arc |z] =1,
larg z| < @wd. Therefore f(z) has at least ome singular point on the
arc |z] =1, |larg 2z — w| < znd. Since o is arbitrary, Theorem VI
is established.

The overconvergence counterpart of the foregoing theorem may
now be stated in the following way :

THEOREM VII. Let f(2) = X' f,2", {n;} and 0 satisfy all of the
conditions of Theorem VI except 1 which is replaced by.

= 1 along which

4

1’. There is some arc of length 2z 4 on
f(2) is regular.

Then there is a subsequence of partial sums of X/f,z" which
converges to f(z) uniformly in a neighborhood of each regular point
of f(2) on |2|=1.

It is clear from Theorem IV how one goes about proving.

TaeorEM VIII. Let all conditions of Theorem VI hold except
2 which is replaced by.

2'. The number of non-zero coefficients with indices in the in-
tervals [(1 — 0)n;, (1 4+ 0)n,] is g (n;) = 0 (ny).

Then |z| = 1 is a natural boundary for the function f(2). This
leads of course to

TaroreM IX. Let f(2) = 2 f, 2* have radius of convergence 1,
be regular at some point on |z| = 1 and satisfy for some increasing
sequence {#n;} of positive integers and some 6, 0 < 6 < 1, conditions
1 of Theorem VI and 2’ of Theorem VIII.

Then there is a subsequence of partial sums X'f, 2* which conver-
ges uniformly to f(z) in a neighborhood of each regular point of
f()on |z|=1.

The next theorem is set forth by I,ANDAU and is shown to be a
consequence of his version of Theorem I (essentially the case 4 = 0)
which he states and proves in [9]. It is included here without proof.

TuEoREM X. Let f(2) =X f, 2" have radius of convergence 1 and

set f, = | fu| €%, @, 2 0. Let there bea 0, 0 <60 <1 and an increa-
sing sequence {7;} of positive integers such that.

14 — Collectanea Mathematica
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. (gy.y — @s) — 0 if » runs through the ordered positive in-
tegers for which

lim |f, |[VPn = 1.
n—>00
Then 1 is a singular point of f(z).
A similar theorem, suited to our purpose, may be stated in the
following way.

THEOREM XI. Tet f(z) = 2f,2", {n;} and 0 be given satisfying
all of the conditions of Theorem X except 2 which is replaced by

2. Tm (sup |f]#) =1
ko0 el
where [, is the interval [(1 — 0)12 5, (1 + 0)1Y2 $,].
Then 1 is a singular point of f(z).

Proof: As before, we determine ', in each interval I, such that
| fp, 1Y7% = sup |f; |} and select o as in Theorem II. Certainly con-

iely
dition 1 is satisfied if 0 is replaced by o, and #n, by $’;. Applying
Theorem X established the conclusion.
The overconvergence result which then follows immediately is

THEOREM XII. Tet f(z), {n;}, and 6 be given satisfying all of
the conditions of Theorem X except 2 which is replaced by.

2. z=11is a regular point for f(z).

Then there is a subsequence of partial sums of X'f, 2" which
converges uniformly to f(z) in a beighborhood of each regular point
of f(2) on |z]| = 1.

It would be inappropriate to conclude this section without making
mention of the work done by J. R. BRrRArrzrv in this connection.
[3] The result which he arrives at is very similar to Theorem I, with
the exception that condition 2 there is replaced by the much simpler

Lim (g./2 6 n) = 4,

where g, is the number of changes of sign in R (f,., ¢#") occuring in
the interval — On < p < On.
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The article referred to above in which BRATIZEV proves his asser-
tion is quite long and even more tedious than FABRY’S proof of a
related theorem that no less a mathematician than A. PRINGSHEIM
called «complicated and indeed not without objection ». The over-
convergence theorem which one would expect to get out of Brarr-
ZEV’S is not immediately evident, at least it does not seem to be.
In order to develop such a result, a close examination of the inner
workings of his proof is probably required, with the aid perhaps of
an article by Subbotin [22] in which it is claimed that several theo-
rems of BRAITZEV'S are simplified.

