THE UNIQUENESS PROBLEM IN THE THEORY OF NUMERICAIL
DIVERGENT SERIES AND FORMAL LAWS OF CALCULUS I (*)

by

R. SAN JUAN Liosk

§ 1. Characterization of powers series
U-spaces.

1. u- and U-spaces.

Def. 1. We call [1, 6, 11] (**) a c-space
to the set of convergent sequences {s;} with
the norm

[Is]] = sup [s¢]
0Zt<+ 0

Def. 2. The set of sequences {u;} with
convergent series:

oo T
Yu =lim Yur< 0
t=0 T—00 =0

will be called u-space, adopting the norm

T

sup | Mul

0<T<+too /o0

Al Prof. José M.s Orts con todo carifio.

and TLAPLACE’S transformation in u- and

Def. 1’. We call C-space [0, 4 oo] or for

. short just C-space the set of functions S(#)

continuous at the compact positive real
semi-axis [0, + oco] with the norm

lisll = sup |S()|
_ 0t<+o0
Def. 2’. The set of functions U(¢) sum-
mable in every finite interval 0 <t < T

and with convergent improper or genera-
lized integral:

+o0 T
f Ul) dt= lim | Ut)dt < oo

is called U-space [17, 119] [3, 226], [98, 57]
[4, 444) when metrized with the norm:

T
f . U(t)dt

NUll = sup
0LT< 400

(*) This research has been sponsored by the European Office Air Research and Develop-

ment Command U. S. A. F.

(**) First number indicates paper and last one the page. Numbers in between
refers to the theorem, definition, etc., or other complementary reference. Parentheses
refers to formulae or numbers in this very paper, as explained in [21, Previous speci-

fications).
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Here are some immediate or already known consequences that we have to use:

Prop. 1. The sums

t—1
st= Y uy for t =1, 2..., and sp = 0

v=0

corvesponding to sequences {s} € U compose
the vectovial subspace ¢, of ¢, formed by the
sequences {st} of ¢ with sq = 0; and conver-
sely the diffevences {A s} of sequences {ss} € ¢,
fill all the u-space.

Proof. Both propositions are immediate,
Asi = ug for t =0, 1, 2,...
Remark. On the other hand if we write

¢
st= Yyu,for =0, 1, 2,...
y=0

we have

Ast = wyg for t =0, 1, 2,...

So the sequence {4s:} for 2 = 0, 1, 2,... does
not yield the {u} for ¢ = 0, 1, 2,... but only
for ¢t = 1, 2..., and must be completed with
the initial term u, = s,. For the same rea-
son the converse in Prop. 1 does not turn
true for ¢, but only for ¢,.

Def. 3. We will call

Ug

the vectorial subspace of

formed by the

sequences {a:}
with
series

oo
3 «

n =0

Prop. 1. The primitives
¢
S(2) =f U@ay for 0 <t < 4 o0
0 .

of the functions U(t) € U compose the vec-
torial subspace Cq of C formed by the functions
absolutely continuous in every finite intervval
0 <t < T, with finite limit

S(+ o0) = lim S(f) < o0
t— 4o

and null at 0; and conversely, the devivatives
S’(t) in almost the whole finite interval 0 <t <T

for 0 < T < oo of €y form exactly U.

since

S’(t) = U(t)foralmostall 0 <t < T

U,

functions U (¢)

integral

f+wumm

0
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absolutely convergent

oo
2 loy] < o0
t=0

foolU(t)[dt<oo
0

Remark. — Only u, -subspace (Def. 5 and Prop. 5, no. 2, § 1), (Prop. 2 and Theor. 1,
no. 6, § 1) will be used in the sequel and not the U, one.

Let us recall the expressions for the linear functionals [1, 23] in these spaces.

Theor, 1. Any continuous linear functional
F (s) defined in the space ¢ of convergent se-
quences {st} has the form.:

oo
F(s) = Clims: + E Ct s, (1)

t—> o0 1=0

C being a constant and {Cs} a sequence such
that

ICl+ X 1G] = |Fl < oo (2)
=0

Proof. [1, 66-67].

