A NOTE ON THE GROWTH OF ENTIRE FUNCTIONS

Chung-Chun Yang¹

1. Introduction and results

Le f(z) be a nonconstant entire function in the finite plane $|z| < \infty$, then the growth of f can be measured in terms of M(r,f) (= Max |f(z)|) or T(r,f) (= $\frac{1}{2\pi} \int_0^{2\pi} \log^+ |f(re^\theta)| \ d\theta$, where $\log^+ x = \text{Max}$ {log x, 0}), the Nevanlinna characteristic function. We note that the order ϱ_f of f is defined to be $\varrho_f = \overline{\lim}_{r \to \infty} \log M(r,f)/\log r$, (= $\overline{\lim}_{r \to \infty} \log T(r,f) \log r$), and that both T(r,f) and $\log M(r,f)$ are monotone increasing functions of r. There are many results done on comparing the growth of T(r,f) with that of M(r,f). Among them the following one is fundamental:

(1)
$$T(r, f) \le \log^+ M(r, f) \le \frac{R+r}{R-r} T(R, f) \ (0 \le r < R).$$

It is shown by examples that $T(r, f) \sim \log M(r, f)$ as $r \to \infty$ need not be necessarily true (see e. g., [3, p. 19]). However, in [4, p. 48] Kamthan proved the following result.

THEOREM 2. Let f(z) be an entire function of finite order. Then there exists a sequence $\{r_n\}$, $r_n \to \infty$ with n, such that

(2)
$$\lim_{r \to \infty} \log \log M(r, f) / \log T(r, f) = 1.$$

We remark here that the above result can be extended to entire functions of all orders by an application of a result of T. Shimizu (see [3, p. 20]).

 $^{^{1}}$ Mathematics Research Center, Naval Research Laboratory, Washington, D $\,$ C , $\,$ 20390

In the conclusion of the paper [4] Kamthan remarked that it was still an open question if

(3)
$$\lim_{r \to \infty} \log \log M(r, f) / \log T(r, f) = 1$$

for entire functions of all orders.

In this note, although we do not not give any positive answer to this question we have succeeded to prove that given any $\epsilon > 0$ the quotient $\log \log M(r,f)/\log T(r,f)$ is always less than $1+\epsilon$ outside a set E of r values of finite measure which depends on ϵ . We shall also show that for certain entire functions of infinite order one can replace ϵ by 0 in the above assertion. More precisely we have.

THEOREM 3. Let f(z) be a transcendental entire function and let ϵ be any given positive number. Then possibly outside a set $E(\epsilon)$ of r values of finite measure, we have for $r \notin E(\epsilon)$

(4)
$$\overline{\lim}_{r \to \infty} \log \log M(r, f) / \log T(r, f) \le 1 + \epsilon.$$

THEOREM 4. Let f(z) be an entire function. Suppose that

(5)
$$\lim_{r \to \infty} \log T(r, f) / r^{12} \ge c < 0.$$

Then

$$\lim_{r \to \infty} \log \log M(r, f) / \log T(r, f) = 1$$

outside a set of r values of finite measure.

2. Lemmas Needed for the Proofs.

In the proofs of Theorems 3 and 4 we shall need the following two lemmas of Borel's type argument on monotone functions.

Lemma 1 ([3, p. 38]). Suppose that T(r) is continuous, increasing and $T(r) \ge 1$ for $r_0 \le r < \infty$. Then we have

(6)
$$T\{r+1/T(r)\} < 2T(r)$$

outside a set E of r which has linear measure at most 2.

Remark. In view of the proof of Lemma 1, one can see easily that there is no sacredness about the constant multiple 2 in the right hand side of inequality (6). It can be replaced by any other fixed constant \in with \in > 1, and, of course, the measure of the exceptional set will no longer be bounded by 2 but \in /(\in -1).

