AXIOMATIC CHARACTERIZATIONS OF THE MEASURES
OF INACCURACY AND INFORMATION
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Abstract. In this paper, various measures of inaccuracy and
information useful to Statistical Estimation, Inference, Coding Theory,
market situations etc. are characterized by a set of suitable postula-
tes in each case. The theory of Functional Equations is used in de-
riving the characterization theorems.

1. INTRODUCTION. We start with a finite generalized probability
distribution P, which is a sequence {py, ..., p,) with p; > 0, W (P) =
—= X p < 1. W(P) is called the weight of the distribution P. Let A

i—1
denote the set of all finite discrete generalized probability distribu-
tions. This idea of generalized probability distribution was introdu-
ced by Rényi [9].

Let P = (py, ... p,) €A and Q = (qy, ..., g,) €4 be two genera-
lized probability distributions whose elements are given in one-to-
one correspondence as determined by their indices. Then the inac-
curacy function of order unity and of order « [6] are given respecti-
vely by,

(L.1) H{(P|Q) = — 2'p; log ¢;[& p,,
and
(12)  H,(P[Q) = (x— 1)"" log (Zpi g1 =*Zp), o # L.

(1.1) for complete probability distributions was defined earlier in
[4]. Throughout this paper, X stands for § and logarithms are taken
to the base 2. =
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Also the information functions or directed divergences of order
unity and of order « [5,9] are defined respectively as,

(1.3) L(P1Q) = 2 p;log (pilg:) | 2 pis

and

(1.4) I, (P]Q) = (« — 1)7llog (X p gt~ [ 2 py), 2 # 1.

Recently, generalizations [6,7] of the inaccuracy functions (1.1)
and (1.2) are given in the following forms:

(1.5) HP(P1Q) = — X pllogg; | 2pfF

and
(1.6)  HF(P1Q) = (x— )71 log (Epf g [ Zpf) o # 1,

(1.5) and (1.6) are called the inaccuracies of order unity and type
p and of order « and type f8 respectively.

The generalizations [3] of information functions (1.3) and (1.4) arc
given earlier as,

(1.7) I(P|Q)=2pflog (p:]q) ]| ZpF
and
(1.8) LA(P|Q) = (« — I)"Llog (ZpxiP-lgl==[XpF), o # 1

which are called the information of order unity and type f and of
order « and type f ‘respectively.

If p/s are allowed to take zero values and the convention Olog
0 = 0 is followed, then we have to put some conditions on the para-
meters « and B. Thus, we have to impose the restrictions « > 0 in
(1.4); p> 0 in (L.5), (1.6) and (1.7); and p >0, « +f — 1> 0 in
(1.8).

We denote by R*S the direct product of the generalized probabi-
lity distributions R = (ry, ...,7,) and S = (sy, ..., s,,); that is the

distribution consisting of the sequence {7;s;} with ¢ =1,..,7;

j=1,..,m Alsofor ¥ 7, + ¥ s; < 1, we define R u S = (ry, ..., 7,,
i=1 j=1
Sp, v Sy). I X7, 4+ Xs; > 1, then R u S is not defined. These no-
i=1 i=1

tations will be used in this paper later on.
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Some of the applications of the measures of inaccuracy and in-
formation to statistical estimation, inference, coding theory, market
situations etc. are indicated in [4], [5], and [9] and in the various
references included in these papers.

The object of this paper is to establish four characterization theo-
rems, two each for inaccuracy and information functions including
the o-forms. The results are proved by assuming a set of five postu-
lates in each case suiting the particular situation under consideration.

Very recently, a characterization of (1.3) for arbitrary probability
spaces by a set of six postulates is given in [2]. Some results for the
quantitios given above and more generalized measures of inaccuracy
and information may be found in [6, 7, 8].

2. Characterization of inaccuracy functions. In this section a
characterization theorem. for the inaccuracy functions (1.1) and
(1.2) will be proved by using a set of five postulates and another
similar characterization theorem for (1.5) and (1.6) is given without
proof.