Theor, 2. Any continuous linear functional
F (u) defined in u may be expressed as follows :

(o)
F(u) = N w Ki (4)
=0
wheve {K;} € ¢, 1. e., with:
lim K; =C < o (5)
t—o00

Proof. Writing
Fi(s) = F (u) (6)
for every sequence {s;} with
t—1
st= Y uyfort=1,2...,and s, =0, (7)
v=0

we have a linear functional F,(s) defined in
the vectorial subspace ¢, of ¢ (Prop. 1),
which extends [1, Theor. 2, 55] to the whole
vectorial c¢-space.

Theor. 1. Any continuous linear func-
tional F (S) defined in the vectorial subs-

- pace C4[0, + oo] of C[0, + o] of the con-

tinuous functions in the compact intevval
[0, 4+ oo] and null at 0 has the form:

F (s) =fS(t) ac), (1)
0

C(t) being a function of limited vaviation in
[0, + co] such that

o0
f]dC(t)]: |F| < oo, (29
0
which besides can be taken with
C(+o0)=1im C()=0 139
t—> + o0

Proof. [19, III. 108].

Theor, 2. Any continuous linear functio-
nal F(U) in U may be expressed as follows:

F(U) =f°lc}(t) K(t) dt (4')
0

with
K(+°°)T_1igl°§(t)=0 (59

Proof. [19, IV. 108].
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It may, then, be expressed for any {s:} € ¢
as follows:

=)
Tl(s)=Clim5g+EC; St

t—>oc0 t=0

(8)
being, after (2)

oo
ICI+ ¥ IC] <o

®)
t=0
Writing now,
o0
k=Y C/<oofort=0,1,2,...
v=¢
we have evidently
Akt = —Ci fort =0, 1, 2,... (10)
lim k=0 (11)
t—>»00

Therefore, after (6), (8), (10), (7) and (11)
we have

1) )
Fu) =CYw— Y, (Aki) st =
t=0 =0
oo (o] (o)
=C2m—[k;5t + Y hrrm=
t=0 0 t=0

[oe] (o)
=CY w+ Y k1w

=0 t=0
that is, (4) with
Ki=C+ kiy1fort=0,1, 2,...
which really verifies (5), after (11) and (9).

2. Complete and closed sequences in u and

Def. 1. We say that a sequence { ¢,} € €
of sequences

{dn,t}ec for n = 0,1,2,... and ¢ = 0,1,2,...

is complete in ¢ when the only constant C
and the only sequence {C:} ¢ u satisfying
all the conditions

o]
Y émitCi=0forn=0,1,2,..

C lim ¢4, ¢ +
t—>00 t=0

are the

C=0and C;=0for¢t=0, 1, 2...

R. San Juan Llosa

U.

Def. 1’. We say that a sequence { ¢} €
C [0, + oo] of functions

¢at)eCfor n=10,12...and 0 <t < + o0

is complete in C when the only function of
limited variation C(¢) in [0, 4 oo]

fOTdC(t)l<oo

0
and with a finite limit
C(+ o0) =1lim C(f) < oo
t—> +00
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Def. 2. We will say that a sequence
{ps} € u of sequences

“{@n,t}euforn=0,1,2...,2=0,1, 2, .. (1)
is complete in

when the only

Sequence {Ki} ec

satisfying all the conditions
oo
2 @n,t Kt =0 (2)
t=0
for n = 0, 1, 2,... is the identically null one
Ki=0fort=0, 1, 2,... (3)

Prop. 1. In order that a sequence
{pn} C u
be complete in
u
it 1s necessary and sufficient that the
sums
t
Gt =3 Pn v (4)
y=0
for n =0, 1, 2,... and
t=0,1,2,..

239

satisfying all the conditions
goe]
f ¢a(t)dC() =0for n =0, 1, 2...
0

is the constant
Cit)=C(+o0)in 0<t < + o0
except for a countable subset at the most.