Lemma 2 ([2, p. 118]). Let T(r) be a nonnegative, nondecreasing unbounded function defined in $r > r_0$. Then there is a set E with

(7)
$$m\{E \cap [\varrho, 2\varrho]\} \leq \frac{8 \varrho}{[\log T(\varrho)]^{\frac{1}{4}}} \quad (\varrho > \varrho_0)$$

such that outside E, we have

(8)
$$T\{r + r/\log^2 T(r)\} < e T(r).$$

Remark. This is a special case of a Lemma 10.2 [1] ($\alpha = 0$, $\epsilon = 1$).

3. Proof of Theorem 3.

From (1) by setting $R = r + \frac{1}{\log T(r, f)}$ and taking logarithm, we have

(9)
$$\log \log M(r, f) \leq \log \left| \frac{2r + 1/\log T(r, f)}{1/\log T(r, f)} \right| + \log \left\{ T(r + 1/\log T(r, f), f) \right\}$$

By applying the Borel's lemma to the monotone function $T(r) = \log T(r, f)$ and noting the remark mentioned earlier, we obtain

(10)
$$\log T (r + 1/\log T (r, f), f) < (1 + \epsilon) \log T (r, f),$$

provided $r \notin E$ (ϵ). From this and (9), we have for $r \notin E$ (ϵ)

(11)
$$\log \log^+ M(r, f) \le \log \{2 r \log T(r, f) + 1\} + (1 + \epsilon) \log T(r, f)$$

 $\le (1 + \epsilon + 0) \log T(r, f) + \log 2 r.$

Since for any transcendental entire f, $\overline{\lim}_{r\to\infty} \log r/\log T$ (r, f)=0, we have from (11) that

(12)
$$\log \log^+ M(r, f) \le (1 + \epsilon + 0) \log T(r, f),$$

and Theorem 3 is thus proved.

4. Proof of Theorem 4.

Put T(r) = T(r, f), and without loss of generality, we may assume that $\varrho_0 = r_0 = 1$. Let E be the set of r values greater than 1 where inequality (8) fails to hold.

By Lemma 2 and the assumption (5)

(13)
$$m\{E\} = \bigcup_{n=1}^{\infty} m \{E \cap [n, n+1]\} \le \sum_{n=1}^{\infty} \frac{8 n}{\{\log T(n)\}^{\frac{1}{4}}}$$

$$\le \sum_{n=1}^{\infty} \frac{8 (c - \epsilon)^{-\frac{1}{4}}}{n^2} < + \infty$$

where \in is a positive number less than c.

Then, for $r \notin E$ with r > 1,

(14)
$$T(r + \frac{r}{\log^2 T(r, f)}, f) = T(r + \frac{r}{\log^2 T(r)}) < eT(r).$$

Now applying Theorem 1 by setting $R=r+\frac{r}{\log^2 T\ (r)}$ with $r\notin E$ and taking logarithm, we deduce

(15)
$$\log \log^+ M(r, f) \le \log \frac{2r + r/\log^2 T(r)}{r/\log^2 T(r)} + \log T(r + \frac{r}{\log^2 T(r)})$$

 $\le \log \{2 \log^2 T(r) + 1\} + \log T(r + r/\log^2 T(r)).$

Hence, by (14), for $r \notin E$

(16)
$$\log \log^+ M(r, f) \le (1 + _0(1)) \log T(r, f).$$

Our assertion follows from this and the fact that $\log \log^+ M(r, f) \ge \ge \log T(r, f)$ for $r > r_0$.

REFERENCES

- 1 A EDREI & W H J FUCHS: Bounds for the number of certain classes of functions, Proc Lond Math Soc 3, Ser 12 (1962), 315-344
- 2 A EDREI & W H J FUCHS: On meromorphic functions with regions free of poles and zeros, Acta Math Vol 108, 1962
- 3 W K HAYMAN: Meromorphic Functions, Oxford (1964)
- 4 P K KAMTHAN: Growth of a meromorphic function, Collectana Mathematica, Vol XIX - Fases 1 ° y 2 ° - Año 1968

