REAL INVERSION THEOREMS FOR A GENERALIZED LAPLACE TRANSFORM

BY

J. M. C. Josні (Nainital - India)

1 — Introduction

Erdelyi [1] has used fractional integration to produce a kernel which has been made use of to define a transformation,

$$(1.1) G(x) = \frac{\Gamma(\beta + \eta + 1)}{\Gamma(\alpha + \beta + \eta + 1)} \int_{0}^{\infty} (xy)^{\beta} F_{1} \left(\frac{\beta + \eta + 1}{\alpha + \beta + \eta + 1}; -xy \right) f(y) dy$$

which may be called a generalization of Laplace integral,

$$(1.2) g(x) = \int_{0}^{\infty} e^{-xy} f(y) dy$$

For $\alpha = \beta = 0$, (1.1) reduces to (1.2).

2 — Definition of operators

Kober [2] defined the operators of fractional integration as follows

$$(2.1) \quad I + \frac{1}{\eta, \alpha} f(x) = \frac{1}{\Gamma(\alpha)} x^{-\eta - \alpha} \int_{0}^{x} (x - t)^{\alpha - 1} t^{\eta} f(t) dt.$$

$$(2.2) \quad K \stackrel{-}{\underset{\zeta,\alpha}{}} f(x) = \frac{1}{\Gamma(\alpha)} x^{\zeta} \int_{x}^{\infty} (t-x)^{\alpha-1} t^{-\zeta-\alpha} f(t) dt.$$

$$(2.3) \quad I_{\eta,\alpha}^{-}f(x) = \frac{1}{\Gamma(\alpha)}x^{-\eta-\alpha}\int_{x}^{\infty}(t-x)^{\alpha-1}t^{\eta}f(t) dt.$$

$$(2.4) \quad K \stackrel{+}{\zeta, \alpha} f(x) = \frac{1}{\Gamma(\alpha)} x^{\zeta} \int_{0}^{x} (x-t)^{\alpha-1} t^{-\eta-\alpha} f(t) dt.$$

where
$$f(t) \in L_p(0, \infty)$$
, $\frac{1}{p} + \frac{1}{p'} = 1$ if $1 and $\frac{1}{p'}$ or $\frac{1}{p} = 0$$

if
$$p$$
 or $p'=1$, $\alpha>0$, $\eta>-rac{1}{p'}$, $\zeta>-rac{1}{p}$

If $\alpha < 0$, g(x) = I + f(x) and h(x) = K - f(x) are defined as the solution, if any, of the integral equations,

(2.5)
$$f(x) = I + \frac{1}{\eta + \alpha, -\alpha} g(x), f(x) = K - \frac{1}{\zeta + \alpha, -\alpha} h(x).$$

The Mellin Transform of a function f(x) of $L_p(0, \infty)$ will be defined as:

$$\varnothing$$
 $(t) = \overline{M} f = \int_{0}^{\infty} f(x) x^{it} dx$ when $p = 1$

$$\varnothing (t) = \overline{M} \ t = \frac{1.i.m.}{\times \to \infty} \int_{-\infty}^{\frac{1}{\times}} f(x) \ x^{-it - \frac{1}{p'}} dx \text{ when } p > 1.$$

where l.i.m. indicates the limit in mean with index p' over the interval $(-\infty, \infty)$. The inverse Mellin Transform of a function \emptyset (t) of $L_{p'}$ $(-\infty, \infty)$ is correspondingly defined as:

$$(2.6) \quad f(x) = \overline{M}^{-1} \oplus = \frac{1}{2\pi} \int_{-\infty}^{\infty} \oplus (t) \ x^{-it} \ dt \text{ when } p' = 1$$

(2.7) f (x) =
$$\overline{M}^{-1} \oplus = \frac{1}{2\pi} \frac{1.\text{i.m.}}{T \to \infty} \int_{-T}^{T} \oplus (t) x^{-it - \frac{1}{b}} dt \text{ when } p' > 1$$

where 1.i.m. indicates the limit in mean with index p over the interval $(0, \infty)$.