Def. 2. We will say that a sequence
{pa} € U of functions

@n(t) eUforn=0,1,2,...and 0 <t < +
(1)
U

function C(?) of limited variationin [0, + oo ]

(o]
f |d C(t)] < oo
0
with null limit

C(+4 o0) =1lim C(t) = 0

t— 400

/ “ont)C(t) dt = 0 (2
0

is the null constant
Cit)=0in 0 <t < + oo (3"

except for a countable subset at the most,

{emn} c U

primitives

'3
bn(t) = [ on ()0 (@)
Yo

0<t< + oo
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form a sequence
{dn}Cec
complete in

c
Proof, Necessity. Let
{pn} eu
be complete in
If
[e o]
C lim ¢n,t + Y, bnt gt =0
t—> 00 t=0
for n =0, 1, 2,...
C being a constant and {Ci} € u
it is also
oo
C lim ¢n,¢——-2¢n,tAkt=0
t—> 00 =0
for n =0, 1, 2,... with
kt €¢

setting

oo
B=3¥C +Cfort=0,1,2,..

y=¢
But, then
o
Climdgy, ¢t — Y én,t Akt = C lim ¢y, ; —
t—>00 t=0 t—>00

t=0 =0

o0 (o)
— [¢n,tkl] + Ykt didu s = ¢uo ko +

oo oo
+2kt+l Pny t41 =¢n,oko +Ekt’l’n,t=

t=0 t=1

(o]

=2kt Pn,t = 0
t=0 '

{#n}cC

{‘Pn} e U

f du(t) d Ct) =0
0
_/ |d Cy(t)] < oo and Cy(+ =) =0
0
| 4 acitr=o
0
folod Ci(t)| < oo and Cy(+o0) =0
[\]
Colf) = C(t) — C(+ o0) for 0 <t < + oo

f:jbn (1) d Ci(t) = [ $ult) C. (1) ]: “_

“joél(t) @u(t) dt = — joocl (#) gu(t) dt=0
0 0
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forn =0, 1, 2,...; and as {p,} is complete in
u
it results

k=0for¢t=0, 1, 2,..

whence
C=1lmb#k=0
t—=>»00
Ci= —Aki=0 for t =0, 1, 2,...

Being, besides after
(Prop. 1, no. 1), {¢s} C ¢,
this sequence { ¢,} is complete in
‘ c
Sufficiency. Let
{én}ce

be complete in
If
oo
Y ontKi=0

t=0

for n =0, 1, 2,..., being

{Ki} e ¢c
and we set
C=1lim K; < o0
t—>00
Ci=—A4Kifort=0, 1, 2,...
we have
oo oo

N ont Ki =Y (4t nt—1) Ki + @n, o Ko =
=0 =1

00
= [¢n, t—th] -
1

(=]
2 ¢n,l Ct+¢n.o Co=

t=1

oo

¢n. t AKt + ¢n; 0 Ko
1

t=

= Clim ¢n,: +
t—> 00

241

| U

Ci(t) = 0i. e., C(t) = C(+ )

in [0, 4 oo] except for a countable subset
at most

| (Prop. 1/, no, 1) {¢s} CC,

{¢n}CC

(o]

on(t) C(t) dt =0
0

N

jon C(t)] <oo and C(+o0) =0
0

[eycwar=[ co agun
0 0

[qS,,(t) C(t)]:oo— f:c;Sn (¢) dC(t) =

—[¢n(t) acC() =0
o

[o0)
=Clm ¢p,t + Y ¢n,t Ct=0
t—> 00 t=0
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forn =0, 1, 2,...;and as { ¢y } is completebin

c | C
it results
C=0and C;=0fort=0, 1, 2,... K(t) = K(+4 o) = 0 within 0 <¢< + oc
wherefrom except, at most, in a countable subset
Ky=0and K;=0fort=1,2,...
that is,

Ki=0fort=0,1, 2,...
And, therefore, being

{gn}cu {pi}c U
after (Prop. 1, no. 1): {ga} C u after (Prop. 1/, no. 1): {gs} c U

this sequence {p,} is complete in
u U
And the proposition is proved.
Prop. 2. Any complete sequence in
coru ! Cor U

is a total set in the space, i. e. [1, 58] if a continuous lincar functional vanishes in eveyy
element of the sequence it vanishes also in the whole space

coru : | Cor U

Proof. Same asin [1, 73]: if the functional vanishes at every element of the sequence, it
follows from definitions

1 and 2 | 1’ and 2’
precisely adapted to the expression of the functional, in the form of
series (Theor. 1 and 2, no. 1) | integral (Theor. 1’ and 2’, no. 1)
that the kernel of this expression is
nul | constant
for
¢ and u, | C and U,

except for a counté.ble subset, at the most; therefore the
series | integral
is identically zero and, consequently, the functional in the space is zero too.