Postulate 1. H(p|1) and H (I |q) are continuous functions of p
and ¢ respectively where p, g€ (0,17

Postulate 2. H(1]3) = 1.
Postulate 3. H(}]1) = 0.

Postulate 4. If P = P* P, and Q = Q,* 0, for Py, P5, 04,0,€ A,
then

H(P|Q)=H (P|Q1) + H (P210Q2),

where the correspondence between the elements of P and Q is that
induced by the correspondence between the elements of P; and Q,
and those of P, and Q,. Postulate 5. There exists a continuous and
strictly monotonic increasing function y = g (x) defined for all real
x such that denoting by x = g~1(y) its inverse function; if P = P; u
u Pyand Q = Q; u Q, where P, Py, P»,0Q,Q4, 0, € A and the corres-
pondence between the elements of P and Q is that induced by the
correspondence between the elements of P; and Q; and those of
P, and Q,, then we have

Hipig - [P UIEION £ 7 (Ede UL (221000

W (P,) + W (Py)
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In order to prove the characterization theorems for any » > 2
it is sufficient to take postulates 4 and 5 for

(2.1) Py = (p1), P2 = ($2), 01 = (01), Q2 = (2),
and the postulate 4 for
(2.2) Py = (p1, p2), P2 = ($), 01 = (91, 92), Q2 = (9)-

Then the form of H (P|(Q) can be easily obtained by induction from
H (p1q) and H (p1, 2| q1,g2). The first theorem to be proved is,

THEOREM 1. The functions H (P |Q) satisfying the postulates 1, 2,
3, 4 and 5 have exactly two forms given by either (I.1) or (1.2).

Proof. The proof of theorem 1 depends on the following two
lemmas.

LEMMA 1. If H (p | g) satisfies the postulates 1, 2, 3 and 4 for (2.1), then
(2.3) H(plq) = —log g.
Postulate 4 for (2.1) gives
(2.4) H(prp219192) = H(p1lq1) + H(p2192)-
Taking ¢, = ¢, = 1 in (2.4), we get
(2.5) H(p1p211) = H(p1|1) + H(p2]1).

Using the continuity postulate 1, we easily find from [I, p. 41]
that the only continuous solution of the functional equation (2.5) is

(2.6) H(p|1)=a log p,pe(0,1].
Similarly, taking p; = p, = 1 in (2.4), we have
(2.7) H(l|g)=51log g, ge (01].
Finally, taking ¢, = p, = 1, p; = p and g, = ¢ in (2.4), we get
(2.8) H(plg=H(pI1) +H(llg),
which on using (2.6) and (2.7) yields
(2.9) H(plg)=alog p+blog g, p,ge (0,1].
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Applying the postulates 2 and 3 to (2.9) we find that 4 = 0 and
b = — 1. This proves lemma 1.
Postulate 4 for (2.2) gives,

(2.10) H(pprpP21991,992) = H(p1, P2191. ¢2) + H(p19),
which on using the postulate 5 for (2.1) and the lemma 1 yields

-1
p1g(—1log qq1) + p2g (— log qqz)] B
(2.11) & [ P11+ P2 -

-1 ’
_ p1g(—log q;) + pog (— log qz)]
=g [ 5. pa | + log (1/g).

Now we proceed to prove the following lemma :

LemMA 2. The continuous and strictly monotonic function g (x) sa-
tisfies the functional equation {2.11) if and only if

(2.12) gx) =Ax+ B, A #0
or
(2.13) gx)=A2*+ B, A+#0, C+#0.
Setting x = ;log g1,y = —log g, and t = —log ¢ in (2.11),
we have
—1 4
p1g(x + 1) +p2g(y+t>]
2.14 =
(214 o [Pl
—1
_, |te@ +1>2g(y)] ,
— ¢ [ pitp 1 °

The only continuous and monotonic solutions [l,y p. 153] of the
functional equation {2.14) are linear and exponential functions given
by (2.12) and (2.13). Thus lemma 2 is proved. Hence from postulate
5 for (2.1) with g(x = Ax + B, 4 # 0, we have
(2.15)  H(p1, 2191, 92) = Hi(p1, 2191, q2) = — (p1 log 1 +

+ P2 log o) [ (p1 + £2)

and with g(x) = A 2@V + B, 4 # 0, a # 1, we have

(2.16) H(p1, p2191, ¢2) = Hy(P1, P2191, 92) =
= (¢ — )71 log [(p1 1™ + $292'7%) [ (p1 + P2)], ¢ # 1.



