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HAUSDORFF SPACES DOES NOT IMPLY THE AXIOM
OF CHOICE: A NEW PROOF. EQUIVALENT
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In most usual axiomatic set theories (1) the axiom of choice
(briefly, AC) is used to prove the classical Tychonoff’s theorem on
products of compact spaces:

AT. The product II E; of any family (E;);c; of compact spaces is

iel
a compact space.

Kelley has shown in [14] that AT implies AC and therefore, AT
and AC are logically equivalent. In this paper we raise the question
of studying the role of the following axioms, if the axiom of choice is
removed from the above mentioned axiomatics:

ATy. The product I1 E, of any family (E.);cr of compact Ty-spaces

ier
is a compact space.

AT,. The product II E; of any family (E,);c; of compact T r-spaces

iel
is a compact space.
AT,,. The product I1 E; of any family (E,);c; of compact metric
il
spaces is a compact space.
AT,. The product II E; of any family (E,);c; of compact real inter-
iel
vals is a compact space.
(1) Explicitly, we are referring to Zermelo-Fraenkel and Neumann-Ber-

nays-Godel axiomatics, this latter with or without A. P. Morse’s modifica-
tions. (See Cohen [4], p. 50-53 and 73-75, and Rubin [20], p. 28-83).



220 B. R.-Salinas and F. Bombal

AT, The product I1 E; of any family (E;);c; of finite topological
i€y

spaces is a compact space.

Clearly, AT implies AT;, and as Kelley’s proof also shows, AT
implies the axiom of choice. Therefore, AT, and AC are equivalent.

It is shown in theorem 1 that AT, and AT, are equivalent, and,
consequently, to AT,,. Also, it is shown that AT, is logically equiva-
lent to some basic theorems in Topology and Functional Analysis,
commonly proved using the axiom of choice.

In the literature on this subject is proved the equivalence of the
following propositions:

P,. Boolean Prime Ideal Theorem (BPI): Every Boolean alge-
bra has a prime ideal.

P,. In every Boolean algebra, there exists a two-valued measure.
P3. In every Boolean algebra every proper ideal is included in
some prime ideal.

Py In every commutative ring with unit, every proper ideal is
included in some prime ideal.

Ps. The restricted Stome vepresentation theovem : Every Boolean
algebra 1is isomorphic to a Boolean algebra of sets. ’

- Pg. The Tychonoff theorem for Ty-spaces: The product of compact
Hausdorff-spaces is compact in the product topology (= AT,).

P, Alaogiu’s theorem: The closed uwit ball of the topological
dual E' of a Banach space E is a compact Hausdorff space in the weak
topology o (E', E).

Pg. The Stone-Cech compactification theorem.

Py. Every complete and totally bounded uniform space is compact.

Py Alexander's lemma : A space is compact if theve is a subbase
for the open sets emjoying the Heine-Borel property.

Pyy. The principle of comsistent choices: If €& = (E,);c; 7S @ fa-
mily of compact spaces, ¢ a relation of comsistency for £, and if, mo-
reover, for every finite set J c I there exists a o-comsistent choice from
(E)icy» then there exists a g-comsistent choice from E.

Piy.  The completeness theorem for 1st.-order languages: Let X be
a set of 1st-order semtences with arbitrary many won-logical constants.
If X is consistent, then it has a model.
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Pi3. The compactness theorem for 1 st-order languages: Let X be
as in Pyy. If every finite subset of X' has a model, then X has a model.

Proofs are found in the following papers: Los-Ryll Nardzewski
[16], [17], L. A. Henkin [11], H. Rubin-D. Scott [21], D. Scott [23]
A. Tarski [26], [27], and R. Sikorski [24].

A consequence of the BPI is the following:

OE. Order Extension Principle: If A is a set and Ry a partial
ordering on A, then theve exists a total ordering R on A such that Ryc R.

The OE has been discovered by Banach, Kuratowski and Tarski
(see W. Sierpinski [25] p. 158). The first proof which appeared in
print is due to E. Marzewski [19]. Marczewski used the lemma of
Zorn-Kuratowski in order to deduce OE. Los, Ryll-Nardzewski and
L. Henkin observed, that OF is already a consequence of the BPI.