Def. 3. We say that a sequence { ¢y} of Def. 3’. We say that a sequence of func-
sequences of tions of

c C
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is closed in
c

when, there is, for any
sequence {st} € ¢ function S(¢) ¢ C

a sequence of linear combinations

e
{ E ®p, v ¢v;t}
»=0

of {¢,} tending to the
sequence {s:} | function S(?)

kn
l {Ean,v ¢v(t)}
y=0 )

for # — oo, uniformely with respect to the variable
t=0,1,2,.. t € [0, + oo]
Def. 4. We will say that a sequence of Def. 4’. We will say that a sequence of
functions of

sequences of
u U
is closed in
u i U
when there is, for every
| function U(#) ¢ U

sequence {u:} € u

a sequence of linear combinations

ky kn
{Ean,rq?r,l} l {Ean.v‘}’v(t)}
y=0 y=0

of the {@,}, whose
t ky t kn
sums { Y Yauson } l primitives {j an, v Py (L)dp }
p=0 »=0 0 v=0

(which are evidently linear combinations

kn ¢ kn t
{ Y ans E%»u} {x on, »fqonm)du}
v=0 u=0 y=0 0 )

of the
¢
primitives {’ (p”(,u)d,u}
]

t
sums { 2 Pny p }
u=0

of the {p,}) tend to the
oo 3
sum ¥ uy primitive fU(,u) du
un=0 0

16 — Collectanea Mathematica



244 : R. San Juan Llosi

for #» — oo, uniformly with respect to

t=20,1, 2,.. | t e [0, + oo]
Prop. 3. Closed sequences in
¢ and u | Cand U

ave fundamental subsels in the space, t.e., [1, 58], the set of linear combinations of theiv
elements in dense in the space.

Proof. Same of [1, 73], as in Prop. 2. Actually, the difinitions
3 and 4 | 3’ and 4’

of closed sequences, mean that for every element P of the space, there is a linear com-
bination of sequence elements whose distance from P is less than e with the metric

of the space.
Prop. 4. In the spaces
¢ and u ] Cand U

any closed sequence is complete, and conversely.
Proof. It follows immediately, after Props. 2 and 3, by virtue of theorem [1, Theor. 7, 58].
Cor. For {ps} to be closed in
u . | U
it occurs and suffices that the sequence ¢n of
sums (4) | primitives (4°)
be closed in
c i C
roof. It is an obvious consequence from Prop. 1, by virtue of Prop. 4.

In order to simplify further propositions (Prop. 2, Theor. 1, and Cor. mo. 6) it is
convenient to gemeralize the concept of complete sequences in u for sequences not
contained in u. Although Prop. 2 does not apply any more and be lost therefore the
equivalence with the concept of closed sequences in u. Such equivalence is not neces-

sary for our main purpose.
Def. 5. We will say that a sequence {@,} of arbitrary sequences {g,:}, although not
belonging to u, now even to ¢, is,

complete | weakly complete | very weakly complete
with respect to u, when the only sequence
{Ki} e ¢ | {Ki} e u | {Kt} € u,
satisfying all conditions (2) is the indentically nul one (3).
Prop. 5. Any sequence
weakly complete very weakly complete

whith vespect to u is surely

complete i weakly complete
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with respect to u.
Proof. Being
uC c (Defs. 1 and 2, no, 1), | u, C u (Defs. 2 and 3, no. 1),
if there is in
c | u
no sequence different from (3) verifying all conditions (1), there cannot either be it in
u | u,

