NORMAIL OPERATORS AND SPACES OF DISTRIBUTIONS

J. B. CooprEr

This note is devoted to a problem raised by the late Professor
J. Sebastiao e Silva concerning his direct method for the construction
of spaces of distributions. In his fundamental work [16], Sebastido
e Silva considers the following problem :

given is a set G with some algebraic structure (i.e. an object
of some algebraic category) and a family ¥ of mappings from
some sub-objects of G into itself which preserve the algebraic

structure. The problem is to embedd G into an object G of the
same category and to construct a family ¥ of morphisms
of G which extends the family Y.

This problem is solved in a general setting in [16]. The motivation
was the fact that the differentiation operator D on the space C (I)
of continuous, complex-valued functions on a compact interval I is
not everywhere defined and that the space C,, (I) of distributions
is a solution of a problem of the above type. This simple idea has
been used by Sebastido e Silva to give a natural development of the
theory of distributions.

However, the algebraic structure of C,, (I) is too weak for appli-
cations and it is important that C,, (/) has a natural locally convex
structure, in fact the structure of a Silva space (or (L N)-space in the
terminology of [17]). The problem suggested to us by Sebastido e
Silva was to find a fairly general situation in which this is true, i.e. to
find a suitable category where the solution to the above extension
problem automatically has a natural locally convex structure — and
even, under certain conditions, that of a Silva space.

We present here what we believe to be a satisfactory and natural
solution to this problem. The underlying category that we use is the
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category of Hilbert spaces, and the operators that we extend are
normal unbounded operators. Under these conditions, we obtain a
fairly rich theory for the constructed spaces — in particular, we can
determine exactly when it will be a Silva space. Although this need
not be the case, we do always obtain a member of a wider class
of spaces which has recently been studied by de Wilde [26] and
Komatsu [9] and which possesses many of the properties of the class
of Silva spaces.

One of the features of modern distribution theory and, in par-
ticular, of its application to partial differential equations is the use
of an extensive apparatus in the form of an array of distribution
spaces (see, for example, Hormander [6] and Wloka [25]). Most of
these spaces can be obtained by the method given here. This leads
to a certain economy since one can deduce a number of properties
of these spaces (duality, completeness, nuclearity) from the theory
given here without dealing with each space individually.

In §1 we define the new spaces and give some: properties which
follow from the general theory of locally convex spaces. This cons-
truction is natural in the sense that we have actually constructed a
functor between two categories and this fact seems important enough
to us to justify a presentation within the framework of category
theory although this leads, perhaps, to a rather heavy-handed treat-
ment. In §2 we give criteria for nuclearity. These involve the nu-
clearity of inverse mappings and are elementary in the sense that
they do not use spectral theory. They are then expressed in terms
of the spectrum of the operator. In § 3 we give results on the exten-
sion of linear operators on the original Hilbert space. Such results
are important for defining operations on the constructed distributions.
In §4 we show that the dual spaces of our distribution spaces can
be identified with a class of spaces introduced by A. Pietsch [14]).
Inorder to ensure that the identifications obtained are linear (and
not anti-linear), we have been careful to distinguish between a Hilbert
space and its dual. In § 5 we show how the distribution spaces can
be represented as spaces of measurable functions (in some cases as
spaces of sequences). § 6 contains some remarks on generalisations.

We use, without special references, the standard results on Hilbert
space (in particular, the theory of normal operators) and on locally
convex spaces. See, for example:

F. Riesz and B. Sz.-Nagy, Functional analysis (New York, 1955).

G. Kothe, Topologische lineare Rdume (Berlin, 1966).
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We shall use the term ormal operator» in Hilbert space H to
denote a not necessarily bounded normal operator from a dense
subset of H into itself.

The space IF (H'; T') considered in § 4 has been introduced and
studied by Pietsch [14]. In particular, because of the duality esta-
blished in Proposition 4.5, Proposition 2.3 is equivalent to a result
in [14]. Our proofs are different.

