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Introduction.

The well known classical reflection principle for harmonic func-
tions, due to H. A. Schwarz, has been extended, in the mathematical
literature, in many directions.

The basic ingredients for such a reflection principle are:

(a) the partial differential equation, and (b) appropriate boundary
conditions. In the classical Schwarz reflection principle, the partial
differential equation is the Laplace equation

Au = 0,

02
where 4 =1§1 52

(b) might be called the Dirichlet boundary condition, since the so-
lution of the partial differential equation is required to vanish on
the boundary. This terminology is convenient for describing quickly
the results of the present paper, and their exact relation to the re-
sults of earlier papets.

It is to be kept in mind that the reflection considered here is
only across «flat» boundaries. Using the terminology just introduced,
the results of Diaz and Ludford [1], where references to the earlier
literature are to be found, can be described by saying that the par-
tial differential equation in (a) is the Helmholtz equation

is the Laplacian, and the boundary condition in

Au + 2 = 0,
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where A is a real constant, and 4 is the Laplacian, while the boun-
dary conditions in (b) are of three kinds:

(by) of Dirichlet type, that is, requiring that the function itself va-
nish on the boundary;

(b2) involving a linear combination, with constant coefficients, of
the normal derivative and the function;

b3) involving a linear combination, with constant coefficients, of
3 g
a directional derivative, in a direction which is not tangential
to the boundary, and the function.

The reflection principle (a), (b;) of [1], for the Helmholtz equa-
tion, is obtained from what might be called the «classicaly Schwarz
reflection principle (that is to say, when (a) is the Laplace equation
and (b) is the «Dirichlety boundary condition) by the method of
descent.

The reflection principle, in which (a) is the biharmonic partial
differential equation and (b) is the Dirichlet boundary condition for
the biharmonic equation (that is to say, vanishing of the function
and of its normal derivative), is given in the work of Poritsky [2],
Duffin [3], and Huber [4,5]. Their result was used by Diaz and Ram
[6], using the method of descent, to obtain a reflection principle in
which (a) is the iterated Helmholtz equation

4 —22)2u =0,

where 1 is a real constant, and 4 is the Laplacian, while (b) is the
Dirichlet boundary condition, that is to say, the function and also
its normal derivative vanish on the boundary. In the present paper,
the partial differential equation in (a) is again the iterated Helm-
holtz equation, as in [6], while the boundary conditions in (b) are
of two kinds:

(b4) the simultaneous vanishing, on the boundary, of a linear com-
bination, with constant coefficients, of the function and its
normal derivative; and, also, of the normal derivative of the
same linear combination;

(bs) the simultaneous vanishing, on the boundary, of a linear com-
bination, with constant coefficients, of the function and its di-
rectional derivative (in a fixed direction not tangential to the
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boundary); and, also, of the directional derivative, in the same
fixed direction, of the same linear combination.

It is to be noticed that the present results give, as special cases,
the reflection principles for the biharmonic equation, with boundary
conditions (b4) and (bs), without having to prove them first for the
biharmonic equation and then «descending» to the Helmholtz equa-
tion.

I.  Reflection principle for the itevated Helmholtz partial diffevential
equation with Dirichlet boundary conditions.

The following theorem, which is stated here without proof, and
is the basis of the considerations of section 2, was proved by the
authors in [6].

Theovem 1. ILet D be a domain (i.e., an open, non-empty, connected
set) in a real # dimensional x,%,, ..., x,_,, v Euclidean space, where
7 > 2 is a positive integer. Suppose that the domain D is symmetric
about the (# — 1) dimensional plane y = 0 (i. e., whenever the point
(%1,42, ..., %,_1, v) belongs to the domain D, then the point (xy, %5, ...,
.y %,_1, — ¥) also belongs to D; so that if d denotes the, supposed
non-empty, intersection of the plane y = 0 and the domain D, while
D+ and D~ designate, respectively, the two open symmetric parts
into which D — d is divided by the plane y = 0, one has D = D+ +
+d + D). Suppose that u(x;,%3, ..., %,_1, ) is a real valued func-
tion of class C* in D, and satisfies, there, the fourth order A par-
tial differential equation