Examples: We give here those which will be used afterwards

1. The sequence 1. If {n} is an arbitrary in- | 1”. The sequence
creasing sequence, with limit {e—ttrtp} C U
+ <, the sequence is complete in U (Def.2’)
{2-tt(n+p)} Cu (¥ 36 T rf‘”’; Ccec Proof. C(t) is of limited va-
is complete in u (Def. 2) is complete with vespect to w | Tiation within [0, 4 co:
(Def. 5).

oo
f |d C(#)| < oo
whatever the integre n may be independent of t and u. 0
with a zero limit:

Proof. If {K;} € ¢, C(+ o0) = lim C(¢) = 0,

the powers series the Dirichlet series ) the Laplace-Stieltjes trans-
form:
(=] 00 00
f2) = Y K, tb (24 1)¢—2 =Y Kot e™'¢ He) =fe—lz #dC(t)
t=p =0 0
has the
convergency civcle |z41| <1 | convergency half-plan &, z > 0:
where
1 (2) = oo ) (z) =
oo . iy o
=Y K; t0n+8 (5 4 1)i=p—n f(")(z)—(~1)"t§Kz7;" Po—rg | _ (— l)nfe—tz t+p d C(1)
t=n+tp - 0
for n =1, 2,...; and, specially, we have
fm(—4) = . N
— nth S Ry 2t 100t MMM =N KT ptt | 10 (1) = f e=t #vtp dC(1)
1=0 0
t=n+p
for w =1, 2,... Therefore, if it is
[ee)
Y Kp2-ttntp = - .
oo
=0 Y Kie ittt =0 fe—t b d Ct)=0
= Y K, 2-ttntp =0 =0 0
t=n-+tp
(*) Let us recall the definitions: #% = ¢(¢ —1)... (¢ —n + 1) for t =0, 1, 2, ... and
n=1,2 ...;te=1fort=1,2...
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for n =0, 1, 2,... it will surely be
H(—%) =0and fm(—})=0 | f(1) = 0 and f() (1) =0
forn=1,2,...,1. e,

C(t) =C(+ o) for0<t< + o0
up to a countable subset, at
the most.

f(z) = 0 and, therefore, K;=0for¢ =20, 1, 2,...

2. If {@n} is complete with vespect to
(o]
uand {k} € c ‘ Uandf Id E(f)] < o0, k(+o0) =0
(1}

being

ki~ o0 foreveryt = 0, 1, 2,... the sequence | k() £ 0 for t € [0, 4+ co] up to a countable

subset, at the most,

{kpn} is also complete in
u u

Proof. Let us set

oo N cO
Ek' Ont K1 =0 f k(t) @a(t) C(t) dt=0
t=0 0 .
for n =0, 1, 2,... being
loe]
(K < e [T ey <o et o) =0
0
Since
{K: Ki} € ¢ ) )
[Tateeycen <mas. 1wy [ acw+
0 0=t +00 0
o0
+ max [C()| [ . |dk()| <
0<t< +o0 o
(o]
< Zf |dk(t)|.j°°|d6(t)| < oo,
1] 0
lim [k(¢) C(#)] = k(4 o) C(+o0) =0
t—+o00
it follows
RK: = 0 and, therefore K; =0 for ¢t =0, | k(t)C(¢) = 0 and, therefore, C(tf) = 0 for
1, 2,... t € [0, +o0], up to a countable subset
at the most.

3. Chavractevization of the powers sevies and Laplace’s transformation

The characterization of Laplace’s transformation as a linear functional through the con-
volution and derivation laws, stablished for various spaces in some other publications
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[147, [3], [16], [17], [18], [19], [4], will be exposed here in the form which will be used for the
space U, supplemented with the correlative characterization of powers seriesin the u-space.

