NOTE ON THE CONVERGENCE OF THE SERIES
PROVIDING DERIVATIVES OF A TABULATED FUNCTION

By
E. FrExa (E.T.S.I.I. Barcelona)

Danti mihi sapientiam dabo gloviam,; non
recedet memoria eius, et momen eius rvequive-
tur a gemevatione in gemerationem.

Eccli. L1,23 XXXIX, 13

Let us consider a function y (x) whose values at x = %y 4 #nh,
n being any natural number, are given. In other words y (¥) is ta-
bulated only for x increasing in a half-straight line. Suppose that
from these given values of y (¥) we construct a difference table ;
we shall employ following common symbolism ;

yx+h) —yr)=A4y@x); y(x+h) =y) + 4y(x) =[1+ 4]y(x)
Aty (& +h) — A"ty (x) = A"y (2); y (6 +nh) =[1 + 4] y (%)

It is easily shown that the derivative D is given by the symbo-
lical formula

D= %1(1 + 4 (1)
We have also the higher derivatives from
1
D= (k{1 + )y @

~ both second members being expanded and applied to ¥y (x).
In this paper we will suppose that the given tabulated function
¥ (x) makes the series (1) convergent

Ay (%) Ay (%)
2 T3

¥’ (%) = Dy(xo) = % (4 y(x0) — 1w
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228 E. Freixa

The well-know series
Y+ B) = y) + By (5) + 2 By (5) + ..
may be symbolically written
Ay(s) = WDy + LDy + ..

an equation that becomes
dy(w) = (@ — 1)y (5
Equalizing only the operators we have
¢? = (1 4 4)

Hence we have equation (1) and in a like manner, raising to
power 7, equation (2), which will be more useful for us to write as
follows

. : o
Dry(xy) = e (@ A7y (%0) +Gpy 1 47T 1y (H0) . . A8y 1 A Py (20) +-. . ] (2)
where the coefficients a, .., are found by following formulae:

a 1>a + 1 a
Ayrtk = Cp—1r4+k—1— 5 r—1r+k—2 '3‘ r—1 rk—3 ~ +-¢

1 1 G)
+ (= 1)1 n a1+ (— 1)F PR
It is easy to show that
Ay = A = .. =0ly 1,1 = Gy =1

*
% %

Let us construct F (x) according to the so-called Newton-Gregory
formula, which is also given by E. Stieffel in a slighty different form.
We will write it as follows

—xn) (D) —x,)@ PR
Fla) = y0o)+ F=50 4y ag) 4 E=202 oy 1 4 @R gy o
h 21 p2 nl h*

where (¢ — %)™ is the so-called factorial function of order #, whose
value is given by -

(ot — %)™ = (ot — %) (¢ — %o —h) (x—%p—2h) . .. [oc——xo-‘(n—l)h]

(4)
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We will suppose a > %, ; of course this assumption will not impair
the generality of the later obtained results.

Generally speaking all the equally spaced formulae for approxi-
mative integration areé deduced from (4).

We will show that the series (4) converges for every case in which
the numerical series (1’) is also convergent.

It will be enough to prove that for given x and e there can be
found an N such that for every » > N

i=ntt (g —sxg)®

G Ayx)

<e
will follow.

i=n

(1') being convergent such a N; can be found that for » > N,

=l i 4 y(xo) (e—1!
ign (=0 =¢ (o0 — %) @

where g is the highest natural number contained in (x — %)

Let us take N as the highest number of ¢ 4+ 1 and N,

In the series (1’) let us sum the consecutive terms having the
same sign writing the development (1’) as follows.

4+ Dy(xp) = Py — P, + Py — P, + ... (1)

(1'") being convergent, P,, must approach zero as a limit and as
n> N > N, if P,, contains the nth term,

< glo— 1)!
(x—x)@ will follow

j=p
Y P

j=m+1

In a like manner let us sum in the development (4) the consecu-
tive terms having the same sign obtaining

+ Fla) =01 — Q2+ Qs — Qs+ ...

but as N > ¢ + 1 one term of this development, Q,,; for instance,
will contain the terms of the series (4) corresponding to the terms of
the series (1') contained in P, ;; let us suppose that both P,
and Q;, contain, in the respective series, the terms from the first
uth to the last vth.

In the assummed hypotheses we may write

Qu41
Pm+l

(=)@ _ (x—g)¥

1!~ (1)

(a—2%)®

(v—1)!