§ 1. THE CONSTRUCTION.

1.1.  Definition : We introduce the category HN O P whose object
are pairs (H; T) where H is a Hilbert space and T is a normal (not
necessarily continuous) operator on H. If (H; T) and (H,; T,) are
objects of HNO P, a morphism from (H ; T) into (Hy; T,) is a con-
tinuous, linear mapping S from H into H; which commutes with T
and T in the sense that 7; S D ST (i.e. is so that the diagram

S g,
T l } T,
Y
H 5 H,

«commutesp).

It is easily seen that HNO P is an additive category (we note that
a subobject of (H; T) is a pair (K;T,) where K is a closed,
T-invariant subspace of H and T is the restriction of T to K).

1.2. Notation: Let (H; T) be an object of HNO P. H"*1 denotes
the (» 4 1)-fold product of H with itself and we write (xo, ..., %,)
for a typical element. We use the natural inner product

((xO: (S xn)’ ()’0: Sy yn)) —> (xo IyO) T (xn Iyn)
on H"+1,
T* denotes the n-fold product of T with itself (which is also a

normal operator on H) and D (7% denotes the domain of definition
of 7" We introduce the following subspaces of H"*1:

D,:= {0, ..., y,) eH"l : 3, eD(T* (k=0,..,n) and

B Yo+ Tyr + ... + T"y, = 0}.
G,: =D, the closure of D, in H"*1,

F,:= {(x, T*x, ..., (T¥)"*x) : xeD (T*".

18 — Collectanea Mathematica
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1.3. Lema: F,= Di and so G, = Fi.

Proof : It is clear that F, C Di. We show that the reverse in-
clusion holds. Suppose that # = 1. Then if (%, x;) € Dt,

(*o|y0) + (#1]1y1) =0

for every pair (yy, y;) € D; i.e. such that y; e D(T) and Ty; = — y,.
Thus %g €D (T*) and x; = T* x,.

Now suppose that (xg, ..., x,) € Dy. By choosing those elements
of D, of the form (v, 0, ..., 0, ¥, 0, ..., 0) and using a similar argu-
ment, one can show that x, = (T*)*xy (R =1, 2, ..., n).

1.4. Lemma: The mapping (vy, ..., ¥, —> (0,9, ..., ¥a) from H*+1
into H* 2 maps G, into G, . .

Proof : Consider the mapping

J (o s Xpr1) —> (Hy ooy X 1)

from H*72into H**1, Then its adjoint is the above mapping. Now J
maps F,,; into F, and so its adjoint maps Fi into Fi.; ie. G,
into Gn+1'

1.5. Proposition: Let (H; T) be an object of HNOP. Then there
exists a locally comvex space E (H; T), a continuous, linear map-

ping T from E (H; T) into itself and a continuous injection i from H
into E (H; T) so that

(i) T is an extension of T i.e. the diagram

H : E@H:T)
Ti l T
H E(H: T)

commutes ;

(i) E(H; T) is minimal with vespect to this property. That 1s,

if E i, Tisa triple with the same property, them there is a conti-
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nuous injection j from E (H; T) into E so that the Jfollowing diagram
commutes :

A
/\ R

H E(H:T) : E

i ] A

T| Il 1T

H ‘ E(H:T) ] f

\_\/
1

(i) if S:(H; T)

> (Hy; T,) ts a morphism, then S lifts
to a continuous hinear mapping S from E(H; T) into E(Hy; T) so
that the diagvam

H v E@H; T)
: | |
H, 7 E(H;; Ty)
commutes ;
(iv) the correspondences
H; 1) > E(H; T)
s ~

S

form a covariant functor from HNOP into the category LOCCONV of
locally comvex spaces.