Whe have; Kober [2, Theorem 5 (a)]

$$\overline{M}\left\{I_{\eta,\alpha}^{+}f\right\} = \Gamma\left(\eta + p'^{-1} - it\right)\Gamma^{-1}\left(\eta + \alpha + p'^{-1} - it\right)\overline{M}f$$

$$\overline{M}\left\{K_{\zeta,\alpha}^{+}f\right\} = \Gamma\left(\zeta + it + p^{-1}\right)\Gamma^{-1}\left(\eta + \alpha + p^{-1} + it\right)\overline{M}f$$

But
$$\overline{M}$$
 $(x^{\beta} e^{-x}) = \int_{0}^{\infty} e^{-x} x^{\beta + it - \frac{1}{p'}} dx = \Gamma (\beta + p^{-1} + it)$
provided $\beta + p^{-1} > 0$

$$\left\langle \text{Therefore, } \overline{M} \left\{ I_{\eta,a} \left(x^{\beta} e^{-x} \right) \right\} = \frac{\Gamma \left(\eta + p^{-1} - i \, t \right) \, \Gamma \left(\beta + p^{-1} + i \, t \right)}{\Gamma \left[\alpha + \left(\eta + p'^{-1} - i \, t \right) \right]} \right.$$

$$\left\langle \text{and} \right.$$

$$\left\langle \overline{M} \left\{ K_{\zeta,a} \left(x^{\beta} e^{-x} \right) \right\} = \frac{\Gamma \left(\zeta + p^{-1} + i \, t \right) \, \Gamma \left(\beta + p^{-1} + i \, t \right)}{\Gamma \left[\alpha + \left(\zeta + p^{-1} - i \, t \right) \right]} \right.$$

By (2.7) and (2.8) we have

$$I_{\eta,a}^{+}(x^{\beta}e^{-x}) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{\Gamma(\eta + p'^{-1} - it) \Gamma(\beta + p^{-1} + it)}{\Gamma[\alpha + (\eta + p'^{-1} - it)]} x^{-it - p^{-1}} dt$$

and
$$K_{\zeta,a}^{+}(x^{\beta}e^{-x}) = \frac{1}{2^{n}} \int_{-\infty}^{\infty} \frac{\Gamma(\zeta + p^{-1} + it) \Gamma(\beta + p^{-1} + it)}{\Gamma[\alpha + (\zeta + p^{-1} - it)]} x^{-it-p^{-1}} dt$$

provided $\beta + p^{-1} > 0$, $\eta + p'^{-1} > 0$ and $\zeta + p^{-1} > 0$. Erdelyi has also shown that, by term by term integration,

(2.9)
$$I_{\eta,a}(x^{\beta}e^{-x}) = x^{\beta} \sum_{0}^{\infty} \frac{\Gamma(\beta + \eta + r + 1)}{[\alpha + (\beta + \eta + r + 1)]} \frac{(-x)^{r}}{r!}$$

so that

$$\frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{\Gamma(\eta + p'^{-1} - it) \Gamma(\beta + p^{-1} + it)}{\Gamma[\alpha + (\eta + p'^{-1} - it)]} x^{-it-p^{-1}} dt$$

$$= x^{\beta} \sum_{0}^{\infty} \frac{\Gamma(\beta + \eta + r + 1)}{\Gamma[\alpha + (\beta + \eta + r + 1)]} \frac{(-x)^{r}}{r!}$$

where $\beta+\eta+r+1\neq 0,-1,-2,\ldots$ for $r=0,1,2,\ldots,\alpha>0$, and $(\eta+\beta)>-1$

The object of the present paper is to give two inversion formulae and a representation theorem for the transform given by (1.1). In the first inversion formula I have used properties of Kober's operators while in the second we have changed our transform into generalized Stieltzes transform and have applied a differential operator which inverts the Stieltzes transform to get the real inversion formula. Incidentally we have been able to get a generalized form of Stieltzes Integral analogous to that studied by Arya [8].

3 — A THEOREM

Theorem. Let $f(y) \in L_p(0, \infty)$, $1 \le p < \infty$, x > 0. If $\eta > -\frac{1}{p}$ $\beta > -\frac{1}{p'}$ when $\alpha > 0$ and $\eta + \alpha > -\frac{1}{p}$ $\beta > -\frac{1}{p'}$, when $\alpha < 0$ then $I_{\eta,\alpha}^+[h(x)]$ exists and is equal to G(x) where

(3.1)
$$h(x) = \int_{0}^{\infty} (x y)^{\beta} e^{-xy} f(y) dy$$

and G(x) is defined by (1.1)

