## THE HARDY-LITTLEWOOD MAXIMAL FUNCTION AND DERIVATION OF INTEGRALS

BALDOMERO RUBIO

(University of Madrid)

Abstract. The Hardy-Littlewood maximal function is used to obtain a characterization of the derivation, with respect to a differentiation basis in  $\mathbb{R}^n$ , for the integrals of locally integrable functions. New proofs of density properties relative to the bases of intervals and rectangles are given.

Introduction. We present in § 1 the necessary definitions. § 2 contains a version of theorems of Busemann-Feller using the maximal function. The theorem indicated above is in § 3, and § 4 is dedicated to density properties of special bases.

§ 1. A differentiation basis in  $R^n$  is a collection  $\Re$  of bounded open sets in  $R^n$  such that for every  $x \in R^n$  there is at least a sequence  $\{R_k\} \subset \Re$  which verifies  $R_k \to x$  (i. e.  $x \in R_k$  for every k and, given a neighborhood U of x,  $R_k \subset U$  for k greater than some  $k_0$ ).

Let  $f: \mathbb{R}^n \to \mathbb{R}$  be a locally (Lebesgue) integrable function. The upper derivative of f, with respect to  $\Re$ , at x is defined by

$$\overline{D}(|f, x) = \sup \lim \sup \frac{1}{|R_k|} \int_{R_k} f(y) dy$$

being the sup taken over all the sequences  $\{R_k\} \subset \Re$  such that  $R_k \to x$ . The lower derivative  $\underline{D}(f, x)$  is defined setting inf  $\lim$  inf. We say that  $\Re$  differentiates f if  $\overline{D}(f, x) = \underline{D}(f, x) = f(x)$  a. e. in  $R^n$ . In this case we write  $\overline{D} = D = D$ .

The Hardy-Littlewood maximal function associated with  $\Re$  is defined by

$$Mf(x) = \sup_{x \in R \in \Re} \frac{1}{|R|} \int_{R} |f(y)| dy.$$

Since  $\{x: Mf(x) > \lambda\}$  is an open set, Mf is measurable.

There are connections between properties of M and derivation properties of  $\Re$ . Here we will consider properties of the type

$$|\{x: Mf_k(x) > \lambda\}| \rightarrow 0$$

where  $\{f_k\}$  is some special sequence of locally integrable functions.

- $\S$  2. A density basis is a differentiation basis which differentiates f when f is the characteristic function of a measurable set. The Busemann-Feller theorems [1] relative to density bases are presented now in connection with the maximal function.
- 2.1. THEOREM. A differentiation basis  $\Re$  in  $R^n$  is a density basis if and only if for every  $\lambda$  in the interval (0,1), every contractive sequence  $\{E_k\}$  of bounded measurable sets such that  $|E_k| \to 0$ , and every non increasing sequence  $\{\alpha_k\}$  of positive numbers such that  $\alpha_k \to 0$  one has

$$\lim |\{x: M_k \chi_{E_k}(x) > \lambda\}| = 0$$

where  $M_k$  is the maximal function associated with the basis

$$\mathfrak{R}_k = \{R \in \mathfrak{R} : \text{ diameter } R < \alpha_k\}.$$

The density property for a differentiation basis which is homothecy invariant (i. e. if  $R \in \Re$  and R' is homothetic to R, then  $R' \in \Re$ ) admits the following characterization.

2.2. THEOREM. A homothecy invariant basis in  $R^n$  is a density basis if and only if for every  $\lambda$  in the interval (0,1) there exists a number  $c(\lambda)$  such that

$$|\{x: M \chi_E(x) > \lambda\}| \le c(\lambda) |E|$$

for every bounded measurable set E.

- § 3. We present now a new theorem which is suggested by the Busemann-Feller theorems.
- 3.1. Theorem. The two following conditions for a basis  $\Re$  in  $\mathbb{R}^n$  are equivalent:
  - (a) R differentiates if for every locally integrable function f.

(b) For every  $\lambda > 0$ , every non increasing sequence  $\{\alpha_k\}$  of positive numbers such that  $\alpha_k \to 0$ , and every non increasing sequence  $\{f_k\}$  of non negative functions in  $L^1(R^n)$  with compact support such that  $||f_k||_1 \to 0$ , one has

$$\lim |\{x: M_k f_k(x) > \lambda\}| = 0$$

being  $M_k$  defined as before.

*Proof.* Suppose (b) is not true. There exist  $\lambda$ ,  $\{\alpha_k\}$ , and  $\{f_k\}$  as stated above, and there exists  $\eta > 0$  such that for k = 1, 2, ...  $|\{x \colon M_k f_k(x) > \lambda\}| > \eta$ . We can suppose, considering a subsequence of  $\{f_k\}$  if necessary, that  $||f_k||_1 < 2^{-k}$ .