4. A GENERALIZATION OF HADARMARD'S GAP THEOREM

It is easy to prove HADAMARD'S gap theorem (see the Introduc-
tion) once we have OSTROWSKI'S first overconvergence theorem
(Theorem I, Section 1). Ifor this latter result implies, the gap condi-
tion being satisfied, that the sequence of partial sums

of the series
(1)

converges in a full neighborhood of each regular point on the circle
of convergence of (1°). But the sequence {s, (2) } is the full sequence of
partial sums of (1’), which we know diverges everywhere exterior
to the circle of convergence. Therefore every point on this circle is
a singular point of the function defined by (1’). This is a much older
result than that of overconvergence, having been published by Ha-
DAMARD about 30 years before OsTrROWSKI's first theorem was proved.

What if there are two non-zero coefficients separating the ranges
of zero coefficients instead of one as in the preceeding example? Or
any finite number? How infrequently must the gaps occur when
some point on the circle of convergence of a gap series is regular?
A partial answer to these questions is given in the main theorem of
this section. And as the title indicates, HADAMARD’S theorem is
shown to be an immediate consequence of the ideas here.



212 Harold George Musherheim and A. J. Macintyre

The following result from the theory of determiants will be found
useful and is stated as.

LrmmAa I. The determinant

2 —g—1 —g+1 -1
1 % 2 2T AT &) %
2 —q—1 -qg+1 -1
1 % % ...x% 7 % 7 .. % x5
(1)
2 n—qg—1 n—qg+1 n—1 n
1 %, %5 ... Xp U0 x,70 L % Xy
is equal to
i>k
(2) Se(x1, % s x). I —2x)59=1,2, ..., n,
i< k<n
where S, (%, %5, ..., %,) is the g™ elementary symmetric function of
the » variables %y, %5, ..., %y.

This lemma is given as an exercise in the second volume of [20] and,
as shown there, may be verified by solving the system of equations
(n a fixed positive integer) :

(— 1) 1S, 42 (— )" 2S, 4+ 2 (— )38, ,+ ... + 477" S, =41
(— 1) 1S, + 2 (— 1)"2S,_ + 43 (— 1)*3S, 4+ ... 257" S, =4
(3)

(—1)" 1S, + %, (— 1) 2S,_ + 2 (— 1)"3S, o+ ...+ 207" S, =4

for (— 1)~ S,. The system (3) is consistent and each equation in
it follows by induction and the definition of the S,. It may be noted
that (1) is valid for ¢ = 0 by taking S, == 1; the determinant in (1)
then being the VANDERMONDE determinant for the # variables
X1, Koy oery X

TaeorREM I. Let the series of polynomials

(4) G+ 3 B Gy 2, B+ 1> ot 4

v=0 k=1

converge uniformly on a circular arc 4, of radius R and center z = 0.
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Assume that g,/p, -0 as #n increases through the positive integers.
Then the power series

(5) § a; 2
i=0

obtained from (4) by dropping the brackets has radius of conver-
gence 7 > R.

Proof : A selection of g, points (» fixed) is made in the following
way. If g, is odd, divide A into ¢, — 1 equal arcs so that the points
of division zy, z,, ..., 2, are arranged on 4 so as to satisfy:

1. 2, is taken as the midpoint of A.

2. The remaining z; having even indices are assigned to the
points of subdivision on one side of z; so that i increases as the dis-
tance along the arc from z; increases.

3. The z; with odd indices are arranged in a similar manner on
the other half of the arc A

The end points of 1 are in this case z,, and z, _;.

If g, is even divide A into ¢, equal arcs by means of z, z,, ..., Z,,
as described above, with the exception that the end point on the
odd’ side of 1 is left unassigned.