(1.1) (4 — A2)2u(xy,%7,....%,_1,y) = 0,
here 4 o2, o 02 2 th laci A 1
where —5x—§+5x—§+'"+—6;\c,2,—_1+872 1s the Laplacian, 1 is real a
constant, and that, further
(1.2) lim ~ w(%y, Xg, ooy %1, y¥) = 0,
(*1, %2, s %1, y) > (X1, X2y oy %y, 0)
y>0
lim ~ % (%1, %2, ooy %,—1,¥) =0,
(13) (xl,xz, ...,x",__l,y) -> (xl,xz, ...,x,,_l,O) Y

¥y>0



256 J. B. Diaz and R. B. Ram

for (%1, %3, ..., %,_1,y) in D* and (¥1,%,, ..., %,_1, 0) in d. Then, the
real valued function U, defined in D by

U(xl:xZJ "')xn—lry)
Cu(%1, X2y s X1, ), for xy, %3, ..., %,_1,y) e D*,
0, for (xy, %3, ..., %,_1, 0) €4,

_ — u(%y, X3, ceey Xy 1, — Y)

ou
— 2y 5 — )

— y2(4 — 22) u(xy, %3, ..., %,_1, — %), for (%1, %2, .o, %, _1,y) e L,

where the point (¥, %5, ..., %,_1, — ¥) is the mirror image of the point
(%1, %3, ..., %,_1, y) with respect to the hyperplane y = 0, is an analy-
tic solution of the fourth order A partial differential equation (1.1)
throughout the domain D.

2. Reflection principle for the iterated Helmoltz partial differential
equation with «wnixed Neumann boundary conditionsy.

The purpose of this section is to prove the two reflection principles
stated as theorems 2 and 3.

Theovem 2. Let D and # be as in theorem 1, except that now the
domain D is further required to possess the geometric property that,
if (%1, %3, ..., %,_1, %) is any point of D, then D also contains the en-
tire closed straight line interval, on the perpendicular from (%,
%2, oo, %51, y) to d, which joins (%q, %5, ..., %,_1,y) to a point of 4;
and that the boundary conditions (1.2) and (1.3) on the function #
are now replaced, respectively, by

. oy
lim oy
(1, %2y or By 1Y) = (F1, F2s ors 1, 0) [au(xl,xz,...,xn_l,y)+
y>0
(2.1)

+ ku(xy, %2, ..., %,-1, )] = 0,
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lim = [%(xl X2, Xy 1 y) +
(xl,xz,...,x"_l,y) — (?vl!xZ)'-';E"_l,O) ayZ A2y e A —1,
y>0

(2.2)

on
+k @(%1, X2, -ees xn—l!y)] - 0!

for (xy, %2, ..., %,_1,%) in D* and (%, %3, ..., X,_1, 0) in &, where £ is
a real constant. Then, there is a uniquely determined real single-
valued function U (for its definition, see equation (2.9) and the
proof below), defined throughout D, which satisfies the fourth order
A partial differential equation (1.1) throughout D, and coincides
with » in D+,

Proof. Since u is a real valued function of class C® in D*, and satis-
fies, there, the fourth order A partial differential equation (1.1),
it follows (from the theory of the biharmonic equation, without
appeal to any general theorem on the analyticity of solutions of
elliptic partial differential equations) that the function # is analy-
tic in (xy, %3,..., %,_1,y) on D*. Hence, if one defines (compare the
boundary condition (2.1)) ‘

ou
v:@—l—ku

in Dt then

(4 — 2122 = (4 — 12)2(%+ku) =

= (4 — 22(2)+ 4 — 2200
— 5 (4 — 2] 4 HL(A — B2y
=0;