Because  $f_k$  has compact support and diameter  $R < \alpha_k$  for every  $R \in \Re_k$ ,  $\{x : M_k f_k(x) > \lambda\}$  is a bounded set. The sequence

$$\{x: M_k f_k(x) > \lambda\}$$

is contractive and so its limit E verifies  $|E| > \eta$ . We denote also  $\{f_k\}$  a subsequence of  $\{f_k\}$  which converges to 0 a. e. in E. By Egorov theorem, there exists a measurable set  $F \subset E$  such that  $|F| > \eta$  and  $\{f_k\}$  converges uniformly in F, and so for every k there exists j(k) which verifies

$$f_{j(k)}(x) \leq \frac{\lambda}{2} 2^{-k}$$

for every  $x \in F$ . Now we consider f defined by

$$f = \sum_{k=1}^{\infty} f_{j(k)}.$$

It is clear that f is in  $L^1(R^n)$  and  $f(x) \leq \frac{\lambda}{2}$  for  $x \in F$ . Given  $x \in F$ , there exists a sequence  $\{R_k\}$  such that  $R_k \to x$  and

$$\int_{R_k} f_{j(k)}(y) dy > \lambda |R_k|.$$

Hence, we have also

$$\int_{R_k} f(y) \, dy \ge \int_{R_k} f_{j(k)}(y) \, dy > \lambda |R_k|$$

and so  $\overline{D}(f, x) \ge \lambda$  in F. This shows that  $\Re$  no differentiates f.

Conversely, now we suppose (b) is true. It is sufficient to prove (a) for non negative functions in  $L^1(R^n)$  with compact support. Let f be such a function. There is a non decreasing sequence  $\{g_k\}$  of non negative simple functions such that  $||f-g_k||_1 \to 0$  and  $f-g_k$  is non negative for every k. Now we have for every non increasing sequence  $\{\alpha_k\}$  of positive numbers such that  $\alpha_k \to 0$ ,

$$\lim |\{x: M_k (f - g_k)(x) > \lambda\}| = 0$$

where  $\lambda$  is an arbitrary positive number and  $M_k$  is the maximal function associated with the basis  $\Re_k = \{R \in \Re : \text{ diameter } R < \alpha_k\}$ . Only remains to prove that  $\{x : |\bar{D}(f, x) - f(x)| > 0\}$  and  $\{x : |\bar{D}(f, x) - f(x)| > 0\}$  have measure zero.

Condition (b) implies that  $\Re$  is a density basis, by theorem 2.1. This means that  $\Re$  differentiates  $g_k$  for every k, and so

$$\bar{D}(f, x) = \bar{D}(f(f - g_k), x) + g_k(x)$$

a. e. in  $R^n$ . Now we have, for every k and  $\lambda > 0$ ,

$$|\{x: |\overline{D}(f, x) - f(x)| > 2\lambda\}|_{e} \le |\{x: M_{k}(f - g_{k})(x) > \lambda\}| + |\{x: (f - g_{k})(x) > \lambda\}|$$

and this converges to zero as  $k \to \infty$ . The remainder of the proof is easy.

- $\S$  4. Now we consider the density property for two important bases in  $R^2$ . First we consider the basis of intervals. The following theorem admits an easy generalization.
- 4.1. Theorem. The basis of bounded intervals in  $R^2$  has the density property.

*Proof.* It is sufficient to prove that for  $\lambda$  in the interval (0,1) there exists a number  $c(\lambda)$  such that

$$|\{(x, y) \in \mathbb{R}^2 : M \chi_G(x, y) > \lambda\}| \le c(\lambda) |G|$$

for every bounded open set G in  $\mathbb{R}^2$ .

We denote  $\Re'$  the basis of intervals in R, and M' the maximal function associated. It is known that  $\Re'$  differentiates  $\int f$  for every  $f \in L^1(R)$  and so M' is of weak type (1,1) (see [2] or [5]). This leads to the inequality

$$|\{t \in R : M' \chi_S(t) > \lambda\}| \leq \frac{c}{\lambda} |S|$$

for every  $\lambda > 0$  and S measurable in R.

Given  $P \subset \mathbb{R}^2$  and  $(x, y) \in \mathbb{R}^2$ , we define the sections

$$P(x) = \{t : (x, t) \in P\}$$
  $P(y) = \{t : (t, y) \in P\}$ 

and, for every bounded open set G we consider the following open sets

$$A = \{(x, y) : M' \chi_{G(x)}(y) > \lambda\}$$

$$B = \{(x, y): M' \chi_{A(y)}(x) > \lambda\}.$$

Using the Fubini theorem and the inequalities above, we obtain

$$|A| \le \frac{c}{\lambda} |G| \qquad |B| \le \frac{c}{\lambda} |A|$$

and so

$$|B| \leq \frac{c^2}{\lambda^2} |G|.$$

Let  $I \times J$  be an interval no contained in B, and choose (a, b) in  $I \times J$  such that  $(a, b) \notin B$ . Being  $S = \{x \in I : (x, b) \in A\}$ , it is clear that  $|S| \le \lambda |I|$ . For every  $x \in I - S$  the set  $T(x) = \{y \in J : (x, y) \in G\}$  verifies  $|T(x)| \le \lambda |J|$ . It is sufficient to use again the Fubini theorem to obtain  $|(I \times J) \cap G| \le 2\lambda |I \times J|$ . This means that