Proof: We define the space E, (H; T) to be the quotient space
H**1/G,. The natural injection

(xO: EEE) xﬂ)

> (%9, ..., %, 0)

from H**1 into H"*! lifts to an injection from E, (H; T) into
E,..(H; T) (since G,,; n H**1 = G,). Hence we have an induc-
tive sequence {7,: E,(H; T) —

> E,.1(H; T); of Hilbert
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spaces. We let E(H; T) be its inductive limit (in the category
of locally convex spaces) i.e. the union of the spaces E, (H ; T) with
the finest locally convex structure which induces a coarser structure
on each E, (H; T) than that defined by the norm.

We let ¢ be the natural injection from H (= E,(H; T)) into
E (H; T). For each », the mapping

(%0, ..., %,) ———> (0, xo, ..., x,)

from H"**1 into H"*2 lifts to a continuous, linear mapping from
E,(H; T) into E, ;(H; T) (1.4). These mappings are all compa-
tible with the inclusions from E, (H; T) into E,,(H; T) and so
can be used to define a continuous linear mapping T from E (H; T)
into itself.

(i1) Suppose that E, %, T is such a triple. We define an injec-
tion from E, (H; T) into E as follows:
consider the mapping

(%0, v %) ——— 1 (%) + T (1%7) + ... + T (ix,).

Then this defines a linear mapping from H**! into E whose kernel is
just G,. Hence it lifts to an injection from E, (H; T) into E. These
injections are all compatible and so define an injection from E(H; T)
into E with the required properties.

(iii) Consider the mapping
(%o, ..., %,) ———> (Sxp, ..., Sx,)

from H*+! into H**1, Its adjoint is the mapping

(Y05 <+ V) ——> (S*y0, -, S*,)

and this maps F, into F, (Since S* commutes with 7*). Hence the
former mapping maps G, into G, and so lifts to a continuous linear
mapping from E, (H; T) into E,(H; T). These mappings can be

~

combined to form the required mapping S.

(iv) follows directly from (i)-(iii).

1.6. Proposition: (i) The space E(H ; T) with the above struc-
ture is a separated, complete, semi-reflexive (DF)-space;
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(i) a subset B CE (H; T) is bounded if and only if it is com-
tained in some E, (H; T) and bounded there ;

(iii) A subset A of E(H; T) is weakly closed if and only if its
wntersection with each E, (H; T) is weakly closed in E,(H; T). In
particular, an absolutely convex subset A of E(H ; T) is closed if and
only if AnE,(H; T) is closed each n;

(iv) a sequence (%) in E(H; T) is weakly convergent if and only
if it is contained in some E,(H; T) and weakly comvergent there.

Proof: Since E, (H; T) is a Hilbert space and so semi-reflexive
the injection E,(H; 1) ——> E, 1 (H; T) is weakly compact
and the results of [9] and [26] can be applied.

1.6. Remark: It is easy to see that the properties (i) and (ii)

of 1.5 determine E (H; T) uniquely in the sense that if E, Z T is
a triple with the same properties then there is an isomorphism j

from E (H; T) onto E so that the restriction of 7 to H is the iden-
tity. It follows from this that if 7" is a normal operator on H and A is
an element of the resolvent set o (T') of T (e.g. if T is selfadjoint and
Im A #0) then E(H; T) is naturally isomorphicto E (H; AI — 1)
(since a solution of the extension problem for T is clearly a solution
of the corresponding problem for (A — T) and vice versa). Hence
it can often be assumed, without loss of generality, that T hasa
continuous inverse. In the latter case, the theory has an especially
simple form.