The arc A may be taken smaller than a semicircle without dis-
turbing the results. We suppose that this is done and denote the
length of 1 by L. Now consider the expression

(6) (zq,, - Za) (Zq”_l - za) (Zo'i 1 Zc) (th - Za—l) (zo - Zl)

with 1 < ¢ < ¢,. Note that there are ¢, — 1 factors in such a product.
Because of the manner in which the points z; were assigned on 4, (6)
has its smallest absolute value for a given ¢, when ¢ = 1. Noting
the geometric fact that the chord of an arc less than a semicircle is
greater than half the arc’s length, we have when g, is odd :

. L
L \*/[ 2L \’ ( 2 ) \:
II 12 — 2z =1 g.— 1 g, — 1 g, — 1
1<i< gn . 3 ‘ 3 ——_2 -

or

LN\»=1]/(g,— 1 2
(7) I Izl—z,-lz(_2—> [(q—z—)l] '

1<izqn (@ — 1)im=D
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If g, is even, the estimate becomes

(8) M 15—ul> (_l;—) I (q_z_ E)ll

1<i<gqn 2(1;1 (n—1)

Tor convenience, the results of the past few sentences are com-
bined in

LemMMA II. The expressions in (7) and (8) bound the absolute
value of (6) (1 <o <y, from below, depending on whether g, is
odd or even respectively.

n qr

If wenowset f,(2) = ag + ¥, Y ap, . 2vHE, then f,(2) — f,_1(2) =

»=0 k=1
o .
=¥ a,  2'n*=:¢,(2). So that by hypothesis
E=1
In b .
. bk g f o
(9) >.J apn_; AR E—= € (Zi) == 58, 1 = 1, 2, cery Gy

k=1

where ;¢, tends to zero uniformly with increasing #. The system (9)
may be thought of as determining the Ap 1k (1 <k<gq,), so we have
by CRAMER’S rule :

| zfnt L zpnt2 | gpath=l g ptatkFl | gbutn |

(10) Apy i k=

| zfn+l gpnt2 | bt | ’

for k=2, 3, ..., ¢, — 1 and where the notation employed replaces
all of the entries of the g, —rowed determinants with a typical row.
(The cases # =1 and k=g, are handled in a completely similar
way throughout). From (10), we have

In i>]
ai’n k II Zif’n'!'l II (Z‘: _ 27) — I Z!,f’n'“l vae zlf’n tk—1 ien Zl.f’n'rk‘i‘ 1‘.__ Zif'u’i In I .
i==1 1<i, i<
Expanding the determinant on the right side of the last expression
according to the %" column yields

I . . . .
E (_ 1)/6 - !Zi/‘n"'l Z,;f"" k—1 zif’n': k-1 Zif’n‘i“!n [ (i )
r=1

which may be written

1w

n .
Z (__ l)k "van ( ll z{,{m-l) I 1 2 e, Z,;k_z Z,k, e z;,{""—l ity
r=1

L 1<isiqn y
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In
Dividing both sides by ][] zi" ! gives

i=1

i>7 qn
af’n" E H (Zi — Z]) = v (— 1)’”—” »En Z_p"'_l.
1<, j<qn r=1

1 — , — i
Al 2z, o, 2F2 2k, L 2T £y

.S,,n_k (20, -er ) iﬂ, .zqn)

upon application of Iemma I, suitable identifications being made.
Tinally,

qn
(11) az‘)‘,-'k = X (— l)k-lv »En 2= Pn—1, Sq”—k (Zl, Boy veey Zyy oon &y ).
v=1 A

. (E[v (z: — 2) \,_1 (7[1 (z — %) )”'.

By inspection we see that (11) holds for the cases # = 0 and £ =g,
as well, if as agreed on above S, = 1. By the definition of
Sqn_k (21, 225 o 24, o, 2,,) We have

A

(12) |Sqn——k (Zl’ 9y veny Ryy eeny zq,t) i S( 9 ! )R!i”—k; 1 _é’ll S 9n-
A g —Fk

Certainly then

|Sq”—k (Zl, 22y ey By eeny Zq”) | S 2"'7’1—1 R""ﬂ“k.
A

Observing that there are only ¢, terms on the right side of (11),
making use of Lemma II,(13), and the hypothesis on the ;e,, we get