Theor. 1. In order that a (continuous)
Fz (u)
defined in
u

linear functional
I F: (U)

I U

and depending on a complex pavameter z, with

be a

power series

) = S 4, (1)
=0

it occurs and suffices that the linear function
incrementation law
2F(Aus) = (1 - 2)Fz(u) — u,

for every

(2)

sequence {w} eu

or at least for every tevm of a complete se-
quence {@pn} in U of sequences {@n,:} € U with
zevo limils

P 0o =1lim@u, s =0forn=0,1,2,.. (3)
t—> 00

Proof. The condition is necessary,

since

l oo 1 [ o]
P, = Agt = — t| —
2 () Z—ltgom 2 z—l{[utz]o

:

L8

(Aus)zt+1 }= —1~[uo+z§ (Au;)z‘] =
1—2 =0

[uo + 2 P; (4 ut)J

Conversely, after
(Theor. 2, no. 1)

1—2

we have

Fe(a) = 3w Kile) (5)
t =0

i Rez > 0,

Laplace’s transformation

£w) = VW) et at, (1)
0
satisfy the
derivation law
Fe(U’) = 2z Fr (U) — U(0) (2%)

Ut) € U

or at least for every term of a sequence
{e—at du(t)}, where a > 0 or comstant

function

t
b (t) =J pu()dy forn = 0,1,2,... (39
0

and {pu} is complete sequence in U.

as we know [2,99].

| (Theor. 2’, no. 1)

Fo (U) = f :;I(t) K(t,z)dt (5')
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for every
sequence {u;} € u
being
(7)
co(2) = lim Ky(z) <oo foreveryze{|z| < 1}
t—> 00
Specially, since
- {on} € u
and also therefore
{4t @u, i} C u,
forn=0, 1, 2,...
we have
oo
Fx (un) bl Z Pn, ¢ K‘(z) (8)
t=0
oo
Fz (4t @n) 2 (4t @u, 1) K1(2) (9)
=0
But, according to
(3) and (7)
it is:
fo'e) pe )
Y (Aign, ) Ki(z) = [wn,th(z)J -
t=0 - 0
oo
Etpmtl 14K1(2) = — @n, o Ky(2) —
t=0
o0
— E(Pn, tAth-—l (2) (10)

t=1

R. San Juan ILlosa

function U(f) ¢ U

K(t, ), for every z € {R.z > 0}, a function
of limited variation in [0, + oo]:

+oo
ld K (¢ 2)| < oo (6
0
with
K(4 o0, 2) =1im K(t, 2) =0 (7)
t—> 4+ o0
{‘Pn} cU

o= (8 €U andl - [0 (1)) = Lo~ n(t) —
— ae— ¢,(t)] € U

for n=0,1, 2,... and a > 0,

Fale— $u(t)] =

7, (‘% [t wn) -

K(t,2) di— afoo-”l du(t) K (2, 2)dt
0

e—at ¢, (t) K(¢, z)dt (8)
0
(97

_je “llpn

(3%) and (7))

(]

f e—at g (1) K(t,2) dt =
0

= —f:;n(t)dfgo—“” K@, 2)dv =

= [ — éult) j - K, z)dv]:o—}—

+f ) U e K (v, Z)d ]dt:
- J 0 [ f e—a K(v, )dv] it (107
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By applying now:
(2)
to every term of the sequence
{pn} Cu
we deduce, then, by means of
(8), (9) and (10),
the equation

oo
~2@n, 0 Ko(2) — 2Y, ¢, t 4t Ki—1 (2) =
t=1

=(1——z)°§tpn,th(z)~'Pmo (11)
¢=0
for n =0, 1, 2,...
But being {ps} complete in
u
and also
after (7) and (Prop. 1, no. 1):

(1 — 2)Ki(2) + 24:1K1—1(2)} e €

for every fixed z with |2| < 1

(29
{e=“dn ()} c U

(87, (9 and (107),

f‘:;n(t) [6*“‘K(t, 2) —~af:°—MK(v, z)dv] dt =

0 t

- /:;,,(t) U - Ky, 2) dv] it (11)

t

forevery fixed z with R,z > 0 the function of ¢
oo
e—at K(t, 2) — (a + z)j e—a K(v, z) dt
t

of limited variation in [0, 4 co]:

{lo;[e—ﬂfK(t,z) — (a,—l—z)f e—w Ky, 2)dv]| <
Yo ¢

00 00
gj e—at |dK(t, 2)| + a.f e~ | K(t, 2) | dt +
0 0

+1a+z|fe—at |K(t, z) | dt gf |dK(t,2)| +
0 0

la + 2|

max |K(t,2)| <

+max |K(¢,2)| +
0t + o0

0t +o0

<[ .91+ / K@) |+

(o)

s |)f0|dK(t, 9| =

= @+ 12 jaK )| <o
@ Yo
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it follows:

(2 — 1)Ky(2) = 2 Ky(2) — 1

(z — 1) Ki(2) =241 Ki_,(2) for t =1, 2,...

i. e.:
Ky(2) =1
Ki(2) = 2K _1(2) for t =1, 2,...
or:
Ki(z) =zt fort =0, 1, 2,...

