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SUMMARY. For complex functions in several complex variables
which are not necessarily analytic, but with components # and v
of class C™*!, a TAVYLOR formula is derived. If » and v are of class
Co> and those functions satisfy certain additional conditions, a
TAVIOR series expansion is valid. The analytic case, as well as the
special case of one independent variable, are briefly discussed.

1. NOTATION.

Our notation is standard. See, for instance, [3]. Let z; = x; + ¢y;,
dz; = dx; + idy;, § = 1,2, ..., n, and let

f(zlr veey zn) = u(xl! Y oo yﬁ) + v (xl» Y1, "'»yn)

be a complex function of the # complex variables z, ..., 2, with
differentiable components %, v in a polydisc D, (z) = D,, (z1) X ... X
X Dy, (z,), where z = (21, ..., 2,), * = (71, .., 7)-

Let
i_l(f_ SPKA NN YL
az,-_ 2 Bx,- ay, ’ aE, - 2 6x,- ay,
be the complx differential operators, and define

of = 2 fdz, and 9f = Eaf dz;.
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2. A Taylor formula.

THEOREM 1. If % and v are of class C"*!in D, (z) then we have

1 _
(1) fl+4dz, .02, + dz,) = f (21, 0 2s) + El (of + af)(k) + R,

s

where the symbolic power has the usual interpretation, R, stands
for the remainder term, and z 4 dz e D, (2).

Proof. From Taylor’s formula for real functions of several real
variables we have

| =

(2) w (%) + A%1, o0y Yo + Ay,) = % (%1, -0y V) + kgl Al d*u + R,
|
(3) v(% 4 A%y, o, Yo + 4Y,) = v (%1, ., Va) + P d*v + R,,,
where
R ——~—1—d’"+1u] R =;d’"+lvl
b (m 4+ 1)) e 2 (m 4+ 1)! .

and (=2z+4+0dz, '=2+0dz, 0<b<l1l 0<b <]l.

From (2) and (3) it follows that

@) fltdm, st dz) =S m)+ B % (@ u+id*v) + R,

where R,, = R,,, + iR, ,,.
But

n

du + idv = 21(%’ dx; + u,, dy;) + i I(v,,, dx; + v, dy;)
: i=

j=
= of + of
Similarly,

d2u 4 id2y = (3f + of) @

and by mathematical induction it can be easily shown that

du+ idv = (3f + of) @
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Hence, (4) may be written in the form (1). This is Taylor formula
for complex functions which are of class C”*! in a neigborhood of z.

3. A Taylor series expansion.

TuroreMm 2. If # and v are of class C> and R,, —~ 0 as m — oo then

() fl1+ dats o ta+ d2) =f @t wam) + B 5 O 300

k=
Proof. It follows at once from (1).

We shall show that the condition R,, — 0 holds in the following
two cases:

a) The partial derivatives of all orders of » as well as those
of v are in absolute value uniformly bounded by M > 0 in D, (2).
For in this case we have

M n ” m+1
[Riml < )1 ;A:l ldx;| + 7§1 |2y
20yt M
< ST Nzl
where ||dz|| = max |dz|.
j
Similarly,
20t M
| Ryl < IS
so that
| 2 (2m)m+1 M
(6 Ryl < 22Oz

and the right-hand side of (6) tends to zero as m —» oo.

b) The functions # and v together with their partial derivatives
of all orders are nonnegative in D, (2).

Then, by a theorem of J. T. DAy [2], we have R, — 0 and
R,,, -0 as m — o in some D, (z) ¢ D, (z). Hence R, — 0 also in
some neighborhood of z.
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4. Two special cases.
_a) If fis holomorphic in D, (z) then % and v are of class C*°, and
df = 0 in D, (2). Also, we have
o = Uy 10, =0, — U,
Jom = Uy 0050, = Vs, — Ty = — Uy, — 10y,
etc. It follows that

am+1u am+1f

B sy TR E
otk 0 zlnt

oxy ... dxur AyY ... dyir

where the %; and %; are nonnegative integers satisfying Y (4;+ &;) =
f=1

= m + 1, and similarly for the partial derivatives of v.
If D,({) € D,(2) is a polydisc with center at { and radius
0 =(0,..,0), and if |f(2*)| < M for all 2* € D, (2), it is known [1] that

(hy + k))! ... (g + B! M

am+1f
(e L)<
m + 1) M
< LTH_
Thus,
omtly m+ 1) M
(7) (6 #1 Tn A F1 k,,) < (_7%—
21 ... 0% Oy1' ... Oyn*/; e

Then we have

1 _ ] 1 (n )m+1J
R, = e )d uc ( i Zu,,dx,-l—zuy, dy; .

1

1

SR A ,
! 1! Ryl (ax’;' e 0 YT . 6yf;");
At .. dxr Ay ... dywe

~

and letting ||dz|| = max |dz;| we obtain, using (7),
7

m M
Rl <5t s ldzll

= (2ny+1 e%— [ dz ]+
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The last expression tends to zero as m — oo provided ||dz]|| is
small enough, namely, (2#) ||dz||/o < 1. If #' = min (ry,...,7,) we
may choose ¢ = #' — ||dz||, and the preceding inequality gives

’

r
||dz]]| <m'

Similarly, R,,, — 0 as m — oo for ||dz|| <7#'[(2n + 1).
Hence, if f is holomorphic in D, (z) we have

| —

f(zl + dzl: ciey g + dZ”) =f(zl> seey zn) +

k

I D8
=

| (2f)®

1
valid for ||dz|| sufficiently small.

b) For n = 1 (i.e. for complex functions of one independent va-
riable) we have, provided R,, -0,

fe+da) =f@ + B A (fdz+ fd8)®

k=1

k=1

) 5 (B)
=f@+ X %(fz'i‘f; %)( dz*

Letting dz = |dz| ¢ the above expansion can be written as

(8) fiz 4+ dz) =f(z) + kgl % (f, + f; e~20)® gzt
— 1@ + B 5 @ s

denoting by f,® (z) the k-th complex rectilinear directional deriva-
tive of f at z in the direction 6.

In the holomorphic case f,® (z) reduces to f® (z) (the ordinary
k-th derivative), and (8) becomes the well-known CAUCHY-TAYLOR
expansion of f about the point z. In this case our estimate of the re-
gion of validity can be easily improved. If f is holomorphic in D, (2),
7' is any real number satisfying 0 < #' <7, and M = max |f(&)],
& e D, (2), it is known that [4]

r M |dz{)"‘+1
IR,| < FW(T

so that R, — 0 as m — oo, provided |dz| < 7'
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