An evident consequence of the OF is:

OP. Ordering principle: Every set can be totally ordered.
Thus we have:

ZF |- AC - BPI - OE - OP.

In the Zermelo-Fraenkel axiomatic (ZF), BPI is strictly weaker
than AC: ZF W (BPI - AC) (See D. Halpern - A. Levy [10],
U. Felgner [7], p. 128-146 and V. Dalen and Monna [6], p. 61).
Therefore, ZF H (AT, — AC). According to Adrian R. Mathias,
OP — OFE is not a theorem of (ZF). It is not known whether
OE — BPI is provable in ZF or not.

In this paper we show BPI and AT, are equivalent to the follo-
wing propositions :

P,'. The Stone representation theovem for the Boolean algebra
A = P (S) of all subsets of a set S.

P,'. Every proper ideal in the Boolean algebra P (S) of all sub-
sets of a set S is included in a prime (or maximal) ideal. (2).

Py'. Every filterbase on a set is included in an ultrafilier on that set.

P,'. A topological space E is compact if and only if every ultra-
Sfilter on E is convergent.

(2) The equivalence of P3 and P’ has been pointed by A. Tarski [28].



222 B. R.-Salinas and F. Bombal

Ps'.  Alaoglu-Bourbaki theorem.
P¢'. Kakutani’s theovem on representation of abstract M-spaces.

P;'. Kakutani’s theorem on representation of abstract M-spaces
with an element.

Py'.  The unrestricted Stone vepresemtation theovem for a Boolean
algebra A (with or without unit element).

Py'. Every proper ideal in a Boolean algebra A (with or without
unit element) is included in a prime ideal.

The implication BPI — P3’ allows the use of the classical proof
of Bourbaki [3] to show that BPI — AT,. To this end, Los and
Ryll-Nardzewski make use, in a slightly more complicated way, [17],
the following proposition :

A topological space E is compact if and only if for every two-
valued measure y defined for all subsets of E, there exists precisely
one point x € E such that u (V) = 1= u(E) for every neighbour-
hood V of .

Los and Ryll-Nardzewski use the principle of consistent choices
to show that BPI implies the Hahn-Banach extension theorem. We
achieve this result showing directly that A7, implies the Hahn-
Banach theorem. Proofs using AT, were already known for the exis-
tence of Haar measures on locally compact topological groups, the
Alaoglu-Bourbaki theorem, the Mackey-Arens theorem, etc.

It is worth noting that, BPI and P4 being equivalent, the follo-
wing theorem of Nachbin is a consequence of BPI or AT,:

Every normed space whose collection of spheves has the binary inter-
section property and whose unity sphere comtains an extreme point s
isomorphic in the vector and norm sense to the normed space of all real
continuous functions over an extremally disconnected compact Hausdorff
space, which is unique up to homeomorphisms.

His proof hinges crucially on the assumption of existence of an
extremal point in the unit sphere. Kelley’s proof ([15]), where the
above assumption is removed, might become unfeasible using only
the BPI.

The non-equivalence of AT; and AT, suggests that a wide fa-
mily of axioms could ve obtained assuming the validity of Tycho-
noff’s product theorem for certain classes of compact spaces. These
axioms are, in a certain sense, similar to the axiom of choice (equiva-
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lent to AT;). In particular, given a class « of sets, the following
axioms can be considered :
AT, ,. The product I1 E; of a amily of compact Ti-spaces is a
il
compact space if Ie a.
AT, ,. The product I E; of a family of compact T,-spaces is a
iel
compact space if Ico.
It is shown in theorem 2 that, if for every set © the set B (Q)

of all bounded real functions on £ belongs to «, then AT, , is equi-

valent to AT). Particularly, this is true if every complete lattice
belongs to « (3).

* k%

THEOREM 1. The following propositions are equivalent to AT ,:
1.1.  Tychonoff’s theovem for the product II E; of compact real
iel

imtervals.