and, clearly, from the boundary conditions (2.1) and (2.2), v satisfies
the boundary conditions (1.2) and (1.3). It follows that the function
v satisfies the hypotheses required of the function # of theorem 1,
and, hence, the function V defined on D by
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V(xy, %3, ooy %1, V)

v(%1, %2, .., %1, V), for (x1,%5, ..., %,_1, %) in D™,
0, for (x4, %9, ..., %,_1, 0) in d,
— (%, X9, ey Xy 1, — V)
(23) = ov
-2 3y (*1, %2, ey By 1, =)
— 24 — ) v (x, %2y ooy Fy1, — V),
for (%, %3, ..., %,_1, ) in D—,
where (x, %5, ..., %,..1, — ¥) is the mirror image of (xy, %5, ..., %,_.1, %)

with respect to the hyperplane y = 0, is analytic in (xy, %3, ..., %,_1, V),
and satisfies the fourth order 1 partial differential equation

(4 — 222V =0
throughout D.

The geometric restriction placed upon D means simply that if
(%1, %3, ..., x,_1, %) is a point of D*, then the set of all points (i,
%2, -y %,_1, ), Where 0 < s <y, is a subset of D~; while, if (x1,%,, ...,
%,_1,%) is a point of D—, then the set of all points (xy, x5, ..., %,_1, ),
where v <s < 0, is a subset of D—. The desired extension U of #
will be obtained, from the function V, upon making use of this addi-
tional geometric property of D just mentioned, by integrating V
along straight line segments which are perpendicular to the plane
y=0.

A vpriori, the hypotheses of the theorem (and, in particular, the
boundary conditions (2.1) and (2.2)) do not seem to guarantee the
existence of the limits

(2.4) lim WX, Koy coy Xy 1, V),
(xl,xz,...,x,,_l,y) - (xl,xz, ...,xn_l,O) )
y>0
and
. ou
(2.5) lim 3y (*1%2, - %1, Y),

(*1.%2 o Xy1,y) = (X1,%2, %y —1,0)
y>0
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where (%, %9, ..., %,_1,V) 1s in D* and (%, %5, ..., ¥,_1, 0) is in 4.
It will be shown, however, that these limits do indeed exist, and
that the function U, which will at first be defined only locally in
D, is actually single valued throughout D.

For each point (¥q, %3,...,%,_1,0) in d, choose a number ~ = A(x,
X2, -y X,—1) > 0 so small, that all points (x,%,,...,%,_1,y) satisfying
both |y| < k and lx; — x| < h, for e =1,2,...,n — 1, are points of
D. Such a choice of % is always possible, since (%, %y, ..., X,_1, 0) is
an interior point of D. Now, let T, = T(xy, %2, ..., %,,_1) denote the
open cylindrical tube consisting of all (xy, %5, ..., %,_1, ) in D such
that the perpendicular projection on d, i.e., the point (x1,%,,...,%,_1,0),
satisfies |x; — x;| < A, for ¢=1,2,...,n — 1. Each 7} is an open
subset of D. A function U, will be defined on each T}(x1, X2, ..., %, _1)
by means of the formula (compare the boundary condition (2.1)):

(26) U};(x]) X2, +eny xn—-l!_y)

¥y
= e [J MV (x1, %g, ..o, X,_1, B) AE+ eMu(xy, %2, ..., %, _1, h)].
t=h

Since V=%+ku in D+, for (x;,%, ... %,_1,%) in T} and

v >0,

Uh(xlx X2y vy Xy 15 _’)’)