142 H. Kaufman and P. N. Rathie

It can be easily seen that (1.1) and (1.2) are obtained from pos-
tulate 5, (2.4), {(2.15) and (2.16) by induction for any #» > 2. This
completes the proof of theorem 1.

Now we take the following postulate instead of postulate 5.

Postulate 6. If W;(P) = %}p,ﬂ, for P = (py, ..., p.) ctc., then
i=1 '

_ T [Wa(P) g (H(P11Q1)) + W, (P2) g (H(P2102)}
N e e |

Then the following theorem can be similarly proved for the inac-
curacies (1.5) and (1.6).

THEOREM 2. The functions H (P | Q) satisfying the postulates 1, 2, 3,
4 and 6 have exactly two forms, H,# (P |Q) and H. (P |Q) given by
(1.5) and (1.6) respectively.

3. Characterization of information functions. This section deals
with a characterization of information functions (1.3) and (1.4) by
the help of five postulates. Towards the end of this section another
similar theorem which characterizes {1.7) and (1.8) is given without
proof.

Postulate 7. I(p|1) and I (1]gq) are continuous functions of p and ¢
respectively for p,ge (0,1].

Postulate 8. I(1]3) = 1.

Postulate 9. I(3|3) = 0.

Postulate 10. I (P|Q) = I(P{|Q1) + I(P2]0Q,).
Postulate 11.

W (Py) + W (P»)

The same convention regarding the various probability distribu-
tions as given in the last section are followed here. The theorem to
be proved is:

THEOREM 3. The functions I (P |(Q) satisfying the postulates 7, 8,
9, 10 and 11 are given by either (1.3) or (1.4).
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Proof. The proof of theorem 3 is very much similar to that given
in the last section. As before, it is easy to show that,

(3.1) I(plg)=alog p+blog g, p,qe (0,1].

Now postulates 8 and 9 determine the constants in (3.1) giving
a=1and b = — 1. Thus

(3.2) I(p|q) = log (p/g).

The postulates 10 for (2.2) and postulate 11 for (2.1) together with
(3.2) and following the procedure of the last section give

—1
prgx +1) —Fﬁzg(ert)] _
(3:3) § [ Pt po
_] - -
_ ?M_J’_:g_&l)] n
=& [ P1+ P2 ot

where x = log (p1/q1), ¥ = log (p2/gs) and ¢ = log (pg).

As before, the solutions of (3.3) are of the forms given in (2.12)
and (2.13). Therefore from postulate 11 for (2.1) when g (x) = Ax +
-+ B, A # 0, we have

(3.4) I(p1, p2191,92) = I (p1, P2141, 42)
= — {p1 log(pi/q1) + P2 log ($2/g2)} [ (P1 + 12)
and when g (x) — A 26-0% 4 B, A 0,0 % 1, we have
(3.5) I(p1, p2191, 42) = 1, (1, p2141, 92)
= (o — D)7t log {((APr* g1 ™% + p2* 21 7%) [ (P1 + p2)}, 2 # L.

Thus theorem 3 is proved for # = 2. The method of induction
proves theorem 3 for any # on using the postulate 11, (3.2), (3.4)
and (3.5).

Let us take the following postulate instead of the postulate 11.

Postulate 12.

-1 w I(I } W T , }_
e R (R - |
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Then theorem 4 given below can be proved on lines similar to
that of theorem 3.

Theorem 4. The functions I (P |Q) satisfying the postulates 7, 8, 9,
10 and 12 are I\ (P|Q) and I (P |Q) given by (1.7) and (1.8) res-
pectively.
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