1.2. The closed unit ball of the topological dual E' of a Banach
space E, is compact for the weak topology o (E', E).

1.3.  Stone-Cech compactification theorem for a completely regular
Hausdorff space.

1.4. Stone representation theorem for the Boolean algebra A= P (£2)
of all subsets of a set L.

1.5. Ever proper ideal in the Boolean algebra A = P (2) of all
subsets of a set 2, is contained in a prime (or maximal) ideal.

1.6. Every filterbase on a set is included in an ultrafilter.

1.7. A topological space E is compact if and only if every ul-
trafilter on E is convergent.

ProoF. AT, = 1.1. It is obvious.
1.1 = 1.2. See, for instance, Bachman-Narici [1], p. 339.

1.2 1.3. Let Q be a completely regular Hausdorff space,
E = (, () the Banach space of continuous bounded real functions
on Q: ||fl| =Sup {|f(x)|: xe2} (fe(C,(2)), and B’ the closed unit

(3) It is easily proved that ATy« is equivalent to AT if « contains every
complete lattice.

15 — Collectanea Mathematica
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ball in E’ (dual space of E). Defining j: 2 - B’ by j(x) =6, (the
evaluation at x) and endowing B’ with the topology induced by
o (E’, E), and assuming 1.2, it is easyly shown that £ and J (Q) are
homeomorphic, and that the o (E’, E)-closure 7 (Q) of () is the
Stone-Cech compactification of 2. (See, for instance, Day [5], Defini-
tion 1 and Theorem 1, p. 85, and Badrikian [2], p. 63-64).

1.3 1.4, It is shown as in Kakutani [13], § 14, p. 1013-1014.

1.4 > 1.5. Let J be a proper ideal in 4 = P (). If 1.4 is assu-
med, there exists an isomorphism @ between 4 and the open-
compact sets of a totally disconnected compact Hausdorff space E.
As J is a proper ideal, there exists Age 4, Ag¢J (we can take
Ao = E), and so :

D ={0(4) \NO(4): A7}

is a filter base on E. As every O (A4) is open in E, and 6 (4,) is
compact, there exists a point

xen {04y \O4):4€7}.

Consider P ={4d e 4:x¢6 (A)}. Clearly, P is a proper ideal in A,
and P 5 7. If A and B belong to 4 and A n Be P, then

%¢0(AnB)=0(4)n06(B).

Therefore, x ¢ @ (4) or x¢ 0 (B), i.e., AeP or BeP. This. shows
that P is a prime ideal containing J. R .

1.5 1.6. It is a consequence of the duality between filters
on a set £ and proper ideals in the Boolean algebra P () of all
subsets of Q:

Pisafilteron Q «={A: 2\ 4Ade @} is a proper ideal in P Q).

1.6 > 1.7. Suppose (F),; is a family of closed sets in the
top010g1ca1 space E with the finite intérsection property. Then
= {F,:1¢el} is a filterbase on E. If 1.6-is assumed, there ‘exists

an ultrafilter UY o @, and, if every ultrafilter converges, U converges
to a point x. Therefore, x € ] F; and n F; % ¢. This shows that E

el
is a compact space. Conversely, if E is compact, it is clear that every
ultrafilter on E is convergent.
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1.7 AT,. Let (E;);¢; be a family of compact Hausdorff spa-
ces, and E =IIE,. If Y is an ultrafilter on E, every projection

i€l
2 (U) =1{p;(U) : Ue Uy (¢ € I) is an ultrafilter basis on E;, and
so, p; (U) converges to a single point x;€ E;,. Then U converges to
% = (%;);e; and, if 1.7 is assumed, E is a compact space. (4)

THEOREM 2. Let B (2) be the set of all bounded real functions
on a set Q. If B (8) belongs to the class « for every set Q, then AT, ,
s equivalent to AT,.

ProOF. Proceeding as in theorem 1, we successively show that
AT, , implies 1.1 for I = B(2), 1.2 for E = B (), and 1.3 for E
a discrete space. This clearly implies 1.4, and according to theorem 1,
AT, too. Finally, it is obvious that AT, implies AT, ,

THEOREM 3. The Hahn-Banach theovem on extension of linear
forms is a consequence of AT,.

