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This paper establishes some new topological characterizations of
the basic concepts of the generalized perturbation theory developed
in Stummel [9] — [11], Stummel-Reinhardt [12]. We can hereby
extend results concerning continuity properties of discrete limits of
mappings, and compactness properties of limits of sets and mappings
as well as a generalization of the compactness criteria of Arzeld and
Ascoli, which is of particular interest in view of applications.

In chapter 1 we study the topological structure of metric discrete
limit spaces and establish topological properties of the sets B, &
and D of the discretely bounded, discretely compact, and discretely
convergent sequences. In the preliminary section 1.1 we present the
definitions of a discrete limit space X,,/I X, /lim and the discrete
convergence -according to [10], [12] as well as the definition of dis-
crete boundedness according to Grigorieff [5]. Section 1.2 introduces
a topology in the product space by means of a pseudo-metric. In
the topological space of all sequences, the set B is always closed,
whereas to prove that ¢ and D are closed, we need a complete met-
ric space X, and convergent metrics (cf. theorem 1.(4)). Moreover,
in the case of convergent metrics, the mapping lLim of the discrete
convergence is an isometry (cf. 1.(2)). An extension property of con-
tinuous mappings then enables us to generalize the important re-
sult of the extension of the discrete convergence of Stummel [9]-
I in the case of metric discrete limit spaces.

In chapter 2 we generalize classic compactness criteria by cha-
racterizing discrete compactness of a set of sequences in a metric
discrete limit space by a finite covering property (cf. theorem 2.(4)).
This needs the concept of asymptotic precompactness. As an imme-
diate consequence of the equivalence of discrete compactness and
asymptotic precompactness, we show that in a separable space the
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upper discrete limit of a discretely compact sequence of sets is al-
ways precompact (cf. 2.(6)). The general characterizations reduce to
classic compactness conditions in the case of an approximation of
subspaces studied in Anselone [1], [2], Petryshyn [7], Vainikko [13],
[14].

In chapter 3, the basic concepts of the theory of discretely con-
vergent sequences of mappings characterize topological properties
of such sequences (4,). In this way, in section 3.1, the continuity is
proven to be equivalent to the stability of 4 = (4,) (cf. (3.1)). An
open mapping will be characterized by the generalized inverse sta-
bility of Grigorieff [5] (cf. 3.(2)), which is equivalent to the inverse
stability of [10], [12] for injective mappings 4,. In several cases even
uniform stability conditions are valid. In 3.2 the discrete conver-
gence of mappings is shown to be equivalent to the fundamental rela-
tion 3.(8). Thus we can prove the existence of a mapping which is
the discrete limit of a given stable sequence of mappings. Moreover,
relation 3.(8) yields complete information of the continuity proper-
ties of discrete limits. At the end of chapter 3, we shall prove an
interesting characterization of the discrete convergence of mappings
by means of the Lim-convergence of the associated graphs (cf. 3.(11)).
This generalizes analogous theorems of classic functional analysis as
well as a result of Stummel [9]-111,1.

In chapter 4 we apply the equivalence theorems of 2.1 to establish
necessary and sufficient conditions for the discrete compactness of
a sequence of mappings. Then as a corollary we obtain that a mapping,
consistent with a discretely compact sequence of mappings, is pre-
compact, which was first proved in Wolf [15] for linear operators.
Our concepts also generalize compactness conditions of Anselone
[1], [2], Vainikko [14] and yield new results and characterizations
in their special cases. Finally, in section 4.2 the equivalence of dis-
crete compactness and asymptotic precompactness enable us to
prove a generalization of the classic compactness criteria of Arzeld
and Ascoli in the case of discrete approximations of function spaces
(cf. 4.(6)). These approximations are defined by the discretely uni-
form convergence 4.(5) containing the uniform convergence defini-
tions of Aubin [3], Vainikko [13] as special cases. For linear and
nonlinear initial value problems, as well as for integral equations, one
can prove the existence of solutions by means of our equivalence
theorem 4.(6), if classic compactness theorems are no longer applica-
ble. For instance, this occurs if the approximating functions can not
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be embedded in the space containing the solution, or, if the possible
embeddings do not have sufficiently good continuity properties.

The author would like to express his gratitude to professor Dr.
F. Stummel for his valuable advice and criticism in preparing this
paper.

1. Topology of metric discrete limit spaces

For a metric discrete limit space Xo,/1.X,/im the topological
properties of the important subsets B, & D of the pseudo-metric
space [[,X, are studied. D and X, are isometric with the discrete
convergence /lim as the isometry, where lim is viewed as a mapping
of classes of equivalent sequences. The set B is always closed,
whereas to prove that & and D are closed we need an additional as-
sumption.