Proof when $\alpha > 0$, $1 < \phi < \infty$

If $f(y) \in L_p(0, \infty)$ and $\beta > -p'^{-1}$, we see that h(x) exists and $I_{\eta,\alpha}^+[g'(x)] = \frac{x^{-\eta-\alpha}}{\Gamma(\alpha)} \int_0^x (x-t)^{\alpha-1} h(t) dt.$ $= \frac{x^{-\eta-\alpha}}{\Gamma(\alpha)} \int_0^x (x-t)^{\alpha-1} t^{\eta} dt \int_0^\infty (t y)^{\beta} e^{-yt} f(y) dy$ $= \frac{x^{-\eta-\alpha}}{\Gamma(\alpha)} \int_0^x y^{\beta} f(y) dy \int_0^x (x-t)^{\alpha-1} t^{\eta+\beta} e^{-yt} dt$

by changing the order of integration which is justified under the conditions stated; for by Holder's inequality

$$\begin{split} \int_{0}^{\infty} y^{\beta} \ e^{-yt} f(y) \ dy & \leq \left\{ \int_{0}^{\infty} |f(y)|^{\beta} \right\}^{\beta - 1} \ \left\{ \int_{0}^{\infty} e^{-\beta' yt} y^{\beta \beta'} \ dy \right\}^{\beta' - 1} \\ & = c \ t^{-\beta - \beta' - 1} \qquad , \beta \ \beta' > -1 \end{split}$$

where c is a constant. Thus repeated integral is majorized by

 $c\int_{0}^{x}(x-t)^{\alpha-1}\,t^{\eta-p'-1} \ \text{ which is convergent if } \eta-p'^{-1}+1>0 \text{ i.e.if } \eta<-p^{-1}$

Now
$$\int_{0}^{x} (x-t)^{\alpha-1} t^{\eta-\beta} e^{-yt} dt =$$

$$= \int_{0}^{1} x^{\alpha+\eta+\beta} (1-t)^{\alpha-1} t^{\eta+\beta} e^{-xyt} dt$$

$$= x^{\eta+\alpha+\beta} \sum_{0}^{\infty} \frac{\Gamma(\eta+\beta+r+1) \Gamma(\alpha)}{\Gamma(\alpha+\eta+\beta+r+1)} \frac{(-xy)^{r}}{r!}$$

$$= x^{\eta+\alpha+\beta} \frac{\Gamma(\alpha) \Gamma(\eta+\beta+1)}{\Gamma(\alpha+\eta+\beta+1)} {}_{1}F_{1}(\eta+\beta+1;\eta+\alpha+\beta+1,-xy)$$

Therefore
$$I + \frac{\Gamma(n+\beta+1)}{\Gamma(\alpha+\eta+\beta+1)} \int_{0}^{\infty} (x y)^{\beta} {}_{1}F_{1}(\eta+\beta+1) \int_{0}^{\infty} (x y)^{\beta} {}_{1}F_{1}(\eta+\beta+1) \int_{0}^{\infty} (x y)^{\beta} {}_{2}F_{2}(\eta+\beta+1) \int_{0}^{\infty} (x y)^{\beta} {}_{3}F_{1}(\eta+\beta+1) \int_{0}^{\infty} (x y)^{\beta} {}_{4}F_{2}(\eta+\beta+1) \int_{0}^{\infty} (x y)^{$$

If p = 1, it is similarly seen that the change in order of integration is justified if $\eta > -1$, $\alpha > 0$, $\beta > 0$

Proof when $\alpha < 0$, 1

If $\alpha < 0$ then by dy (2.5) $I + \{h(x)\}$ is the solution, if any, of the integral equation $g'(x) = I + \{h(x)\}$ [G(x)]

Now $I_{\eta+\alpha,-\alpha}[G(x)]$

$$= \frac{x^{-\eta}}{\Gamma(-\alpha)} \int_{0}^{x} (x-t)^{-\alpha-1} t^{\eta+\alpha} G(t) dt$$

$$= \frac{x^{-\eta}}{\Gamma(-\alpha)} \int_{0}^{x} \frac{\Gamma(\beta+\eta+1)}{\Gamma(\alpha+\beta+\eta+1)} (x-t)^{-\alpha-1} t^{\eta+\alpha} dt \int_{0}^{\infty} (ty)$$

$$\beta_{1} F_{1} \left(\begin{array}{c} \beta+\eta+1 \\ \alpha+\beta+\eta+1 \end{array}; -ty) f(y) dy \right)$$

$$= \frac{x^{-\eta}}{\Gamma(-\alpha)} \frac{\Gamma(\beta+\eta+1)}{\Gamma(\alpha+\beta+\eta+1)} \int_{0}^{\infty} y^{\beta} f(y) dy \int_{0}^{x} t^{\eta+\alpha+\beta} (x-t)^{-\alpha-1}$$

$${}_{1} F_{1} \left(\begin{array}{c} \beta+\eta+1 \\ \alpha+\beta+\eta+1 \end{array}; -yt \right) dt$$