- ProOF. Let E be a real vector space, Ey a subspace of E, f; a
linear form on Ej, and p a sublinear functional on E such that
Jo(®) < p(x) for every xeEy. Let S,=[—p(— %), p(*)]cR and
S = II S, be endowed with the product topology. If AT, is assumed,

X€E .
S is a compact space. Every point in S is an application f: E -~ R
such that f(x) €S, for every x € E. Let us denote (E,);.; the family
of all finite extensions of E, in E, i.e., each E; is a vector subspace
of E containing E, and such that E;|E( has finite dimension. Let 4,
be the set of members of S which restrictions to E; are linear forms
extending f,. It is a well known fact that for every ¢ e there exists
a linear form g;, extending f; to E;, that satisfies g; (x) < p (x) for
every x€E;, so

—p(—%) <&@ <p K
for every xeE, (see, for instance, Bachman-Narici, [1], p. 176).
If f; is defined by
B fi(x) =g (x) for xeE;
filx) =p () for x¢E,
then f;e A;, and therefore 4; # 0 for every tel.
.(4) If the spaces E; are not Hausdorff, the proof is not valid unless the

axiom of choice is assumed, for p;(U) can have more than one limit point
#; in E;. See Bourbaki [3], p. 88. (See the note added in proof).



226 B. R.-Salinas and F. Bombal

For every pair «, f of real numbers, and every pair %, y of ele-
ments of E, the set

M B; % y) ={feS: flax + py) = af(x) + B/ (V)
is clearly a closed set in S. In a similar way, for every x € E,, the set
N(x) ={feS:f(x) =fo(x)}
is closed in S. Then, every
A, =[n{M(x B;%9) :a BeR, x,ye EYIn[n{N (») : x € Ep}]

is closed in S. As the family of closed sets (4;);c; in the compact
space S has the finite intersection property since

A,-nA,-:JAk;éQ

for E, = E; + E;, there exists an fe (] 4,. Let us show fis a linear
form. If x, y € E, there exists an 7€ such that x, yeE,. As fe 4,,

flox+By) = af(x) +Bf()

Finally, as fe N (x) for every xe€Ey, f is an extension of f; to E
and verifies f(x) < p (x) for every x € E, since fe S.

THEOREM 4. The following propositions are equivalemt to AT, :
4.1. Kakutani's representation theovem for abstract M-spaces.

4.2. Kakutani's representation theorem for abstract M-spaces
with unit element.

4.3. Stone’s representation theorem for a Boolean algebra A (with
or without unit element).

4.4. Every proper ideal in a Boolean algebra A 1is included in
a prime ideal.

Proor. AT, = 4.1. In view of theorems 1 and 3, AT, im-
plies 1.2 and the Hahn-Banach theorem. Therefore, Kakutani’s proof
is valid here (Kakutani, [13], p. 1000-1005). (5)

(5) Proofs for 4.1 and 4.3 based on the Krein-Milman theorem are not
valid for 4T, = 4.1 (or 4.2), as it is not yet known whether or not AT, im-
plies the Krein-Milman theorem. A proof of this kind is given in Schaefer
[22], p. 247.
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4.1 = 4.2. See Kakutani, [13], § 11, p. 1005-1006.

42 = 43. If A has unit element the proof is given in Kaku-
tani, [13], § 14, p. 1014-1015. Suppose A has no unit element, and
let A’ be a Boolean algebra with unit element e that contains 4 as
a subalgebra and has the property:

x€A or ¢e—xeA for evety xeA'.

" Then, there exist a totally disconnected compact Hausdorff space Q’
and an isomorphism @ between A’ and the Boolean algebra of all
open-compact sets in Q’. Writing Q =u {0 (a) : a € 4} and endowing
£ with the topology whose open sets are the subsets G of 2 such
that G n O (a) is open in Q’ for every a € A4, it is true that 2 is a to-
tally disconnected locally compact Hausdorff space such that 4 is
isomorphic to the Boolean algebra of open-compact sets in Q.