By replacing now in

(5)
we obtain
[ee)
Fo(u) = Y 2t for |z] <1 and {w} eu
t=0
(12)
q. e. d

oo
e-at K(t,2) — (a + z)f e~ K(y,z)dv =0
:

in 0<t< 4+ o
up to a countable subset; therefrom
K'i(t, 2) + zK(t,2) = 0

or:
K(t,z) = C(z)e—at
in almost everywhere in 0 < < 7T < + oo

for every R, z > 0, being C(z2) a function
not depending on ¢#.

(5

F. (U) = C(z) f:oU(t)e—tz dtfor Rez>0 (12))

and Uit)eU
Specially, for
U(f)y=e-t el
it follows from (2°) and the linearity of F; (U):
— Fi(e—t) = 2F(e—t) — 1 for Rz > 0

i. e.

1
File™!) =~

+1for Rez >0

while from (12’) it follows obviously

C (2)
F:(e—?) =m for R, 2> 0

then, it is
C(z) =1 for Rez> 0
or, after (127)

(o)
F: (U) = j U (t)e—t* dt for R,z > 0 and
0

U(t) e U
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Theor. 2. All conditions of Theor. 1 hold if the functional is defined in the

constant sequence

E=1fort=0,1, 2,... (¥3)
(although
{&} ¢ u) l
with the value
1
Fi (&) =1 for 2] <1; (14)
in the unitary sequence
Ey(0) =1and & =0fort=0,1,2,... (15)
with the value
Fo (&:00)) =1 (16)
vevifying, besides, the convolution law
Fa(ue * ve) = Feo(us). Fa(vr) (17) |

for every pair
{ws} e U (u, {&}, {& — &Y})
and {v:} € U (u,{&}, {& — &(9})
such that also
(e * ve) € U (u, {&}, {& — &(V})

or, at least, fov the products

E* & =& — &0 fort =0,1,2,.. (18)
E* At n, t = @n,t+1fort=0,1,2,... (19)
Et*@u, i1 =0n tfort=0,1,2,... (20)

251
constant function
Ef)=1for 0<ti< +o0 (13
§@#) ¢ U)
F: (&) = i for Rez>0;  (14)
F(U* V) =F(U).F(V) (17)

U(t) e[U U &()] and V(f) e[U U &(2)]

(U* V) e[U U E@)]

(199

e—at* [e=at pyu(t)] = e~ ¢u(?)
for 0 <t < 4 oo

and n=0,1,2,..., being {Qa} a complete sequence in

u of sequences {@n, s} with
Pmo=0for n=0, 1, 2,... (21)

and, on the other hand { &'} € u the sequence with

0=0,&=1and &r=0fort=23,.. (22)

U, a > 0 a constant and
¢
du(2) =f¢pn (v)dv forn=0,1,2,... (21’
0

and 0 <t < +

Proof. The conditions are necessary as we know [2, 104].

Conversely, after
(21), |

we obtain actually

(19) |

since
¢

Et* Arpn, t = EAHPn, t= @n, t41
v=0

for t=0, 1, 2,...