Changing the order of integration which is justified if $\beta > -p'^{-1}$ $\eta + \alpha > -p^{-1}$

But
$$\int_{0}^{x} t^{\eta+\alpha+\beta} (x-t)^{-\alpha-1} {}_{1}F_{1}\left(\begin{array}{c} \beta+\eta+1 \\ \alpha+\beta+\eta+1 \end{array} - t y \right) dt$$

$$= \int_{0}^{1} t^{\eta+\beta+\alpha} (1-t)^{-\alpha-1} x^{\eta+\beta} \sum_{0}^{\infty} \frac{\Gamma(\eta+\beta+r+1)}{\Gamma(\eta+\beta+1)} \frac{\Gamma(\alpha+\beta+\eta+1)}{\Gamma(\alpha+\beta+\eta+r+1)} \frac{(-ty)^{r}}{r!} dt$$

$$= x^{\eta+\beta} \frac{\Gamma(\alpha+\beta+\eta+1) \Gamma(-\alpha)}{\Gamma(\beta+\eta+1)} e^{-xy}$$

Therefore $I_{\eta+a,-a}G(x)=h(x)$

If p = 1 change is justified if $\eta + \alpha > -1$, $\beta > 0$

4 — INVERSION FORMULA

We now define a differential operator as follows:

Definition (4.2) An operator $Q_{n,t}[G(x)]$ is defined for any positive number t and any positive integer n by

(4.1)
$$W_{n} [G (x)] = (-)^{n} x^{n} \left(\frac{d}{dx}\right)^{n} [x^{-\beta} G (x)]$$
$$Q_{n,t} [G (x)] = \frac{t^{-\beta-1}}{\Gamma(n)} [W_{n} \{ G (x) \}] x = \frac{n}{t}$$

Theorem let $f(y) \in L_p(0, \infty)$

for every positive R. If integral given by (1.1) converges for x > 0 and $\eta > -p^{-1}$ when $\alpha > 0$ and $\eta + \alpha > -p^{-1}$ if $\alpha < 0$

then for almost all positive t 1.i.m. $Q_{n,t}$ $[I_{\eta+a,-a} \{ G(x) \}] = f(t)$

We have seen under conditions of the theorem,

$$I_{\eta+\alpha,-\alpha} [G (x)] = \int_0^\infty (x y)^\beta e^{-xy} f (y) dy$$

Therefore
$$W_n [I_{\eta+a,-a}G(x)] = (-)^n x^n \left(\frac{d}{dx}\right)^n \left[\int_0^\infty y^\beta e^{-xy} f(y) dy\right]$$
$$= x^n \int_0^\infty y^{\beta+\eta} e^{-xy} f(y) dy$$

Therefore
$$Q_{n,t} [G(x)] = \frac{t^{-\beta-1}}{\Gamma(\eta)} \left(\frac{n}{t}\right)^n \int_0^\infty y^{\beta+\eta} e^{-\frac{n}{t}y} f(y) dy$$
$$= \frac{t^{-\beta}}{n!} \left(\frac{n}{t}\right)^{n+1} \int_0^\infty y^n e^{-\frac{n}{t}y} y^{\beta} f(y) dy$$

proceeding as in Saksena [3, Theorem 3, page 603] our result is established.

5 — Another operator

We now give another integro-differential operator which will invert (1.1).

Definition (5.1). An operator is defined for any real positive number s by the equations,

(5.1)
$$L_{n,s} [H (s)] = \frac{\Gamma(2n + \alpha + \beta + \eta) \Gamma(2n - \alpha)}{\Gamma(\beta + \eta + 2n) \Gamma(2n) \Gamma(n + 1) \Gamma(n - \alpha - 1)} (-)^{n-1} \times D^{n} s^{2n-1} D^{n-1} s^{\beta+\eta+n-1} D^{n-1} s^{\alpha} D^{-n+1} s^{-(\alpha+\beta+\eta+n-1) H(s) (n=2,3,\cdots)}$$

$$L_{1,S} [H (s)] = DsH (s).$$

 $L_{0,S} [H (s)] = H (s).$

where
$$D=(d\,|\,ds)$$
, and $D^{-1}\,s^a=\int_{s}^{s}s^a\,ds$ if $Re~(a+1)>0$ and
$$=-\int_{s}^{\infty}s^a\,ds~if~Re~(a+1)<0$$

It is assumed that H (s) has derivatives and integrals of all orders.