1.8.  Proposition : Suppose that T has a continuous inverse S. Then.

(i) T has a continuous inverse on E (H; T);

(ii) every bounded subset of E (H ; T) has the form T*(B,)where B,
is a bounded subset of H and w is a positive integer. In particular,

every element of E (H ; T) has the form T»x where x € H and n is a
positive integer ;

(iii) of (%) os a sequemce in E (H ; T) which converges weakly to
zero, them theve is a sequence (v) in H which converges weakly to zero
and a positive integer n so that x, = T vy for each k.
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Proof: 1t is clear that the extension S of S is an inverse for 7.
We denote by x, the natural projection from H**! onto E,(H; T).
If yg,...,y, € H, then

o (Y0, s V) = 7, (0, ..., 0, S”yo + S*1y; + ... + )

ie. (Yo, ¥1, ., — (S"yo + S*1y, + ... + Sy,_1)) €G,. This means
that the element x = =, (yy, ..., %,) of E,(H; T) is equal to Try
where y = S"yy 4+ S*1y; + ... + v,. Hence the mapping

T":H— > E,(H; T)

is onto and so is a homomorphism. It is even an isomorphism since 7
is injective. (ii) and (iii) follow immediately from this.

1.9. Corollary: Let T be self-adjoint. Then if B s bounded
wm E (H; T), there is a positive integer n and bounded set By, By, ..., B,
in H so that

BCB+TB,+ ..+ 1B,

A similayr statement holds for sequemces which comverge weakly to zero
m E(H; T).

Proof: Apply 1.8 to (¢ + T).

§ 2. SILVA SPACE AND NUCLEAR SPACES OF TYPE E(H; T)

2.1. Proposition: Let T have a continuous inverse S. Then E (H; T)
18 a Silva space if and only if S is compact.

Proof: Suppose that S is compact. If B is the unit ball of
E,(H; T), then, by 1.8, B C T* B, where B, is bounded in H. Then
B c8(T*1B)), § is compact from E,,,(H; T) into E,.(H; T)
and T"+1(B,) is bounded in E, ,(H; T) so that B is relatively
compact in E,_; (H; T).

If E(H; T) is Silva, then there is an integer # so that the
inclusion H ——— E,(H; T) is compact. We can write this

inclusion as the product 7*S”. Since 7" is an isomorphism, S* is
compact and so S is compact.
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2.2. Proposition: Let T have a continuous inverse S. Then E (H ; T)
15 nuclear if and only if there is an integer m so that S™ is nuclear.

Proof: Similar to that of 2.1.

2.3.  Proposition: Suppose that T is self-adjoint. Then

(i) E(H; T) is a Silva space if and only if the spectrum of T
consists of a sequence (2,) of eigenvalues of finite multiplicity so that
l;"ﬂl — 00;

(i) E(H; T) is nuclear if and only if there is a positive num-
ber € so that

R,
EieT = ®

(k, is the multiplicity of the eigenvalue 4,).

Proof: We apply 2.1 and 2.2 to (+ — T) and use the fact that a
normal A (in our case A : = (1 — 7)) is compact if and only if its
spectrum consists of a sequences of eigenvalues (u,) of finite multipli-
city which converges to zero. A is nuclear if and only if 3} 2, |u,| << o

n

(k, is the multiplicity of u,).

§ 3. EXTENSION PROPERTIES

3.1. Proposition: Let (H; T) and (Hy; T,) be two objects of HNOP
and let M be a norm bounded collection of comtinuous linear mappings
from H into Hy so that for each U eM,T,UD UT. Then M can
be extended to anm equicomtinuous family of linear mappings from
EH; T) into E(Hy; Ty).

Proof: Similar to 1.5 (iii).

3.2. Corollary: Let T be self-adjoint operator so that H possesses
an orthonormal basis (x;) composed of eigewvectors of T. Then (x)
1S a Schauder basis for E (H; T).

Proof: Let P, be the orthogonal projection on the subspace of H
spanned by the first # elements of the basis. Then each P, commutes
with T and so the P,’s lift to an equicontinuous family of projec-
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tions in E (H; T) and it can easily be deduced from this that (x,)
is a Schauder basis for E (H; T).