y
=M [J e”’{%i: (%1, oy wovy X1, 8) + Bu(xy, %o, ..., %, 1, 1)} dE

t=h

+ e*u(xy, %2, ..., X1, B)],

v 0
= e [J % {e*u(xq, %3, ..., X,_1, 1)} dt+ ePu(xy, %, ..., %,_1, h)],

t=h

= w(¥1, X3, oo, Xy 1, Y)-

Hence, without any computation, from (1.1), it follows that (4 — 42)2
Uiy, %9, ..., %,_1,y¥) = 0 for (xy, %5, ...,%, 1,9 in T, and y > 0.
But, from (2.6), since the integrand is analytic in (xq, %, ..., %,_1, )
and the second term inside the square bracket is certainly analytic
for (%1, %3, ..., %,_1,y) on all of T}, it follows that U, is analytic in
(%1, %, ..., %,_1,y) throughout T, and this means that the function
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(4 — A2)2U, is also analytic throughout T,. Since it has just been
shown that this function (4 — 22)2U, is zero for (xy, %3, ..., %,_1, V)
in T, and y > 0, it follows, from its analyticity throughout T,
again without any computation, that one must have

(A — 322U, = 0

throughout T,.

So far, the desired analytic extension of # has, apparently, been
obtained only locally, on each tube T,. However, it is readily seen
that formula (2.6), upon varying (¥, X, ..., ¥,_1, 0) in 4, may be
used to define a single-valued function U throughout D, this function
U being the sought extensiéon of # to all of D. The function U is
single-valued in D, because, whenever the tubes T,(xy, ¥, ..., %,—1)
and T3(x'(, %5, ..., %,_1) have a non-empty intersection, then their
corresponding analytic functions U, and U’, must coincide with #
for all points of T, and 77, lying in D+, and hence U, and U’, must
be identical throughout the entire common part of 7}, and 77,. This
completes the proof of theorem 2.

Since U and 79(}] are continuous in D, the limits appearing in (2.4),

(2.5) exist, and are given by

lim u(x]:x2: "'!xn—l’y)
(xly X2, "':xn—l:y) - (xl:%Z: "”xn—llo)
y>0
== . lim o _ U(xl, X2y vees xn—lxy)
(®1, %2, s % 1,) > (%1, %2, 0, %21, 0)
y>0

= U(#1, %2 +0r 1, 0),

and
. on
lim _ 3y (1 %2, e 1, )
(xl;xZ’ "'lxu»—lly) - (xlle’ "':xn—l:o) -
y>0
. oU
= lim B B N (x1,%2, ..o, %,_1,Y)
(lexZJ "':xn—l)y) - (9_61,962,..., xn—l-'0> -
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ou _ _ _

= @ (xl, X2y eons X1, 0),
for (xy, %9, ..., %,_1, %) in D* and (x{, %, ..., x,_1, 0) in 4, and will be
denoted, for simplicity, by #(x,, x5, ..., %,_1, 0) and
ou .  _ — .

a (%1, %2, .-, X,_1, 0) respectively.

) Thus, a posteriori, and, with this agreement as to the meanings
of u(x,%,,...,%,_1,0) and %(R;,Rz, ws%y-1,0), which was not
initially included in the hypotheses, one may put # = 0 in the defi-
nition (2.6), to obtain

U(xl, xz, ceey xn—liy)
(2.7)
y
— e._kyI:J gki V(x], ‘xZ, ceny x"_l, t) dt + 1’¢(x1, xz, ceey xn—]x 0)].
t=0

For y < 0, the definite integral in (2.7) may be rewritten, using
the definition (2.3) of V:

4 ov
el —v(xy, %9, oy %y, — 1) — 2t79? (%1, X2, oy X1, — 8) —
0 _

Ji=
— t2(/j —_ 7;2) v(xl, X2, s Xy 1, — t)] dat
(2.8)
- ov
= e~ ®[v(xy, %3, ..y ¥y, S) — 23—55 (%1, %2, vy %1, 8) +

J s=0

+ s2(4 — 22) v(xy, %3, ..., ¥,_1, S)] ds.