>
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From this follows

i=q

j=q+i—m (a_.xo)(e)
< R Pi| <e.
lf=12+1 Q’\ (e—1)! | ;o1 ’l q.ed.
***

Shown the convergence of the series (4) for every «, we may say
that F(«) is an entire function.

From (4) we could consider only the # first terms and write them as
a polynomial F,(a)=A4¢*+ A4, a+ A* ®+... 4, o*; F, () — F(a)
will approach zero when # increases as previously shown. Every 4,
shall converge to a certain value, which we will call 4;. F(x) also
being convergent for any real when written as a power series, the
well known Cauchy theorem assures that lim %/4, = 0 and then

n—>00
F(x) will be convergent when « is riot real but a complex variable.
The derivatives of F(«) are also entire functions convergent for

every o.
Taking the rth derivative of the equation (4) the reader will
find a dlj;(a) and equalizing « to x the resulting series will be easily

identified with the development (2'); therefore this development
is also convergent.

*
kR

Now we will directly show that the derivative of the sth difference

A+2y(xg) | A3 y(x)
s | 2 ) (5)

1
DAy ) = (ASH (o) —

is also convergent for s > 1, assumming convergence for s=1 (1’)

It will be enough to prove that given ¢, it is possible to find such
a N, (&) that for every » > N,

As+v y (xO) _ As+v—1y(xo) As+v+?—l y(xo)] 6
‘[ - e | ELG

irrespective of the chosen 5.
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(1') being convergent we may take such a N, that for every
s 4+ » > N, should follow

’ (As+v y(xo) _ A5 4—-—1y(x0) R _As+v+l7—l y(xo)) i‘
i\ s+ s+v—1 T sdvdp—1 s
S s S
As+v . As+v—l As+v+g—l s
e L ) <e

Let us take as N, = Ng — s

If we compare term by term the sums (6) and (7) we will see that
in both sums the corresponding terms have the same sign and that
the ones from the sum (7) are bigger than the ones from the sum
(6) and reasoning as above, eq. (6) inmediately follows.

Using the convergence of development (5) as we previsiously
used the convergence of development (1°) we could prove the conver-
gence of

1 :
D&y (o) = (@n 477y (50) + G A4y () +0) - (8)
* * *

We have proved the convergence in the complex field of develop-

* ments (4) and (8) assumming the convergence of (1’) when x and %

are real. It is only too easy to show that we may also understand the
series (1') # and 4 being complex ; then we can change the origin
and the axis taking #x, as the new origin and the straight line where
h lies as the new real axis. The reasoning follows as above.

* * *
Now, let us suppose that we admit the convergence of develop-
ment (2') for a precise 7, it not being necessary that » be equal to 1.
Then, we can take D'~1 y (x) as a new funcktion, let ussay, Y (x)
in which differences at x, are

, 1
A Y (%) = Py (Brpmg AF Ly (%0) + @1, AT y(xg) +...)
With these hypotheses we have proved the convergence of the

constructed function according to development (4) ; This construc-
ted function is an entire one, and therefore integrated » times gives

(7)
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also an entire function, let us say, Y, («); to this function an arbi-
trary polynomial of » — 1 grade can be added and then it will equa-
lize F («) if the coefficients of this polynomial are chosen in order
to have it vanish at xp, %+ %,..., %+ (r — 1)&

Therefore we can say that F («x) is convergent only knowing the
convergence of one development (2') ; and the convergence of one
development (8) assures the convergence of the others.

* * *

From the convergence of the series (1') we can infer the possi-
bility of constructing an entire function F (x) according to deve-
lopment (4).

Now, we can put ourselves the question that in a certain way
is the reciprocical of the former one. Given any entire function F (x)
and the difference interval 4, will it be found convergent the series
(1

Not always. For instance if we are dealing with the function
F (x) = ¢** by a very elementary operation we can write

A F(x) — gklath) __ ghx — gkx (gkh _ l) and

Ar F(x) — ek* (ekh . l)n

In this application the series (1) will converge if and only if

e —1<1
or kgl—z
h

It is not hard to see that if F (2) is of order less than 1 every
difference interval % will be good enough and in such a case the se-
ries (1') will be always convergent.

But if F (z) is of order larger than 1 no % will be small enough
and then (1') will never be convergent.

In such a case we could divide the given tabulated function of
order m > 1 by an entire function of order no lesser than m , we
could then work on the resulting function as stated above and once
the development (4) is obtained we can multiply it by the choosen
functional dividend.
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