(5.2). Theorem. If F(x) is defined by (1.1) then

$$(5.2) L_{n,s} [H (s)] \sim f (s) (n \rightarrow \infty)$$

where

$$H (s) = \int_{0}^{\infty} e^{-ys} F(y) dy.$$

provided that $f(s) \in L$ in $0 \le t \le R$ for every positive R and is such that integral (1.1) converges.

Proof. We have,

$$H(s) = \int_{0}^{\infty} e^{-ys} F(y) dy.$$

$$= \int_{0}^{\infty} f(x) dx \int_{0}^{\infty} \frac{\Gamma(\beta + \eta + 1)}{\Gamma(\alpha + \beta + \eta + 1)} e^{-ys} {}_{1}F_{1} \left(\frac{\beta + \eta + 1}{\alpha + \beta + \eta + 1}; -xy \right) dy$$

$$= \frac{\Gamma(\beta + \eta + 1)}{\Gamma(\alpha + \beta + \eta + 1)} \cdot \frac{1}{s} \int_{0}^{\infty} F\left(\frac{\beta + \eta + 1}{\alpha + \beta + \eta + 1}; -\frac{x}{s} \right) f(x) dx \quad (5.3)$$

since Erdelyi [6 Vol I page 219 (17)],

$$\int_{\,{\rm o}}^{\infty} e^{-pt}\,t^{\sigma-1}\,{}_1F_1\left(\alpha_1,\,P_1,\lambda\,t\right) = \varGamma\left(\sigma\right)\not\!{p}^{-\sigma_{_{\! 2}}}\,F_1\left(\frac{\alpha_1}{\not\!{p}_1}\,;\,\sigma_1\,;\frac{\lambda}{\not\!{p}}\right) \ {\rm provided} \ {\rm that} \\ \textit{Re} \ \ \sigma>0, \ \textit{Re} \ \ \not\!{p}>\textit{Re} \ \ \lambda.$$

Therefore as in Arya [4, Theorem 7.2.1 page 100],

$$L_{n,s}$$
 $H(s) \sim f(s)$ $(n \rightarrow \infty)$

Remark: — It may be noticed that (5.3) is a Generalized form of Stieltzes Integral analogous to that introduced by Varma [7].

6 — Representation theorem

We now give a representation theorem for the transform given by (1.1).

Theorem (6.1). The necessary and sufficient conditions for a function G(x) to have representation (1.1) with $f(y) \in L_p(0, \infty)$ $p \ge 1$, x > 1, and with $\eta > -p^{-1}$ when $\alpha > 0$ and $\eta + \alpha > -p^{-1}$ if $\alpha < 0$ are (i) $I_{\eta+\alpha,-\alpha}[G(x)] = \emptyset(x)$ exists, has derivatives of all ordes in $0 < x < \infty$ and vanishes at infinity and

(ii) there exist constants M and p ($p \ge 1$) such that

$$\int_{0}^{\infty} |Q_{n,t} G(x)|^{p} dt < M \qquad (\eta = 1, 2, \ldots)$$

Proof. The proof follows the lines of Widder [5, Theorem 15 a, pp. 313-14].

I am indebted to Dr. K. M. Saksena for guidance and help in the preparation of this paper.

REFERENCES

- Erdeyli, A. On some functional transformations, Rend. Del. Semin. Mat. 10 (1950-51) 217-234.
- 2. Kober, H. On fractional integrals and derivatives, Quart. Jour Math. 11, (1940) 193-211.
- SAKSENA, K. M. Inversions and Representation Theorem for a generalized Laplace Integral, Pacific Journal of Mathematics Vol. 8 No. 3 (1958) 597-607.
- 4. ARYA. S. C. on a Generalized Stieltzes Transform, Ph. D. Thesis (Agra University India) 1959.
- 5. WIDDER, D. V. The Laplace Transform, 1941.
- 6. ERDEYLI, A. etc. Tables of Integral Transform, Vol. 1.
- 7. VARMA, R. S. on a Generalization of Laplace Integral, Proc. Nat. Acad. Sc. Vol. 20, pp. 209-16. (1951).
- 8. ARYA, S. C. Convergence Theorems etc. of a Generalized Stieltzes Transform Jour. Ind. Math. Soc. Vol. XXII (117-135). (1958).

Dr. S. M. Joshi Ranikhet D. S. B. Government College, Naini Tal. INDIA