2 (’1;1—1)
7. K (T) (g, — Dtm=D 20x=1 Riow=H

o [T

when g, is odd and # is sufficiently large. K is some constant.

lap,+nl <
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A similar expression (using the estimate in (8)) holds when g, is
even. Since k! > (k/e)*e, it follows that

q; C(’lﬂ,—l)
\a.ﬂ”-rk | S !——,_
R(b,,+1-—(]u~a k)

in either case, C being a suitable constant. So that
G UPH+ 8 Clan=Vlby ' k& Rlog=1Ipyt b

R

| @pprn [P HE <

for g, even or odd. In general
1<g, Upytk < . Uty — (9, ”‘M)’fnll’n < etalbn
and

1 S (CR)(qu_l)//’u':"k S (CR)”nI/’n or (CR)’M/PH S (CR)(‘I,L—I)/P"" k S 1

as CR is greater than or less than one respectively.
Applying the hypothesis ¢,/p, — 0 as n — oo we obtain

_— 1
lm |ay op | Urntt < —
n—00 ’ R

k=1, 2, ..., ¢,. This completes the proof of Theorem I, and we
now can go on to establish the result which is of principal interest
to us here.

THEOREM II. Iet

(14) [(z) =% ¢, 2"

n=0

have radius of convergence 1. Let {#,} and {N,} be two sequences
of positive integers such that
(1+ 0)n < Ng, my, < Np <m0y
and
cn=0for n,<n<N,; k=12, ..., P, ...

where 0 is a fixed positive number. Suppose that #, /N, - 1 as
k — co. Then no point of |z | = 1 is a regular point of f ().
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Proof : Suppose that |z,| = 1 and that z; is a regular point of
f(2). Then by Theorem I (sect. 1) the sequence of partial sums

Nk
fﬂk (Z) = E Cn Z”
n=0

converges uniformly to f(z) in a neighborhood of z,.

Accordingly, there is an arc 4 of radius R > 1 having as center
the origin, along which the sequence of partial sums converges uni-
formly to f(z). This is equivalent to saying that the series of polyno-
mials

(o o]
Y (a1 2V A+ a2, (N == — 1)
E=0

converges uniformly to f(z) along A. Applying the theorem just pro-
ved, we take g, = #n;.; — N, and p, = N;. Then

Qulpr = (mp:y — Np)/[Np = — 1 + my . 4/N,

which tends to zero by the assumption made above. Therefore (14)
converges in | z | < R. This is a contradiction of our hypothesis on
the series in (14), so that z; can not be a regular point of the function
1(2).

HADAMARD'S gap theorem states that the series X a, 2" having
radius of convergence 1, has the unit circle as a natural boundary
when #n,,/n, > 1+ 0 for (=1, 2, ...), 0 a positive number. We
can get this out of the previous result by noting that #,,, =N, + 1
here. That is

Mpp1/Np = (Np + 1)/Ny > 1 as k — oo,

The two assertions which follow are immediate consequences of the
previous theorems.

1. Let f(z) = 2 a; 2" have radius of convergence 1.
If the series (4) obtained by bracketing the terms of the given
series converges uniformly to f(z) on some arc of |z] = R > 1, then

lim (g,/p.) > 0.

2. Tet f(z) = 2c,z" have radius of convergence 1. Let the se-
quences {n;} and {N,} and the coefficients ¢, satisfy the conditions
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of Theorem II. If some point of the unit circle is a regular point of
f(z), then

(15) Hm (n544/Ny) > 1.

5. REMARKS ON DIENES’ PROOF OF OSTROWSKI'S SECOND THEOREM

As pointed out in the introduction, any series Xc¢, 2" having a
subsequence of partial sums {s,, (2)} converging uniformly in the
neighborhood of a regular point on the circle of convergence has a gap
structure. More precisely, there is a 6 > 0 and a p, 0 < 9 < 1 such
that |c,| < o® for n, <n <mn, (1 + 0) and all % sufficiently large.
This is OsTROWSKI'S second theorem essentially. It is also possible
to conclude that |c,| < ¢" for (1 — O)n, <n < m;; but the first
statement is all that is required. See [4] and [18].