3.3. Defimition: ILet M be a measurable subset of K. A measurable
complex-valued function x on M is said to be of polynomial growth on
M if there is a positive integer # so that

x| <K(l+#)" (K>0)

for almost every ¢t e M. If T is a self-adjoint operator in a Hilbert
space H, then a normal operator 4 on H is said to be of polynomial
growth with respect to T if A = x (T) where x is a function of poly-
nomial growth on the spectrum of 7.

3.4. Proposition: Let T be a self-adjoint operator on H, A a normal
operator of polynomial growth with rvespect to T. Then A can be lifted
to a continuous linear operator from E (H; T) into itself.

Proof: We suppose that 4 = x(T) where |x(f)| < K (1 + £2)*
almost everywhere on the spectrum of 7. Let y be the function

7

> x(f) (1 + 22)—»

Then y is bounded (a.e.) on the spectrum of T and so B: =y (T)
is a bounded operator on H which commutes with 7. Hence it can be

lifted to a continuous linear operator B from E (H; T) into itself.
We define 4 to be B I+ TZ)". Then 4 is the required extension.

§4. DUALITY THEORY

4.1. Defimition: Let (H; T) be an object of HNOP. We write H’
for the dual space of H (as a Banach space) and ] for the mapping

% (v (v %)

from H into H'. Then, by the Riesz representation theorem, [y is
an antilinear isomorphism from H onto H'. We give H' a Hilbert
space structure by defining

(Jax|Jey):= (1%  (xyeH).
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Then this scalar product defines the dual norm on H'. If T is an
operator on H, then its transpose is T = J, T* J5'.

T*
H H
I | iz
T’ Y
H’ H

We define F,(H'; T) to be D((T")*) with the norm

y—> VY2 + T Y12 + .+ [(T)"y]12

4.2. Proposition: E,(H; T) is isomorphic to the dual space of
F,(H'; T') under the bilinear form

> (V1 Juzxo) + . + (T)*y | Ju %)

Proof: It follows immediately from the definition that

(y! T, (xor (EE) xn))

y———mm> . Ty, ... (T)"y)

is an isometry from F,(H; T') onto a subspace of (H')**! and this
subspace is mapped by the anti-linear isometry Jy X ... X Jy onto
F, C H*"1. (Note that this implies that F,(H’; T') is a Banach
space since F, is a closed subspace of H"*1). Now if we regard
F,(H'; T') as a subspace of (H')**1, then its dual space is the quo-
tient space of the dual of (H')**! by the polar of F,(H’; T’). But the
dual of (H')**1 is anti-linearly isomorphic (under Jz' X ... X Ja')
to H**1 and under this mapping the polar of F,(H'; T') is map-
ped onto Fy = G,. Hence the dual of F,(H’; T') is isomorphic
to H**1/G, = E,(H; T) and this is precisely the statement of the
Proposition.

4.4 Defimition: We write F(H'; T') for (| D ((T")*) with its na-
tural locally convex structure as the intersection of a decreasing
sequence of Banach spaces. Then F (H'; T') is a Fréchet space.

4.5. Proposition: E (H; T) is naturally isomorphic (as a locally
convex space) to the dual of F(H'; T').
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Proof:  'This follows from 4.3 and the general theory of locally
convex spaces (note that F (H'; T’) is dense in each F,(H'; T')-
spectral theorem).

4.6. Remark: We have constructed a Hilbert triad («Gelfandsches
Raumtripely)

EMH; T)DH Jn H' D F(H|; T).

in the terminology of [3]. Thus we can restate our result as follows:

Let T be a normal (unbounded) operator in a Hilbert space. Then
there exists a Hilbert triad as above so that T extends to a continuous
linear mapping mapping on E (H ; T) (resp. T’ vestricts to a continuous
linear mapping from I (H'; T') into itself) and this triad is natural
wn the semse that E (H ; T) is minimal with respect to this property
(resp. F(H'; T') is maximal).