1.1.  Metric discrete limit spaces

This section presents the basic difinitions of discrete convergence
and discrete limit spaces in the sense of [10], [12]. We start from met-
ric spaces X, 1€, with a denumerably infinite, linearly ordered
index sequence I, a set X,, and a mapping lim with values in X,
and with domain of definition in the set of all sequences (#,) of ele-
ments #,€X,, cel. The mapping lim is called a discrete con-
vergence. The tripel X, /1 X lim is said to be a discrete
limit space and, in the case of /im being surjective, it
is called a discrete approximation A(X, /I1X, lim).
A sequence () is called discretely convergent to
1o € Xo, if lim(u)) = uo. In the following we also write lim 1, = 1o
or u, = uo(t € I). We denote subsequences of I by I’,I” etc. and
we call the cartesian product I7,Z, of subsets Z,c X,,tel,apro-
duct space. The discrete convergence lim is said to be a met-
ric discrete convergence and a discrete limit space
a metric discrete limit space, if, for every pair (u,),
(v) € 11X, such that (u,) or (v,) converges discretely, the following
statements are equivalent:

(M) lim [o, o[y, = 0 <= limu, = limv,.

12 - Collectanea Mathematica
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If X, is a metric space too, the metrics in a discrete limit space
are called discretely convergent, ||y, = |, |y, (t€]), if
the following relation is valid:

o, = uo, imv, = vy - lim |u,, v |x, = |1, Volx, -

The set D of discretely convergent sequences is a subset of B,
D c B, where B is the set of all discretely bounded sequences. An
arbitrary subset Z of I X, is called discretely bounded,
if there exist a discretely convergent sequence (%,) € T and a number
« > 0 such that lim|v,, #,)x, < «for every (v) € Z.

If discretely convergent sequences in a discrete limit space have
finite distances from each other, i. e.

lim |u,, vlx, <y

iel
for every pair discretely convergent of sequences (#,), (v,) and a number
y = 0, then this inequality is also valid for every pair of discretely
bounded sequences. In a discrete limit space with discretely conver-
gent metrics the discretely convergent sequences mnecessarily have
finite distances.

Besides B and D, the set &£ of discretely compact sequences plays
an important role. A subset Z c IIX, is called discretely
compact, if for every sequence (1) e Z and every subsequence
I' < 1, there exist a subsequence I'" < I’ and an element #, € X,
such that %, — #, (t € I"’). In the case of discretely convergent. met-
rics we shall prove in 2.(3) the relation D ¢ «° c B.

1.2. The pseudo-metric space 11X,

The product space /I,X, now becomes a topological space by
means of the pseudo-metric (1). In it we study the topological pro-
perties of the sets B, %" and D. By the continuity of the discrete
convergence lzm we further prove an important property of extension
of the discrete convergence. For the properties of metric and pseudo-
metric spaces we refer to Bourbaki [4], Kelley [6].

In the product space I1,.X,, for metric spaces X,, t €1, there is
given a pseudo-metric |.,.|: I X x Il X, 1--—» [0, o] by

(1) |(12), (0)| = Tim |, v]x,, (1), (v) € [1X,,

i.e. the symmetry, the triangle inequality and |(u,), (»,)| = 0, (%) €
e I1.X,, arc valid. The set of open balls B,((»)) = ((v) e [1.X.
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(), (v)] < 0}, 0> 0, is a basis for the pseudo-metric topology of
X=X,

Before we continue the study of the pseudo-metric space X we
introduce some mnotations. We also denote the sequences of X by
u = (u),v=(v), the distance between two non-void subsets U,
V ¢ X is defined by |U, V| = inf {|(»), (v)!:(»2) € U,(v) € V}, and we
define B, (U) = (v e X: |v, U| < g} for ¢ > 0, U c X. Then the set
of all non-void subsets of X constitutes again a pseudo-metric space
with this definition of a distance. To simplify notation in the following
we denote all occuring metrics and pseudo-metrics without any dif-
ference by j.,..

An important tool for our studies is the representation of the clo-
sure Z of a subset Z of a pseudo-metric space X, Z = (ueX: |, Z| = 0}.
This is proved in [6],4., for a finite pseudo-metric and is also true
in our case of a not neccesarily finite one. Thus we can immediately see
that the set Bis closed in X for a metric discrete limit space. Indeed,
each # € X such that |u, B| = 0 has a finite distance from a discretely
convergent sequence. As we shall see in theorem (4), this is generally
not true for ¢ and D.