4.3 = 4.4. It is shown as 1.4 = 1.5.

4.4 AT,. As 4.4 1.5, it suffices to remember that, according
to theorem 1, 1.5 implies AT,.

CororrArRY 1. AT, is not equivalent to axiom AT;.

Proor. As Kelley [14] shows, the axiom of choice is equivalent
to AT, and, as proved in theorem 4, the BPI axiom is equivalent
to AT,. Now, if the Zermelo-Fraenkel axiomatic set theory is consis-
tent, it is also consistent if the axiom of choice is denied and the
BPJ is included: ZF H- (BPI - AC). (See v. Dalen and Monna [6],

p. 61).

CorROLLARY 2. The Hahn-Banach extension theorem does not im-
ply the axiom of choice.

Proor. It is a consequence of theorem 3 and corollary 1. (See
v. Dalen and Monna, [6], p. 34 and 61).

TurorREM 5. The following assertions are comsequences of AT :

5.1. If (E);cr s a family of non-empty compact Hausdorff spaces,
then ITE; is not empty. That is: there exists a choice fumction f such
iel
that f (i) e E; for every 1€ 1.
5.2. If (E);c1 ts a family of non-empty finite sets, then there exists
a choice function f such that f (i) € E; for every iel.
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5.3. If (E));er ts a family of finite topological spaces, then II E;
iel
is a compact space. )
Proor¥. AT, = 5.1. Let e be an element not belonging to
UE; ¢,=e¢ and E/ =E,; U {¢;} endowed with the topology that has
iel :
the open sets G; of E;, and {¢} as a basis. Clearly, (E,);c; is a fa-
mily of compact Hausdorff spaces. Therefore, if AT, is assumed,
E' = II E; is a compact space. ,
iel
For every finite subset J of I we denote A;(]) the set
A;(J)=E; if ie]
A, (J)=E/ if i¢],
and let 4 (J) = IT A,(]) (c E’). Then, every A (J) is a non-empty

. tel
closed set, since

AU =027 (4O,

where p, is the projection of E’ on E,, E; is non-empty, ¢, €E;
and J is finite. As

A nd(J") 24 v]"),
the 4 (J)'s form a family of closed sets with the finite intersection
property. If AT, is assumed, the existence of a point x belonging

to every 4 (J) follows, and, in particular, the existence of a point
belonging to every A4 ({¢}). This proves that

fif@) =p () ek, viel
is a choice function which fulfills the required conditions (6).

5.1 = 5.2. Evidently, all we need is to endow every E; with the
discrete topology.

AT, = 5.3. Recalling theorem 1 and AT, = 5.2, it suffices to
show that 1.6 and 5.2 implie 5.3. Let (E,);c; be a family of finite
topological spaces and E = IT E,. If Y is an ultrafilter on E, every

projection p,(U) (tel) is f;xilultraﬁlter basis on E;. Therefore, for
every ¢, the set A, of limit points of p; (U) is finite and non-empty.
It follows from 5.2 that there exists a choice function f such that
f (@) e A; for every iel. Consequently, x = (f(7));c; is a limit point
of U, and then from 1.6, it is clear that E is a compact space.

(6) This proof is similar to that given by Kelley [14], for proving AT; = AC.
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Added in proof.

J. L. Bell and D. H. Fremlin have showed that each of the following
three propositions is equivalent to the axiom of choice: (1) The unit ball of
the dual E’ of a normed lineav space E has an extreme point. (2) The conjunc-
tion of the Krein-Milman theovem and the Boolean prime ideal theovem. (3)
The conjunction of the Hahn-Banach theovem and a slightly stvemgthened ver-
sion of the Krein-Milman theovem. (See: A geometvic form of the axiom of choice.
Fund. Math. 77 (1972), 167-170). The strengthened version of the Krein-Mil-
man theorem in (3) is essential, for D. Pincus has recently shown that the
conjunction of the Hahn-Banach theorem and the usual Krein-Milman theo-
rem does not imply the axiom of choice.
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