In the preceding section (remark 2. on page 27) we have seen that
for a gap series to be overconvergent at all, the gaps cannot occur
‘too frequently’. That is to say, the length of the separation between
gaps may not be arbitrarily small. Indeed thereis a certain dependence
on the region in which the overconvergence is desired. The method
used in proving OSTROWSKI'S second theorem can be applied to this
problem to yield a numerical estimate of a lower bound for

Hm #ny 4/Ny,

dependent on the region of overconvergence. However in [4], the
proof rests — somewhat insecurely it would seem — on a mapping
theorem stated earlier in the text. Whatever misgivings there may
be can be avoided by making some adjustments in the first part of
the proof. Also, by using a slightly modified majorant, we obtain
for the lower bound mentioned above a value which is a little better
than that which DIENES’ majorant would have allowed.

Let D be a simply connected domain containing the origin whose
boundary is the contour C. If

(1) w=2g@) =2+ a,22 + a3+ ...

is schlicht for z ¢ D and maps D conformally onto | u | < 7, then 7
is said to be the inner mapping radius of D with respect to z = 0.
Iet p be the radius of the largest circle about z = 0 whose interior
is contained in D. Consider the inverse of (1)

2=u+ byu®+ byud + ..
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which maps | | <7 onto D. Setting u = rw, 2’ = zfr in the last
expression and applying KOEBE’'s theorem shows that ¢ > 7/4. Re-
turning to (1), we put z = fp so that

(2) G(l) = g (to) = to 4 a,t20% + ... and
(2" G)o =1+ artPo + ...

are schlicht and regular for | ¢ | << 1. From (2’), and the last remark
it follows that |ay | < 2; and from (2) and CaucHY’s inequality
we have [a, 0" | <7 /(1 — ¢)" for » > 3 and e such that 0 < e < 1.
Since ¢ > 7/4 and |a,| < 8/r, it follows that |a, | < 4"/r—1(1 — &)*,
7n > 3. Now 4" < 8*~1 when # >3, so that |a,| < (8/)""Y/(1 — &)*
for all w > 2. I,et # be chosen as close to 7 as we please such that
0 <7 <7 Then v = (1 — &')r where 0 < &’ << 1. Choose the ¢ above
so that (1 — &') = (1 — ¢)2. This makes 7' = (I — ¢)?» and hence
7' lr=(1—¢&)2<(1— &)"*~1 for n>2. In other words »"*~1 <#*~1(1— ¢&)",
which yields |a, | << 8"~ 1y'»~1 for » > 2. Therefore

g < < — o
1 — 2%

’

v
where the symbol < < is defined as in [5]. That is,
f@)=Z2a,2» << F(z)=2X4, 2

means A, > 0 and |a, | < 4, for alls «.
Consider now f(z) = X¢, s® with radius of convergence 1.

Let {#n,} and {N,} be two sequences of positive integers satisfying
(I + 60n, <N, and n, < Ny <y

such that ¢, = 0 for n, <n <N, (k= 0, 1, ...) where 0 is a fixed
positive number. Suppose that the sequence of partial sums {S,,(2)}

converges in some neighborhood of z = z; on the circle of convergence.
nr N

But s, (2) =2 ¢,2"= X ¢, 2" here. This means that there is a con-
0 0

tour C bounding a simply connected domain D having the following
properties: 1. D contains z = 0.

2. D has inner mapping radius » > 1. 3. The sequence of func-
tions {s,, (2)} converges uniformly to f(z) in D.
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We may apply to this D and 7 the remarks made above. Now
>

v, (2) = X¢, 2" is regular and such that |v,(2) | <1 in D for suffi-
N

ciently large k. Under the mapping (1), v,(z) is transformed into
Uy (u) = dy, Nk + dy, 1 2Nkt 4 L Since |9, ()| <1 for ju| <7
we have | d, | < 1/r'”, where #' may be chosen as close to 7 as we
please. Or

_ uNr
(3) Uy, (M) << m .