If we consider the set of all closures {#} = (v e X: [0, u| = 0}
of sequences # € X for a metric discrete limit space Xo/1.X,lim,
we again obtain a pseudo-metric space with the distance |(u}, {v}],
in which even the condition of definiteness is valid. Its topology is
the quotient topology relative to the closure of sets consisting of
one element and the topology in X. From the above representation
of closures it follows that we just have the space of all classes of
equivalent sequences, where two sequences # = (u,), v = (v) with
lim |#, v]| =0 are called equivalent. For every ueX we
denote the class of all sequences v € X such that # and v are equiva-
- lent by 4, i = {u}, and we denote the space of all classes of sequen-
ces by X. Every class e X is already determined by one of its re-
presentatives. Obviously, |1} zA)i ==, v| for cvery representative w
and v of the class # and v e X resp.. Moreover, for each Z c X, we
denote by Z the set of classes determined by elements of Z, Z -
—weXdzeZ v=z) Then B is also closed in X. If discretely
convergent sequences have finite distances from each other, Bisa
metric space.

By means of condition (M) the metric discrete convergence lim:
D1—~ X, maps classes of discretely convergentse quences uniquely;
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hence, lim is also a well-defined mapping from D into X,. We use
the notation Zim for the mapping of classes as well. The inverse map-
ping lim—1 of X, onto D has the whole space X, as domain of defini-
tion, if lim is surjective, ie. A(Xo, I1X,, lim) is a metric discrete
approximation.

(2) Let Xo,I11.X,, lim be a metric discrete limit space with discretely
convergent metrics. Then lim is an isometry of D into X, and, if lim

is surjective, R = lim=1 1s an isometry of X, onto D, 1, e.

e, v} = |lim u, lim o], u, 0 € D, and |R (1), R(vo)] = |10, vo|, %0, vo € Xo.

Proof: Obviously lim: D 1—» X, is injective. As a consequence of the
discretely convergent metrics it follows that

A A JR— . ) . . L. A . A
e, 0! = lim} u, v,| = lim|u,, v,| = |lim w4, lim v| = {lim u, lim v|

A A A . . A
for every u#,v eD and arbitrary representatives # = (u) €%, v =

= (v) € 2. Moreover |R(n0), R(vo)| = |#0, Vo|, tho, vo € X, if lim is sur-
jective. —

According to the above theorem, a surjective /im is, in particular,

uniformly bicontinuous, thus it is a homeomorphism from D onto X,.

The following theorem (4) concerning closure properties of the
set of discretely convergent and compact sequences is very important
for our studies in section 2.1 about discrete compactness. However,
before we study the discrete compactness we shall prove the relation
D c %% c B which is already mentioned in section 1.1 and will be
used in (4).

(3) Let Xy be a metric space and A(Xo, II.X,, lim) be a discrete appro-
ximation with discretely convevgent metrics. Then every discretely com-
pact product space I11.Z, c 11 X, is discretely bounded.

Proof: Suppose Z = I1,Z, is not discretely bounded. By the discre-
tely convergent metrics the discretely convergent sequences have
finite distances. Hence, by assumption, there exist a convergent
sequence (1), #, > uo(t € I), a set of pairwise distinct indices ¢, € I
and elements z,, € Z,,n €N, such that |z, u,| > #n,neN. By the
discrete compactness of I1,Z,, there exist a subsequence I < I' =
= (t,)nen and an element z, € X, such that z, — zo(¢ € I'). The sur-
jectivity of lim allows the prolongation of the convergent subse-
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quence (2,)~ to a convergent sequence z, — zo (1 € I). By virtue of

the discretely convergent metrics, this leads to the contradiction
[ZO: 'll«nl - lim IZ” ’Ml| = 00. —
€1

u

(4) Let Xo be a complete metric space and A(Xo, I1,X,, lim) be a wmetric
discrete approximation with discretely comvergent metrics. Then the sets
D and & are closed in X, and D and & are closed in B as well as in X.

Proof: In part (i) and (ii) we prove that D and & resp., are closed.

Thus, we can show in (iii) that D and ¢ are closed.

(i) Let # € X such that |u, D| = 0. Then there exist discretely con-

vergent sequences u™ e D, limu™ = u§?, neN, with the property

leg, ut"] 0 (n — o). Since the metrics are discretely convergent, it

follows from (2) that lim |u{”, u§”| = lim |u®, u™] = 0; hence
%,11—>00 ”n,m—>00

(ug')) is a Cauchy sequence in X,. By virtue of the completeness of

X, there exists a uye X, such that |ul”, us| — 0 (n -~ 00). Hence,

by (2), |, R(uo)| < lim |ug, ™| +lim |u™, R(uo)] = im  |ue, s | +
7#—>00 7—>00

n—>00

+ lim jud?, #o| = 0; this proves # e D.