4.7. Proposition: H is dense in E(H; T).

Proof: The dualof E(H; T)is F (H'; T') since E (H; T) isrefle-
xive. The result now follows from the Hahn-Banach theorem since
if an element of F (H'; T') (C H') vanishes on H then it is zero.

§ 5. A REPRESENTATION THEOREM

5.1. Definition: XLet M be a locally compact space, u a Radon
measure on M and x a measurable complex-valued function on M.
Then a measurable complex-valued function y on M is of L2-polyno-
mial growth with vespect to x if there is a positive integer # so that
the function y (1 4 |x]2)=* e L2(M; u). We denote by Pol, (x) the
set of all such functions. Then

Poly (x) = [ L2(M; (1 + |212)~"w).

1

We regard Pol, (x) as a locally convex space with the natural induc-
tive limit structure as the union of the above spaces (note that
Pol, (x) is separated since this structure defines a topology which
is finer than that of convergence in measure).

5.2. Proposition: Let T be a normal operator in H. Then there is
a locally compact space M, a positive Radon measure u on M and a
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measurable complex-valued function x on M so that E(H; T) is iso-
morphic (as a locally convex space) to Pol, ().

Proof: 'This follows from the fact that the pair (H; T) is uni-
tarily equivalent to a pair (L2(M ; u); T,) where M, u, x are as
above and T, is the operation of multiplication by x (Segal and
Kunze [20]). It can easily be checked that Pol, (x) is E (L2(M ; p); T,).

5.3. Notation: ILet N denote the set of positive integers. We regard
this as a locally compact space with the discrete topology. If » de-
notes the counting measure on N we write, as is customary, /% (N)
(resp. I2(N)) for L*®(N; ») (resp. L2(N; #)). If x is a complex-
valued sequence, we define Pol,(x) as above and Pol (x) to be

0 L* (N; (1 + |x]2)"y) (so that y € Pol, (x) if and only if there
n=1
is a positive integer # so that y (1 4 [x(2)~* is bounded).
5.4. Proposition: Let (H; T) be an object of HNOP so that E(H; T)
is a Silva space. Then
(i) there is a sequence x so that E (H ; T) is isomorphic to Pol, (x) ;
() E(H; T) is nuclear if and only if Pol, (x) = Pol,, (%) (x as in
(1)) and so wn this case E (H; T) is isomorphic to Pol,, ().

Proof: (i) This follows from 5.2 and the fact that if E(H; T)
is a Silva space, then, by 2.3 (i), we can choose the space (N; ») for
(M ; p) and the sequence (A,) of eigenvalues of T (repeated accor-
ding to multiplicity) for x.

(ii) if E(H; T) is nuclear, then there is a positive integer # so that
Y (14 [4]|2)~*< . Then L®(N; (1 +|%|?)~"») is contained in
k=1

12 (N) and so Pol, () C Pol, (x). Since the reverse inclusion is always
valid, Poly (¥) = Pol, (x). Now suppose that Pol, (x¥) = Pol, (x).
Then since the embedding /* (N) C Pol, (x) has a closed graph, there
is an integer # so that /®(N) C L2(N; (1 + |x|?)~*») (Grothendieck

[4] Introduction IV, Théoreme B). Then Y (1 + |4,]2)~2" < oo and
k=1
so E(H; T) is nuclear (2. 3(ii)).
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§ 6. REMARKS

1. The above construction has a natural generalisation as follows:
we suppose that € is a generalised semigroup of unbounded operators
(closed and densely defined) on a Hilbert space, that is, there is a
dense subset D of H which lies in the domain of definition of each
Se€and if S, T €&, ST is closeable and its closure lies in £ We
write S-T for this closure. If J = (Sy, ..., S,) is an ordered #u-tuple
of elements of £ we define the spaces:

D; = {(y0, o, V) €H" ' 1y, €D (S;) and

y0+513’1+--- +S11yn=0}
szzf)] the closure of D; in H"!;

