A NOTE ON THE GROWTH OF ENTIRE FUNCTIONS

CHUNG-CHUN YaANGl

1. INTRODUCTION AND RESULTS

Le f (2) be a nonconstant entire function in the finite plane |z| < oo,

then the growth of f can be measured in terms of M(r, f) (= Max

27 lz|=7

[f(2)1) or T (7,f) (= 2i logt |f (ve%)| dO, where log® x = Max {log
xJ0

%, 0y), the Nevanlinna characteristic function. We mnote that the
order g, of f is defined to be g, —Tim log log M (r, f)/log 7, (= lim

log T (7, f) log 7), and that both T (7, f) and log M (#, f) are mono-
tone increasing functions of 7. There are many results done on
comparing the growth of T (r, f) with that of M (v, f). Among them
the following one is fundamental:

THEOREM 1 ({3, p. 8]). If f(2) is regular for |z| < R, then

R-+v7
R—v7

(1) T <log" M(f)<“T'T(R f)(0 <7 <R).

It is shown by examples that T (7, f) ~log M (7, f) as 7 — oo need
not be necessarily true (see e. g., [3, p. 19]). However, in [4, p. 48]
Kamthan proved the following result.

TuEOREM 2. Let f(2) be an entire function of finite order. Then there
exists a sequence {r,},7, — o with %, such that
(2) lim log log M (v, f)/log T (v, f) = 1.

We remark here that the above result can be extended to entire

functions of all orders by an application of a result of T. SHIMIZU
(see [3, p. 20]).
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In the conclusion of the paper [4] Kamthan remarked that it was
still an open question if

(3) lim log log M (7, f)[log T (r, f) = 1
for entire functions of all orders.

In this note, although we do not not give any positive answer
to this question we have succeeded to prove that given any € > 0 the
quotient log log M (7, f)[log T (7, f) is always less than 1 + € outside
a set E of 7 values of finite measure which depends on €. We shall
also show that for certain entire functions of infinite order one can
replace € by 0 in the above assertion. More precisely we have.

THEOREM 3. Let f(z) be a transcendental entire function and let €
be any given positive number. Then possibly outside a set E(€) of
7 values of finite measure, we have for 7 ¢ E (g)

(4) Tim log log M (v, f)|log T (r,f) < 1 + e.

THEOREM 4. Let f(z) be an entire function. Suppose that

(5) lim log T'(r, f) [r12 = ¢ < 0.

r—>00

Then
lim loglog M (7, f)[log T (v, f) = 1

outside a set of 7 values of finite measure.

2. LEMMAs NEEDED FOR THE PROOFS.

In the proofs of Theorems 3 and 4 we shall need the following two
lemmas of Borel’s type argument on monotone functions.

Lemma 1 ({3, p. 38]). Suppose that 7 (r) is continuous, increasing
and T (») > 1 for 7y <7 < oo. Then we have

6 T+ 1T @)y <2T()

outside a set E of » which has linear measure at most 2.
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Remark. In view of the proof of Lemma 1, one can see easily
that there is no sacredness about the constant multiple 2 in the right
hand side of inequality (6). It can be replaced by any other fixed
constant € with € > 1, and, of course, the measure of the excep-
tional set will no longer be bounded by 2 but €/(e — 1).

Lemma 2 ([2, p. 118]). Let T(r) be a nonnegative, nondecreasing
unbounded function defined in 7 > 7;. Then there is a set E with

8¢
(7) m{E n (e 20} < m)]* (e > o0)

such that outside E, we have

(8) T +r/log2T (r)y <eT (7).

Remark. This is a speéial case of a Lemma 10.2 [|] (x = 0,e = 1).
3. Proof of Theorem 3.

From (1) by setting R =7 - S and taking logarithm,
log T (7, )

we have

-|-log {T("‘i‘ l/logT(r,f),f)}

By applying the Borel's lemma to the monotone function T'(r) =
= log T(r, f) and noting the remark mentioned earlier, we obtain

(10) logT(r + 1/1og T (r. f), ) < (1 + €) log T (r, f),
provided 7 ¢ E (€). From this and (9), we have for 7 ¢ E (g)
(11) loglog™ M (r,f) <log 271og T (r,f) + 1} + (1 + €) log T'(r, f)
< (I +e+ (1) log T (r,f) + log 2.
Since for any transcendental entire f, lim log 7/log T (, f) = O,

7—>00

we have from (11) that
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(12) loglog* M (r,f) < (1 + €+ (1)) log T (7. f),

and Theorem 3 is thus proved.

4. Proor OF THEOREM 4.

Put T(») = T(, f), and without loss of generality, we may assume
that g = 79 = 1. Let E be the set of » values greater than 1 where
inequality (8) fails to hold.

By Lemma 2 and the assumption (5)

13 Ey=UmEnmnt+l1) <5 0 o
(13) m{E} um {E n[nn+ 1] E‘, (log T (n)}
n=1 72

where € is a positive number less than c.

Then, for » ¢ £ with » > 1,

’ H=T@e+—"Y<eT().

W LT oo log? T (r)

Now applying Theorem 1 by setting R =7 + " with s ¢ E
log2 T (7)

and taking logarithm, we deduce

27+7/10g2T(7)+10gT(7+ 4 )

7[log2 T (r) log2 T (7)

(15) log log* M (r, f) < log

<log 210g2T (r) + 1} +1log T (r + 7[log2 T (7).
Hence, by (14), for ¢ E
(16) loglog* M (r, f) < (1 + o (1)) log T (r, f).

Our assertion follows from this and the fact that log log*M (v, f) >
>log T(r, f) for r > 7.
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