AN EXPANSION THEOREM FOR NONANALYTIC FUNCTIONS IN SEVERAL COMPLEX VARIABLES

by

MARIO O. GONZALEZ

University of Alabama. U.S.A

SUMMARY. For complex functions in several complex variables which are not necessarily analytic, but with components u and v of class C^{m+1} , a Taylor formula is derived. If u and v are of class C^{∞} and those functions satisfy certain additional conditions, a Taylor series expansion is valid. The analytic case, as well as the special case of one independent variable, are briefly discussed.

1. NOTATION.

Our notation is standard. See, for instance, [3]. Let $z_j = x_j + iy_j$, $dz_j = dx_j + idy_j$, j = 1,2,...,n, and let

$$f(z_1, ..., z_n) = u(x_1, y_1, ..., y_n) + iv(x_1, y_1, ..., y_n)$$

be a complex function of the n complex variables $z_1, ..., z_n$ with differentiable components u, v in a polydisc $D_r(z) = D_{r_1}(z_1) \times ... \times D_{r_n}(z_n)$, where $z = (z_1, ..., z_n)$, $r = (r_1, ..., r_n)$.

$$rac{\partial}{\partial z_{j}}=rac{1}{2}\Big(rac{\partial}{\partial x_{j}}-irac{\partial}{\partial y_{j}}\Big), \qquad rac{\partial}{\partial ar{z}_{j}}=rac{1}{2}\Big(rac{\partial}{\partial x_{j}}+irac{\partial}{\partial y_{j}}\Big)$$

be the complx differential operators, and define

$$\partial f = \sum_{j=1}^{n} \frac{\partial f}{\partial z_{j}} dz_{j}$$
 and $\bar{\partial} f = \sum_{j=1}^{n} \frac{\partial f}{\partial \bar{z}_{j}} d\bar{z}_{j}$.

2. A Taylor formula.

THEOREM 1. If u and v are of class C^{m+1} in $D_r(z)$ then we have

(1)
$$f(z_1 + dz_1, ..., z_n + dz_n) = f(z_1, ..., z_n) + \sum_{k=1}^m \frac{1}{k!} (\partial f + \overline{\partial} f)^{(k)} + R_m$$

where the symbolic power has the usual interpretation, R_m stands for the remainder term, and $z + dz \in D_r(z)$.

Proof. From Taylor's formula for real functions of several real variables we have

(2)
$$u(x_1 + dx_1, ..., y_n + dy_n) = u(x_1, ..., y_n) + \sum_{k=1}^m \frac{1}{k!} d^k u + R_{1,m}$$

(3)
$$v(x_1 + dx_1, ..., y_n + dy_n) = v(x_1, ..., y_n) + \sum_{k=1}^m \frac{1}{k!} d^k v + R_{2,m}$$

where

$$R_{1,m} = \frac{1}{(m+1)!} d^{m+1} u \bigg|_{\zeta} \qquad R_{2,m} = \frac{1}{(m+1)!} d^{m+1} v \bigg|_{\zeta^{*}}$$

and $\zeta = z + \theta dz$, $\zeta' = z + \theta' dz$, $0 < \theta < 1$, $0 < \theta' < 1$.

From (2) and (3) it follows that

(4)
$$f(z_1 + dz_1, ..., z_n + dz_n) = f(z_1, ..., z_n) + \sum_{k=1}^m \frac{1}{k!} (d^k u + i d^k v) + R_m$$

where $R_m = R_{1,m} + i R_{2,m}$.

$$du + idv = \sum_{j=1}^{n} (u_{x_{j}} dx_{j} + u_{y_{j}} dy_{j}) + i \sum_{j=1}^{n} (v_{x_{j}} dx_{j} + v_{y_{j}} dy_{j})$$
$$= \partial f + \overline{\partial} f$$

Similarly,

$$d^2 u + i d^2 v = (\partial f + \overline{\partial} f)^{(2)}$$

and by mathematical induction it can be easily shown that

$$d^k u + i d^k v = (\partial f + \overline{\partial} f)^{(k)}$$

Hence, (4) may be written in the form (1). This is Taylor formula for complex functions which are of class C^{m+1} in a neighborhood of z.