Replacing # in the expression (3) by means of (1) yields

2N ZNEi1

+ -
SNk (1 . 82 )Nlc T,Nkﬂ(l . 82)M~+1
\ i 7'

AN

v (2) <<

+ ..

This means that

L [(Netp—1 Netp=1) g
ICNk"PES,ka:-p[( ] )8P+( s )8,, +

)

for p > 0. For p < 8N, we may write

8p (Nk+p )<8"p(1+¢>/Nk>(Nk:f’>
P\ p PN (BINGY

Consider ¢ fixed for the moment, take the (N, + p)th root, and
set /N, = A < 8. One now has

ch\'k:ﬁIS

B (p)UNH D (1 + 1)
’ (1)1/1-;-1 ’

ey, |10 <

The function A(A) =: (1 + A) 81+4/A*1*4 ig continuous and diffe-
rentiable for 2 > 0. Also A(A) increases monotonically with 1 for
0 < 2 <8, while im . A1) = 1.

30

Therefore if (N, + $) — e in such a way that /N, remains
less than @ < 8, one may write

(4) Hm [ eypsp |2 S B (D)1

(Ng+p)—>o0
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Restrict the 7 of the previous discussion to 1 << 7 <9 and define
@(7) as yhat value @ such that (D) = r, and for which 0 < @ < 8.
Now suppose that

(1H npq/Ny) — 1 =4 < D(r), (4 = 0).

Choose &¢>0 so that 14+ A + ¢ < ®(r) + 1. Consequently
for % sufficiently large, n, ; < (1 + 4 + &) N;. Because of the mono-
tonicity of the function 4(1), we way select an #'(1 < 7" < 7) so that
7" < (A + €). From (4)

Hm ey, p MNP <B(A + &)y <1
(Ni+p)—00

when 0 <p < (4 + &) N, which is to say that for % sufficiently
large

la, "< B<1

when N, <#n < #n,.,. But this would mean that the radius of con-
vergence of X ¢, 2" is greater than or equal to 1/B > 1. Therefore
lim /Ny > @ (r) + 1.

Some values of 7 between 0 and 4 and the corresponding lower
bound for lim #; . /N, are given in the table below.

7 m ;. 4/N,
1.2 1.028
1.4 1.060
1.6 1.093
1.8 1.127
2.0 1.161
2.2 1.196
2.4 1.232
2.6 1.268
2.8 1.304
3.0 1.342
3.2 1.381
3.4 1.421
3.6 1.462
3.8 1.504

4.0 1.548
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If one knows the function (1) for a particular domain D, a better
(larger) value for the lower bound of lim (n;./N;) can reasonably
be expected. As an example, let D be the crescent-shaped domain bet-
ween the circles |z |=1and |z—a|=1-+a (¢ 0). The inner
radius of this domain is (2a 4 1)/(a + 1) and the function (1) is

z
2a

1
+2a—|—1

When a = 3/2 we have 7 = 1.6 and lim (#;._,/N;) > 1.143.

6. RELATED THEOREMS AND REMARKS

The purpose of this section is to place the preceding considerations
in their proper setting against the background of some fundamental
results on overconvergence; and, as mentioned in the introduction, to
indicate areas in which further development might be possible.

The two theorems of OsrrOwskI quoted so far (6 and 7 in the
Introduction) at first appear to offer a complete solution to the pro-
blem of determining the relation between lacunary structure and
overconvergence. That is to say (7), is the converse of (6). As far
as the bare fact of overconvergence in some neighborhood of a regular
point on the circle of convergence is concerned, this is true. Another
point of view is expressed by saying that the property of overcon-
vergence is reflected in the sequence of coefficients of the series in
much the same way as the radius of convergence is.

Let
(1) fz)=X a, 2"

have radius of convergence 1 and be analytically continuable in a
simply connected domain D containing |z | < 1. If we wish to become
precise and ask for the exact quantitative relations between the lacu-
nary structure of (1) and the domain in which some subsequence of
partial sums of (1) converges, the answer is far from clear. The domain
of overconvergence referred to could be the whole of D or some pres-
cribed subdomain. The lacunary structure of the coefficients ne-
cessary and sufficient for overconvergence in such a domain is not
known. In speaking of lacunary structure we should include ranges
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of 'small coefficients’ (relative to the radius of convergence) as well as
gap length.

