THE HARDY-LITTLEWOOD MAXIMAIL FUNCTION
AND DERIVATION OF INTEGRALS

BArLpOMERO RuBIO
(University of Madrid)

Abstract. The Hardy-Littlewood maximal function is used to
obtain a characterization of the derivation, with respect to a diffe-
rentiation basis in R”, for the integrals of locally integrable functions.
New proofs of density properties relative to the bases of intervals and
rectangles are given.

Introduction. We present in § 1 the necessary definitions. § 2
contains a version of theorems of Busemann-Feller using the maximal
function. The theorem indicated above isin § 3, and § 4 is dedicated
to density properties of special bases.

§ 1. A differentiation basis in R" is a collection % of boun-
ded open sets in R* such that for every x € R* there is at least a
sequence {R;} ¢ % which verifies R, — x (i.e. ¥ € R,, for every & and,
given a neighborhood U of %, R, ¢ U for k greater than some k).

Let f: R* — R be a locally (Lebesgue) integrable function. The

upper derivative of | f, with respect to ®, at x is defined by

— . ) 1
D (_]f, x) = sup lim sup TRI] JR f(») ay
k

being the sup taken over all the sequences {R,} € ® such that R, — x.
The lower derivative D ([, x) is defined setting inf lim inf. We say
that ® differentiates if if D (if, x) = D([f, x) = f(¥) a. e. in R".
In this case we write D = D = D.

The Hardy-Littlewood maximal function associated with % is
defined by

MfG) = swp o J 17014y,

2€ReR

Since {x: Mf(x) > A is an open set, Mf is measurable.
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There are connections between properties of M and derivation
properties of ®. Here we will consider properties of the type

|62 Mf, (%) > 2] -0
where {f,} is some special sequence of locally integrable functions.

§ 2. A density basis is a differentiation basis which differentia-

tes [f when f is the characteristic function of a measurable set.
The Busemann-Feller theorems [1] relative to density bases are
presented now in connection with the maximal function.

2.1. THEOREM. A differentiation basis R in R" is a density basis
if and only if for every A in the interval (0,1), every comtractive sequence
{E;} of bounded measurable sets such that |E,| — 0, and every mon
increasing sequence {oy) of positive numbers such that o, — 0 ome has

im [{x: M, e, (x) > 4| =0
where M, is the maximal function associated with the basis
R, = {ReR: diameter R < o}.

The density property for a differentiation basis which is homo-
thecy invariant (i. e. if R € ® and R’ is homothetic to R, then R’ € R)
admits the following characterization.

2.2. THEOREM. A homothecy invariant basis in R" is a density
basis if and only if for every A in the interval (0,1) there exists a number
¢ (A) such that

[ Myp () > B <c(4)|E|
for every bounded measurable set E.

§ 3. We present now a new theorem which is suggested by
the Busemann-Feller theorems.

3.1. THEOREM. The two following conditions for a basis ® in R"
are equivalent :

(a) R differentiates [f for every locally integrable function f.
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(b) IFor every 2> 0, every non increasing sequence {o} of posi-
tive numbers such that o, — 0, and every nom increasing sequence {f}

of non megative functions inw L1 (R") with compact support such that
lfellL = 0, one has

lim |[{x: M, f,(») > A4|=0
being M, defined as before.

Proof. Suppose (b) is not true. There exist i, {o}, and {f} as
stated above, and there exists % > 0 such that for 2 =1, 2, ...
[{x: M,f, (%) > A}| > n. We can suppose, considering a subsequence
of {fy} if necessary, that ||f,||; << 2%

Because f), has compact support and diameter R << «, for every
Re®y, {x: M, f.(x) > 2} is a bounded set. The sequence

x: Myt (x) > A

is contractive and so its limit E verifies |E| > . We denote also {f;}
a subsequence of {f;} which converges to 0 a.e. in E. By Egorov theo-
rem, there exists a measurable set IF ¢ E such that | I'| > # and {f,}
converges uniformly in F, and so for every % there exists j (k)
which verifies

fim () < 527%

NSRS

for every x € I'. Now we consider f defined by
f =I:=El f] =
It is clear that fis in L1 (R"*) and f(x) < % for x e F. Given x ¢ F,

there exists a sequence {R,} such that R, —x and

Jl, fiw (¥) dy > 2[Ryl
‘K

Hence, we have also

0y = | S 0)dy> 2R

Ry

N

and so D ([f, x) > A in F. This shows that % no differentiates 7.

15 — Collectanea Mathematica
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Conversely, now we suppose (b) is true. It is sufficient to prove (a)
for non negative functions in L1 (R") with compact support. Let f be
such a function. There is a non decreasing sequence {g;} of non ne-
gative simple functions such that ||f — g;||; - 0 and f — g, is non
negative for every k. Now we have for every non increasing se-
quence {a;} of positive numbers such that o, — 0,

im [{x: M, (f—g) (®) > A =0

where A is an arbitrary positive number and M, is the maximal func-
tion associated with the basis R, = {Re®: diameter R < oy}.