3. A Taylor series expansion.

THEOREM 2. If u and v are of class C^{∞} and $R_m \to 0$ as $m \to \infty$ then

(5)
$$f(z_1 + dz_1, ..., z_n + dz_n) = f(z_1, ..., z_n) + \sum_{k=1}^{\infty} \frac{1}{k!} (\partial f + \overline{\partial} f)^{(k)}$$

Proof. It follows at once from (1).

We shall show that the condition $R_m \to 0$ holds in the following two cases:

a) The partial derivatives of all orders of u as well as those of v are in absolute value uniformly bounded by M>0 in $D_r(z)$. For in this case we have

$$|R_{1,m}| \le \frac{M}{(m+1)!} \left(\sum_{j=1}^{n} |dx_j| + \sum_{j=1}^{n} |dy_j| \right)^{m+1}$$

$$\le \frac{(2n)^{m+1} M}{(m+1)!} ||dz||^{m+1}$$

where $||dz|| = \max_{i} |dz_{i}|$.

Similarly,

$$|R_{2,m}| \le \frac{(2n)^{m+1}M}{(m+1)!} ||dz||^{m+1}$$

so that

(6)
$$|R_m| \le \frac{2(2n)^{m+1}M}{(m+1)!} ||dz||^{m+1}$$

and the right-hand side of (6) tends to zero as $m \to \infty$.

b) The functions u and v together with their partial derivatives of all orders are nonnegative in $D_r(z)$.

Then, by a theorem of J. T. DAY [2], we have $R_{1,m} \to 0$ and $R_{2,m} \to 0$ as $m \to \infty$ in some $D_{r'}(z) \subset D_{r}(z)$. Hence $R_m \to 0$ also in some neighborhood of z.

4. Two special cases.

a) If f is holomorphic in $D_r(z)$ then u and v are of class C^{∞} , and $\bar{\partial} f = 0$ in $D_r(z)$. Also, we have

$$\begin{split} f_{z_1} &= u_{\mathbf{x}_1} + i v_{\mathbf{x}_1} = v_{\mathbf{y}_1} - i u_{\mathbf{y}_1} \\ f_{z_1 z_2} &= u_{\mathbf{x}_1 \mathbf{x}_2} + i v_{\mathbf{x}_1 \mathbf{x}_2} = v_{\mathbf{y}_1 \mathbf{x}_2} - i u_{\mathbf{y}_1 \mathbf{x}_2} = - u_{\mathbf{y}_1 \mathbf{y}_2} - i v_{\mathbf{y}_1 \mathbf{y}_2} \end{split}$$

etc. It follows that

$$\left| \frac{\partial^{m+1} u}{\partial x_1^{h_1} \dots \partial x_n^{h_n} \partial y_1^{k_1} \dots \partial y_n^{k_n}} \right| \leq \left| \frac{\partial^{m+1} f}{\partial z_1^{h_1+k_1} \dots \partial z_n^{h_n+k_n}} \right|$$

where the h_i and k_j are nonnegative integers satisfying $\sum_{j=1}^{n} (h_j + k_j) = m + 1$, and similarly for the partial derivatives of v.

If $D_{\varrho}(\zeta) \subset D_{r}(z)$ is a polydisc with center at ζ and radius $\varrho = (\varrho, ..., \varrho)$, and if $|f(z^{*})| \leq M$ for all $z^{*} \in \overline{D}_{\varrho}(z)$, it is known [1] that

$$\left| \left(\frac{\partial^{m+1} f}{\partial z_1^{h_1+h_1} \dots \partial z_n^{h_n+h_n}} \right)_{\xi} \right| \leq \frac{(h_1+k_1)! \dots (h_n+k_n)! M}{\varrho^{m+1}}$$

$$\leq \frac{(m+1)! M}{\varrho^{m+1}}$$

Thus,

(7)
$$\left| \left(\frac{\partial^{m+1} u}{\partial x_1^{h_1} \dots \partial x_n^{h_n} \partial y_1^{k_1} \dots \partial y_n^{k_n}} \right)_{\zeta} \right| \leq \frac{(m+1)! M}{\varrho^{m+1}}$$