. . 0
Integrating by parts the second integrand, — 2se- k"a—:, on the
right hand side of (2.8), this equation becomes

4

= 2vek"v(xq, X2, ., X1, — V) F 3J e~* v(xq, %y, ..., X,_1, 5) ds

s=0

-y
— 2k { se=® v(xy, %3, ..., %,_1, 5) ds

/=0
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=y

—{—J ste B (A — A2) v(xy, %o, ..., X,_1, S) ds
s=0
ou
= 2yet oy (%1, X2, ooy X1, — 3) + Ru(xq, %o, o, %1, — V)]
Y | ou
+3 ek as (xl)x"!"':xn.—l’s)+ku(x11x2!‘ o Xy—1, )., ds
Y [ Ou
— 2k se=k s (%1, %2, oo, %1, S) + Bu(xy, %3, ..., Xy_1, S)]ds

—y '
+ ( s2e=M(4 — 22) [% (X1, %2, o, X1, S) + ka2, %5, ..., %, _1, 5)] ds.

S s=0

Integrating by parts the first and the second integrals, one has

— (34 4ky) 1 (5, %, s Tyt — ) +2y%‘<x1,xz,...exn_1, )]

Sy

— 3u(xy, %, ..., %,_1, 0) 4+ ‘ e~k (8khu — 4k2 su
Jo

; .
—|—82(A - }'2) [au (xlle’ e X1, S )+ku(x1,x2, ey Xy 1, S )]} ds.

Substituting this back in (2.7), one has, for y < 0,

U1, %2, ooy %1, Y)

ou
= (3+4ky> u(xl) X2, cos Xy 15 _y) + zya_,v(xl:xZ’ v Xy 1 __',V)

— 26_ky%(x1’ X2y ey Xy 1y >+ e _kVJ e"ks {Sk% — 4k2 su
0

ou
+ s2(4 — 22) [as (%1, %2, .o, %1, ) + Bu(xy, %9, ..., %, _1, S) ]} ds.

Finally, the sought extension U of # to all of D is given by

Ulxy, %2, oo, %41, Y)
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WXL, X2, vy X1, V) for (xq, %5, ..., %,_1, ) in D™,
lim o ~ w(X1,%2, .., %,_1,%),
(xly X2, ey xn—l;y) - (xlxeJ"')xn—l:O)
y>0

for (xy, %3, ..., %,_1,v) in D+

and (xq, %, ..., %,_1, 0) in 4,

ou
(B+4ky)u(xy, %9, ..., %,_1,—V) +2y@ (%1, %2y oo, X1, — )

-y

—2e7 M (%, %3, ..., %,_1, 0) +e—’*yj e " {8ku — 4k2 su
0

+ s2(4 — 22) l%g (1, %2, .., %, _1,S) + ku(xy,%2,...,%,_1,5) ]} ds,

for (xy, %5, ..., %,_1,y) in D—.

Theorem 3. Let D and u be as in theorem 1, except that now the do-
main D is further required to possess the geometric property that,
if (%y, %3, ..., x,_1, y) is any point of D, then D also contains the en-
tire closed straight line interval, in a fixed direction specified by the
unit vector s = (sy, 53, ..., 5,), with s, # 0, from (x, x5, ..., x,_1, ¥)
to d, which joins (¥, %3, ..., %,_1,¥) to a point (x; —SZ S1, %9 —

n

_2 $2, vy Xy — SZ S.—1, 0) of d; and that the boundary conditions

1.2) and (1.3) on the function % are now replaced, respectively, by
P
lim [%ﬁt (1, %2, X1, V)
(xl,xz,..., x,,_l,y) — (561,562,...,9—6”__1,0) s
y>0
(3.1)
+ ku(xq, %2, ..., %,_1,¥)] = O,
2
lim [%—1/;(7‘1»5‘%: s X1, )
(xl:xZ’“':xn—-]ry) - (%11%2:“”7—6»1,—170) s
y>0
(3.2)

ou
kg B %2 %1, 9)] = 0,
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for (%, %3, ..., %,_1,v) in D* and (xy, %, ..., ¥,_1, 0) in d, where % is
a real constant and 6% denotes differentiation in the fixed direction
of the unit vector s, (note that this direction is not tangential to the
plane ¥ = 0). Then, there is a uniquely determined real single-valued
function Ui(for its definition, see equation (3.3) and the proof below),
defined throughout D, which satisfies fourth order A partial differen-
tial equation (1.1) throughout D, and coincides with # in D+.