$$\{(x, y) \in R^2 : M \chi_G(x, y) > 2 \lambda\} \subset B$$

being M the maximal operator associated with the basis of intervals in  $\mathbb{R}^2$ . Finally, we have

$$|\{(x, y) \in R^2 : M \chi_G(x, y) > 2 \lambda\}| \le \frac{c^2}{\lambda^2} |G|.$$

This completes the proof.

The basis of rectangles in  $R^2$  does not verify the density property. One proof of this is based on the famous set of Nikodym [3]. Another one can be found in Busemann and Feller [1]. Here we present a new proof based on the construction of Rademacher [4] of the Perron tree. This construction permits to observe that, given  $\varepsilon > 0$ , there exists a Perron tree P of a triangle T such that  $|P| < \varepsilon |T|$  and the set

$$\left\{x\in R^2\colon M\,\mathcal{X}_P\left(x\right)>\frac{1}{2}\right\}$$

contains a triangle with the same size as T, being M the corresponding maximal operator. Then it is sufficient to apply theorem 2.2. We begin with a simple lemma.

4.2. Lemma. Let M be the Hardy-Littlewood maximal function associated with the basis of rectangles in  $R^2$ . Given an arbitrary open triangle T, the set  $\left\{x: M \chi_T(x) > \frac{1}{2}\right\}$  contains the image of T by the homothecy of ratio 2 with a vertex of T as center.



*Proof.* Let T be the triangle ABC (see fig. 1). It is sufficient to observe that for every interior point x of the parallelogram AEGF there exists a rectangle R such that  $x \in R$  and  $|R \cap T| > \frac{1}{2}|R|$ , and that all the parallelograms AEGF, with E and F in the segment BC, cover AB'C'.

The idea of the Perron tree is the following: We cut a triangle ABC in partial triangles with A as common vertex and their bases in the segment BC. Shifting them on the line BC it is possible to obtain a figure P (Perron tree) with small area.

4.3. Theorem. Let T be a triangle. Given  $\varepsilon > 0$ , there exists a Perron tree P obtained from T such that  $|P| < \varepsilon |T|$  and

$$\left\{x\in R^{2}\colon M\,\mathcal{X}_{P}\left(x\right)>\frac{1}{2}\right\}$$

contains a triangle with the same size as T, being M the maximal function for rectangles.



Fig. 2

*Proof.* The construction of Rademacher [4] shows how it is possible to obtain a Perron tree from a triangle T = ABC by dividing the base BC into  $2^n$  equal parts and considering the partial triangles  $T_k$  so obtained. After they have been shifted, the union of their bases is the base B'C' (see fig. 2) of a triangle A'B'C' similar to ABC. We denote  $P'_k$  the last position of  $P_k$ , and  $P''_k$  the image of  $P'_k$  by the homothetic transformation of ratio 2 with its upper vertex as center. The union of the  $P'_k$  is a Perron tree P, and the union of the  $P'_k$  covers the triangle A'B''C'' and so, by the lemma above, the

set  $\left\{x: M \chi_P(x) > \frac{1}{2}\right\}$  contains a triangle with the same size as T. For n large this construction can be made so that P verifies  $|P| < \varepsilon |T|$ .

Now can be used theorem 2.2. and easily is obtained that the basis of rectangles in  $R^2$  is not a density basis.

Acknowledgment. These results are contained in my doctoral thesis at the University of Madrid, being M. de Guzmán my thesis adviser, to whom I wish to thank for his help.

## REFERENCES

- [1] M. BUSEMANN und W. FEILER, Zur Differentiation der Lebesgueschen Integrale, Fund. Math. 22 (1934) 226-256.
- [2] M. DE GUZMAN and G. V. WELLAND, On the Differentiation of Integrals, Revista de la Unión Matemática Argentina, Vol. 25 (1971) 253-276.
- [3] O. NIKODYM, Sur la mesure des ensembles plans dont tous les points sont rectilineairement accesibles, Fund. Math. 10 (1927) 116-168.
- [4] H. RADEMACHER, A. new construction of the Perron tree, In the book «Studies in Mathematical Analysis and related topics», edited by Gilbarg, Solomon and others, Stanfor (1962).
- [5] B. Rubio, The property of weak type (p, p) for the Hardy-Littlewood maximal operator and derivation of integrals. Studios Math. Vol. 57.3.