Then we have

$$R_{1,m} = \frac{1}{(m+1)!} d^{m+1} u \bigg]_{\xi} = \frac{1}{(m+1)!} \bigg(\sum_{j=1}^{n} u_{x_{j}} dx_{j} + \sum_{j=1}^{n} u_{y_{j}} dy_{j} \bigg)^{m+1} \bigg]_{\xi}$$

$$= \frac{1}{(m+1)!} \sum \frac{(m+1)!}{h_{1}! \dots h_{n}! k_{1}! \dots k_{n}!} \bigg(\frac{\partial^{m+1} u}{\partial x_{1}^{h_{1}} \dots \partial x_{n}^{h_{n}} \partial y_{1}^{h_{1}} \dots \partial y_{n}^{h_{n}}} \bigg)_{\xi} \cdot dx_{1}^{h_{1}} \dots dx_{n}^{h_{n}} dy_{1}^{h_{1}} \dots dy_{n}^{h_{n}}$$

and letting $||dz|| = \max_{i} |dz_{i}|$ we obtain, using (7),

$$|R_{1,m}| \le \sum \frac{(m+1)!}{h_1! \dots k_n!} \frac{M}{\varrho^{m+1}} ||dz||^{m+1}$$

$$= (2n)^{m+1} \frac{M}{\varrho^{m+1}} ||dz||^{m+1}$$

The last expression tends to zero as $m \to \infty$ provided ||dz|| is small enough, namely, $(2n) ||dz||/\varrho < 1$. If $r' = \min(r_1, ..., r_n)$ we may choose $\varrho = r' - ||dz||$, and the preceding inequality gives

$$||dz|| < \frac{r'}{2n+1}.$$

Similarly, $R_{2,m} \to 0$ as $m \to \infty$ for ||dz|| < r'/(2n+1). Hence, if f is holomorphic in $D_r(z)$ we have

$$f(z_1 + dz_1, ..., z_n + dz_n) = f(z_1, ..., z_n) + \sum_{k=1}^{\infty} \frac{1}{k!} (\partial f)^{(k)}$$

valid for ||dz|| sufficiently small.

b) For n=1 (i. e. for complex functions of one independent variable) we have, provided $R_m \to 0$,

$$f(z + dz) = f(z) + \sum_{k=1}^{\infty} \frac{1}{k!} (f_z dz + f_{\bar{z}} d\bar{z})^{(k)}$$
$$= f(z) + \sum_{k=1}^{\infty} \frac{1}{k!} (f_z + f_{\bar{z}} \frac{d\bar{z}}{dz})^{(k)} dz^k$$

Letting $dz = |dz|e^{i\theta}$ the above expansion can be written as

(8)
$$f(z + dz) = f(z) + \sum_{k=1}^{\infty} \frac{1}{k!} (f_z + f_z e^{-2i\theta})^{(k)} dz^k$$
$$= f(z) + \sum_{k=1}^{\infty} \frac{1}{k!} f_{\theta}^{(k)}(z) dz^k$$

denoting by $f_{\theta}^{(k)}(z)$ the k-th complex rectilinear directional derivative of f at z in the direction θ .

In the holomorphic case $f_{\theta}^{(k)}(z)$ reduces to $f^{(k)}(z)$ (the ordinary k-th derivative), and (8) becomes the well-known Cauchy-Taylor expansion of f about the point z. In this case our estimate of the region of validity can be easily improved. If f is holomorphic in $D_r(z)$, r' is any real number satisfying 0 < r' < r, and $M = \max |f(\xi)|$, $\xi \in \overline{D}_r(z)$, it is known that [4]

$$|R_m| \leq \frac{r'M}{r'-|dz|} \left(\frac{|dz|}{r'}\right)^{m+1}$$

so that $R_m \to 0$ as $m \to \infty$, provided |dz| < r'.

REFERENCES

- 1. L. Bers, Introduction to Several Complex Variables, Courant Institute of Mathematical Sciences, New York, 1964.
- 2. J. T. DAY, On the Convergence of Taylor Series for Functions of n Variables, Math. Mag. 40 (1967), 258-260.
- 3. L. NACHBIN, Holomorphic Functions, Domains of Holomorphy and Local Properties, North-Holland Math. Studies, No. 1, 1970.
- 4. R. NEVANLINNA AND V. PAATERO, Introduction to Complex Analysis, Addison-Wesley, Reading, Mass., 1969.