Proof. The proof of this theorem is similar to that of theorem 2,
with the following modifications: the function v of theorem 2 is re-
placed by

ou
vy = o~ +ku
0s

defined again in D+, the function V is replaced by V|, the analytic
continuation of v; to all of D, and, finally, the function U is replaced
by the single-valued function U,, defined in D and obtained from
V. by line integration in the s direction. The final formula for U,
(cf. the final formula (2.7) for U of theorem 2) is

Us(le X2y ooy Xy 15 y)

y

—_— k_J_.} Sn
I
(3.3) =e

0 eV (%1 18y, Xp 4150, ..., Xy 1+ 15,1, 1S,)dE

Yy
tules =L s 0 =2 5y — Ls, Ly, 0),

” n n

where 7=t — 2. In this case, there is no formula analogous to

(2.8), involving # and its derivatives alone.

ExampLE. The following simple example shows that reflection need
not be possible, at least when # = 3, when the differentiation in
the boundary conditions (3.1), (3.2) are actually tangential to the
plane vy = 0. For definiteness, take # = 3, and use the notation
(%, 9, 2) for (x1, x5, v). Let f(x, y) be a real valued function, defined

for x > 0, — © < y < oo, which is of class C(*) in this closed half
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plane, and satisfies the biharmonic partial differential equation in
the open half plane ¥ > 0, — 00 << ¥ << co. Further, suppose that
the function f(0,y) and g—{; (0, y) are not analytic functions of y.
(Such a function f can be easily obtained, by means of Poisson’s
type integral formula for the solution of the (Dirichlet) boundary value
problem for the biharmonic equation f.. + 2f.,, +f,, +0 for
the half plane x > 0; see, for example, pp. 28-29 in [7]). Now define
w(x,y,2) = flx,y) for x>0, — cc<¥,z2< co. One has, then,

that ouw . _ o u h
a a(x, v, 2) =0, Ez_z(x’ v,2) = 0 there, and, consequently,
ux.tx,r + uyyyy + Uy + 2(”4‘,\'yy + uyyzz + z"zzx,v) = O, x> O,
lim ((;—M (x,v,2) =0,
(x5,2 - (0,92 %
(3.4) x>0
2
lim (—9—1—2‘ (%, v,2)=0.
wy.2) - (0.5.%%
x>0

In this exemple, D+ is the half space x > 0, the plane x = 0 corres-
ponds to the plane y = 0 of theorem 3, and the boundary conditions

in (3.4) involve the tangential derivative aﬁz . But, since the functions

f(0,y) and %ﬁ (0, y) are not analytic in y, the function wu(x, v, 2)

cannot be continued analytically across the plane x = 0.

Concluding Remarks.

In theorem 2, a reflection principle was obtained for solutions
of the iterated Helmholtz equation obeying mixed Neumann boundary
conditions (2.1), (2.2). Using integration by parts, this reflection
principle was finally written in the form (2.9). Since the expression
in formula (2.9), which gives the value of the function U for v < 0,
turns out to be a bit complicated, it is desirable to have at least a
partial check on this formula. This partial verification was obtained
by using solutions, of the twice iterated Helmholtz equation, which
depend only on y. Notice that the function de=% + Bye=% 4 Ce? 4
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+ Dye* is a solution of the twice iterated Helmholtz equation, for
arbitrary real values of the constants A, B, C, D. Further, the function

s 1 k2 ; 1 k2 . .
e —|—§ (A — 2k — 7)}/6 Y e — Q()‘ + 2k — 7)ye=‘ satisfies, not

only the iterated Helmholtz equation, but also the boundary
conditions (2.1) and (2.2) of theorem 2. It has been verified, by direct
computation, that the value of this particular function, for y < 0,
actually coincides with its value for y << 0, as «predicted» by formula
(2.9), thus giving the desired partial check on formula (2.9).
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