Only remains to prove that {x: |D ([f, %) — f(*)| > 0} and

{x: |D([f, %) —f(x)] > 0} have measure zero.
Condition (b) implies that ® is a density basis, by theorem 2.1.

This means that R differentiates _I'gk for every k&, and so

D (if, ;‘c’) =D (f (f — &) ‘7) + g (%)

a.e. in R* Now we have, for every & and 2> 0,

{x: [D(f2) —f@)]> 22}, <
[0 My (f —g) () > 23| + 1@ (f — &) (0) > 3

and this converges to zero as & — oco. The remainder of the proof is
easy.

§ 4. Now we consider the density property for two important
bases in R2. First we consider the basis of intervals. The following
theorem admits an easy generalization.

4.1. TueoreM. The basis of bounded intervals tnw R2 has the
density property.

Proof. Tt is sufficient to prove that for 4 in the interval (0,1)
there exists a number ¢ (4) such that

A, y) e R2: M%s (%, y) > 13| <c(2) |G

for every bounded open set G in R2.
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We denote %' the basis of intervals in R, and M’ the maximal
function associated. It is known that ®’ differentiates [ f for every

feL1(R) and so M’ is of weak type (1,1) (see [2] or [5]). This leads
to the inequality '
[{teR: M'%s(t) > A | g% N

for every 4> 0 and S measurable in R.
Given P c R2 and (x, y) € R2, we define the sections

Px)={: (x,t)e P} P(y)=1{: (¢ y) e Py
and, for every bounded open set G we consider the following open sets

B={xy): MX4ykx>24.

Using the Fubini theorem and the inequalities above, we obtain

[41<3161 1B <314]

ESYIS

and so

Bl <% 6.

Let I X J be an interval no contained in B, and choose (a, b) in
I x J such that (a,b) ¢ B. Being S ={xel: (x, b) €4}, it is clear
that |S| < A|I|. For every xel —Stheset T (x) ={ye]: (x,9) G}
verifies | T (x) | < A|J|. It is sufficient to use again the Fubini theo-
rem to obtain [(I X J) n G| < 24|l X J|. This means that

{(x, vV eR2: MX;(x,y)>2Mc B

being M the maximal operator associated with the basis of intervals
in R2. Finally, we have

2

H{x, v)eR2: MXg(x,y) >24] < e

This completes the proof.
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The basis of rectangles in R2 does not verify the density proper-
ty. One proof of this is based on the famous set of Nikodym [3].
Another one can be found in Busemann and Feller [1]. Here we
present a new proof based on the construction of Rademacher [4] of
the Perron tree. This construction permits to observe that, given
&> 0, there exists a Perron tree P of a triangle 7 such that
|P| < e|T]| and the set

{xeR2: M, (%) >%}

contains a triangle with the same size as T, being M the correspon-
ding maximal operator. Then it is sufficient to apply theorem 2.2.
We begin with a simple lemma.

4.2. LEmMA. Let M be the Hardy-Littlewood maximal function
associated with the basis of vectangles in R2. Given an arbitrary open

triangle T, the set {x: M2y (x) > % contains the vmage of T by the

homothecy of ratio 2 with a vertex of T as center.

B L4 G C 4
Tig. 1

Proof. Let T be the triangle 4 BC (see fig. 1). It is sufficient to
observe that for every interior point x of the parallelogram A EGF

there exists a rectangle R such that xe R and |Rn 71| > —é | R,

and that all the parallelograms A EGF, with E and F in the seg-
ment BC, cover AB'C’.

The idea of the Perron tree is the following: We cut a triangle
A4 BC in partial triangles with 4 as common vertex and their bases
in the segment BC. Shifting them on the line BC it is possible to
obtain a figure P (Perron tree) with small area.
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4.3. THEOREM. Let T be a triangle. Given & > 0, there exists a
Perron tree P obtained from T such that |P| < e|T| and

vere: M1, > %}

contains a triangle with the same size as T, being M the maximal
Sfunction for rectangles.
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Proof. The construction of Rademacher [4] shows how it is
possible to obtain a Perron tree from a triangle 7= A BC by divi-
ding the base BC into 2" equal parts and considering the partial
triangles T}, so obtained. After they have been shifted, the union of
their bases is the base B’ C’ (see fig. 2) of a triangle A’ B’ C' similar
to ABC. We denote P; the last position of P,, and P} the image of
Pj, by the homothetic transformation of ratio 2 with its upper vertex
as center. The union of the P} is a Perron tree P, and the union of
the Pj covers the triangle A’ B"" C'' and so, by the lemma above, the
set {x: MZp(x) > %} contains a triangle with the same size as 7.
For m» large this construction can be made so that P verifies
|P|<el|T]|.

Now can be used theorem 2.2. and easily is obtained that the
basis of rectangles in R2 is not a density basis.
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