F,i={(%, S1#% .., S,2) : x e | D (Sa))
kE—1

Then, as in 1.3, it can be shown that F;, = D} and G, = F}. We
define the space E; (H; ) to be the quotient space H"*!/G;. If ],

denotes the set of all ordered #-tuples of elements of £ and J: = fj T
n=1

then we can order ] by defining J to be smaller than J; (written
J < Jj) if the elements of J occur in the same order in J; (but not
necessarily directly following each other). Then (], <) is a direc-
ted system. If J < J; then there is a natural injection 7; ; from
E;(H; &) into E; (H; £). Hence we have an inductive system

G E;(H; &)

>EJ!(H.; E), ]S]l}

of Hilbert spaces. We denote its inductive limit by E (H; £). Simi-
larly we define F;(H"; &) (J = (S1, ..., S,) €], H' the dual of H, £

the semigroup of operators of the form S’ = J, S* Jz' (S € €) on H')
to be ﬁ D (Sy) under the norm
k=1

y > 12+ IS Y112 + o+ 1S, Y%

The spaces F; (H'; £') form a projective system and their projective
limit F (H'; &) is a complete, semi-reflexive locally convex space
(not necessarily a Fréchet space). Then
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(i) each T €& has a unique extension 7 to a continuous linear
operator on E(H; £ and if S, T €&, then S:T = §T

(i) E(H; &) is naturally isomorphic to the dual of F(H'; &').

2. In the construction of the space E (H; T) it is often possible
to assume that the operator T is positive (and so self-adjoint).
For if T is a normal operator, 7" can be expressed in the form UA
where U is unitary, A is positive and A and U commute. It can
be easily checked (cf. 1.6) that E (H ; T) and E (H : A) are naturally
isomorphic.

3. A similar theory can be developed for closed, densely de-
fined operators in Banach spaces. However, the lack of a spectral
theory leads to some difficulties and to obtain reasonable results,
it is necessary to introduce a number of ad hoc assumptions (for
example, to ensure that the powers of T are closed, densely defined
operators).

4. The spaces E,(H; T) and F,(H; T) used to construct
E(H; T)and F(H; T) can be regarded as abstract Sobolew spaces.
Sobolew spaces with non-integral indexes can be obtained by ap-
plying interpolation methods to pairs (E,(H; T), E,. (H; 1)) or
by assuming that 7" is positive (cf. Remark 3) and constructing
spaces E,(H; T): =E,(H; T (« a positive number).

5. If (H,; T,) and (H,; T,) are objects of HNOP and H;® H,
denotes the Hilbert space tensor product of H; and H,, then the
closure of the operator T & T, on the algebraic tensor product
of H, and H, is a normal operator on H;® H,. We denote this opera-
tor also by T, T,. If one of the operators T'|, T, satisfies the con-
ditions of 2.3 (ii), then E (H, & H,; T & T,) is naturally isomorphic
to E(H;; Ty) ® E (Hy; T,), the projective tensor product of
E(H,; T,) and E (H,; T,). This can be used to deduce a number
of representations of spaces of distributions on higher-dimensional
euclidean space as tensor products of one-dimensional spaces. It also
suggests the definition of «mixed» distribution spaces by choosing T’
and T, to be distinct operators.
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6. Suppose that T and T, satisfy the conditions of 2.3 (i) and let
(4,) (resp. (u,)) be the non-zero eigenvalues of 7'y and T, resp. (we sup-
pose for convenience that 7; and 7T, are strictly positive and that
the eigenvalues are arranged so that 1, <4, ; for each # (resp.
Y, < m,.1)-eigenvalues are repeated according to multiplicity). Then
E(H; T,) and E (H,; T,) are isomorphic if and only if there exist

oo oo
positive integers £ and 1 so that {éik} and {‘u—l”} are boun-
n+1 n+1

Mn "
ded. This fact can be used to establish the isomorphicity (resp. non-

isomorphicity) of various spaces of distributions.
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