(21)

(19)

t
e—at % [g—at On (t)] =-/e~—a(t—ﬂ)e—ﬂi’(p”(v)dv=
0

= ¢—a ¢,(t) for 0 <t < + oo
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and #» = 0, 1, 2,...; hence, after the convolution law

(17) for (19)
and the initial condition
(14),

it results:

1
— Fo (4i @n, 1) = Fz (Pu, t41) (23)

1—2
for n =20, 1, 2,...

which is not yet the incrementation law
for the sequence

{gn} €u
But, after (13) and (21) it is
E 81 =E,8,=0for t=0

t
*&i=Y &1 &y =¢&1&1=1 for
y=0

t=1, 2,..

or, after (13) and (15):
E* &y =& — &) for t =0, 1, 2,...
as expressed in (18); and apply in (47), we
have, because of the functional linearity:
Fa(&r). Fo(E) = Ful&) — Fa(E®)

and solving with respect to F:(&%), and,
by virtue of the initial conditions (14) and
(16), it results

Fi(&h) = 2 (24)

On the other and, after (22) we prove
(20), since
t

Er* @mtrt = 3 EPmtt1—v=E10nt=Pnt
v=0

for t and » = 0, 1, 2,... whereby, applying
(17), through (24), we deduce:
2Fs(Pnit+1) = Falpn) forn=0,1, 2,... (25)
which substituted in (23) yields
2F (At pnyt) = (1 — 2)Fz (Pn, 1)
which is the incrementation law (2) for the
sequence {@n}, by virtue of (21).

(17°) for (197)

(14)
1
< Faleatou(t)] = Fale= $u(t)] (23)
which is the derivations law for the sequence

{e=®dat)} € U
and it suffices to apply Theor. 1.



The uniqueness problem in the theory of numerical series 253

Theor. 3. Conclusion of Theors. 1 and 2 is verified if we take
Qn,t = 2—tHn for t =0, 1, 2,... | eu(t) = et tn for 0 <t < + oo
and n =0, 1, 2...,
Proof. Because this sequence {p,} is complete in
u (ex. 1, no. 2) | U (ex. 1/, no. 2)
and evidently fulfils condition (21).

NOTES. 1st. Lack of correlation in hypotheses of theorems in both colums is due to
the fact that these hypotheses have been chosen in order to facilitate application of Theor.
3 to demonstration of (Theor. 1, no. 5, § 2).

2ad. In theorem 1 we could have adopted, for the left column, an assumption corre-
lative to the right one, but it turns more difficult the proof of Theor. 1, no. 5, § 2). On the
other hand, the proof for right starting from the derivation law, would not be useful for
the sequence {p,}, complete in U, since after partial integration it would appear the deriva-
tive K’ (¢, z), which certainly exists for almost the whole finite interval, but may
not be of limited variation.

3rd. Equation (24) could be adopted directly as initial condition in stead of (16)
and the convolution law for the products (18), (19) and (20); furthermore it could
be deduced out of (14), which correlative is (14’) through the products convolution law:

t+1 t
E* Pntb1= 3 P and E*Qu it = Y, P,
y=0 v=0

whose difference is evidently gy, ¢41; and (25) would be easily obtained. But we should
have to assume that these products belong to u U {&} and Theor. 3, would not hold
any more.

4th. If we admit the linfinite additivity of the functional for sequences {&(%} with
En) =1 and &(m) =0 for ¢ m,
the sum of which is evidently

o0
YeW =& for t=0,1,2,. (26)

n=0

i. e., the functional is continuous in {&;} ¢ u initial condition (14) results as a consequence
of (16), (24) and (26), for being, evidently

M gy = gt for t=0,1,2.. and n=0,1, 2., (27)
we have:
Tz(f(?)) — gn
and it follows

(o] o0 1
Fe(&) = Y Fe (6W) = Yo =1 for 2] <1

n=0 n=0 -
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5th. Finally, from infinite additivity for (26) and from the convolution laws for (27)
we deduce in general:

'Fz(f’t)

— F (0 T80
Tx(‘si) F (‘ft )+ 1 — F (E’t)

which gives also condition (14) for other values of F; (E(?)) and F:(&%); for instance

1 — 22423

0)y . o —— - 7
Fa(£)) =28 and F ’)—2_2_22_}_23

“Therefore, conditions (16) and (24) are independent from (14).

But, we repeat, none of these conclusions are necessary in the present work and the
proof of these various assumptions in demonstrations of (Theor. 1, no. 5, & 2) results
uneasier than those of foregoing Theor. 1,2 and 3.
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