One might hope that a careful analysis of PORTER'S examples
would shed some light on this problem. Thus let a be a fixed real
number between 0 and 1 + V2.

Form the series

K%
}a (2(1 + 1)”1‘, Nip1 = 2”: + 1
and replace x by z(2a4 -+ z). This situation is discussed in the same
way as that corresponding to the series in (1) of the Introduction. Ior
each a in the given range, the CassINIAN (fig. 1) defined by |2(2a+-2)| =
2a 4+ 1 contains |z| = 1 and bounds a simply connected domain.

fig. 1

Examing the coefficient b; of the power 2 in the series
2% (2a + 2)"
(2a + 1)

reveals that im |5;|! = 1 and lim |5;|¥ = 2a/(2a + 1) or 1/(2a + 1)1/
according as a < (1 + 5!2)/4, or a > (1 4 5!2)/4. The exact rela-
tionship between the sequence of coefficients and the domain in
which the series of polynomials (2) converges is by no means obvious.
If this is true for specific examples, the prospects for information
of this kind in the general situation are no better. The third over-

(2) ¥
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convergence theorem of OSTROWSKI provides the answer in a special
case. We have namely

(3) If in the series (1), a, = 0 for n, < n < N and Ny/n;, - oo,
then the subsequence {s,, (2)} converges uniformly to f(z) in some neigh-
borhood of every regular point of f(2).

Other investigations in this area have been made by Professors
MACINTYRE [12] and SUNYER BALAGUER [23]. SUNYER BALAGUER’S
theorem follows.

(4) Let D be any domain containing the origin and let f(z) be
a function regular in D with the expansion 2 a, 2". Let D; be a domain
and its boundary contained in D. Then there exists a positive num-
ber t, =ty (D, D,) such that if 4, = 0 for a sequence of intervals
nm, < n < tmy, with £ > £, then the subsequence of partial sums s,, (2)
converges uniformly to f(z) in D,.

BourioN’s theorem [2], however, even for very short gap lengths
concludes that the domain of overconvergence of a subsequence of the
series has at least a sort of local agreement with the domain of regu-
larity of the function. See also MACINTYRE [13] for this theorem.
There are even certain domains in which overconvergence is assured
throughout provided that the gap lengths are of a certain size. Thus
if in (1), @, = 0 for n, <#n < N, and N, > (1 + 0)#n;; and if f(2)
is assumed regular at z = 1 and in the domain E corresponding to
|w| < R, (R> 1) under the transformation z = »? (1 + w)/2,
then {s,, ()} converges to f(2) in the whole of E if 6 > 1/p. [2,p. 17].
The regions E for various p and R are difficult to describe geometri-
cally, nevertheless they along with the lemniscates of PORTER’S
examples, illustrate the fact that the condition N./#n; — oo is not
necessary for the conclusion of (3). Finally, lest the remarks above
convey the impression that overconvergence is restricted to domains
of a very special character, the following theorem is included.

(5) If D is a simply connected domain containing the origin
but not the point at infinity and having at least two boundary points,
then there is a function f(2) such that (a) D is the domain of exis-
tence of f(2) and (b) the series f(z) = X ¢, 2" has a subsequence of
partial sums which (over) converges to f(z) in D, uniformly on com-
pact sets. [7]

Several other possibilities which invite further work are these:

(2) Can be theorem of BRAITZEV (see the end of section 2) be
recast in an overconvergence form? Indeed there is in this connec-
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tion a need for a simple proof of BRATTZEV'S theorem itself and an
explanation with specific examples of the way in which it generalizes
Porva’s theorem.

(b) It should be possible to interpret the developments in section

2 as properties of the entire functions which interpolate the coeffi-
cients of the series.

10.

11.

12.
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