7n—>00

(ii) Let # € X such that |1, &&| = 0. Then there exist discretely com-
pact sequences #™ = (u{*) € &7 n € N, with the property |u, u™| —
— 0 (n — o). Thus, for every subsequence I’ < I, there exist sub-
sequences I < I', I»+) < I™, and elements u € X, such that
u™ > ul? (e I). Since the metrics are discretely convergent, |u(,

™| =Tm [, u™| > lim |u®™, ™| = ju§", u§”|, where b = max
€l €Ik
(m, n). Hence, (u§") is a Cauchy sequence in X, and, since X, is

complete, there exists a u,€ X, such that |u{?, 1to] — 0 (n — o).

Let (v) e R(uo) and e, = 2 |u, ™|, n € N. Then, for every # €N,
there is an index i, € I® such that |ul, v,| < &,+ |[ud”, uo| and
|u® u,| < 2 |u™, u| = ¢, Since one can select the indices such
that ¢, ; > ¢,, I"" = (,)nen is a subsequence of I’. Therefore, we ob-
tain |u™, v, | -0 and |u,,v,| -0 (;, €I”); this proves u to be

discretely compact.

in?

(ili) As B is closed in X, a set Z c B is closed in B if and only if it
is closed in X. For Z =D or Z = & and every u € Z, it follows, by
condition (M), that each representative v eu belongs to Z, Z =
= {v eftiﬁ e 7). Thus |, Z| = }'z}, Z | for each representative # of
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wneX and Z=1D or Z = 7. Consequently, Z=Dand Z= %,
resp., is closed in X if and only if Z is closed in X which is proved
in (i) and (ii), resp. —

According to Stummel [9]-7,1.1.(10), one can characterize the
discrete convergence of a sequence # = (»,) € X in a metric discrete
limit space with discretely convergent metrics by the existence of
a 1o € X, such that, for every & > 0, there exist an element v, € X,
and a discretely convergent sequence v, — vo(t € I) with the proper-
ties !uo, vo| < & and lim |u,, v| < e. With respect to the topology of
X, this is equivalent to the existence of a #, € X, such that in every
neighbourhood U, of #, € Xo and U of # € X there exists a discretely
convergent sequence v € U with limit in U,. Moreover, for a complete
Xo, the following characterization holds.

(5) Under the assumptions of theorem (4) a sequence u € X s discretely
convergent if and only if there exists a ve B,(u) ND for all ¢ > 0.

Since the statement of the theorem means # € D, the proof is ob-
vious, due to (4).

The last theorem of this section about the existence of a unique
extension of the discrete convergence is fundamentally significant for
the theory and generalizes a corresponding theorem for normed
spaces in Stummel [9]-I. Here, the proof may be carried out com-
pletely analogously as in normed spaces. Following theorem (2),
we shall now prove this theorem by means of an extension property of
continuous functions.

(6) Let Do be dense in the metric space Xo and A(Do, I1,X,, lim) be a
metric discrete approximation with discretely comvergent metrics. Then
theve cxists a unmique extension of R = lim=1: @y — X to X, that sai-
isfies the conditions of a metric discvete convergence with discretely con-
vergent metrics.

Proof: First, we prove that, for every uoe X, and every sequence
(pé,’” e®,, neN, with the property |u, q&c()")i —~0 (n — o0), there
exists a3r e X such that |R(#8"), Y -0 (n — o). Then, by continuity
of R and denseness of @, in X, this statement will be shown to be
sufficient for the existence of a unique extension with the desired
properties.
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(1) Let uoe X, cpb") e®@o, neN, such that |uo, ¢i’] -0 (n - ).

. i 1
Without loss of generality let |u,, qo},")l < Py neN, thus, by

theorem (2), |R(@5' "), R(@8)] = e e8| < . For each neN

211-:-2

and cach representative (p) of the class R(gl”), there exists,

by definition (1), an index », €1, v,., > »,, such that ¢, ¢"+"} <
1

— (n+1)
< 2n+1 ’

1
4 > Vi DenOte yt = ¢l ’ vn+l >t > Vs y: = (ff )’ < Vi,

then the class 5/, which is defined by (y,), has the desired properties.
Tudeed, for every ¢ > 0 there is an integer # << 0 such that ¢ > il_' ,

and foreachm > #, ¢ > v,, there exists, by the definition of (v), a s >

S 7i l
> m such that »,,; > ¢ > v, > »,; hence |y, ¢\™| = ™, ¢ < 5 +
1 1 FEpe () o (m)
+ ... +27__—_—l < o < e. Therefore, lim |y, ¢, < eand v, R(go )| < ¢

for each m > m, which proves our first assertion.

(ii) For every uoe X,, there exists a sequence ¢’ € ®,, # € N, such

that |, 1] ~ 0 (n — o0). We define the extension of R: @o:—> X by

R(uo) = lim R(g{"). Obviously, R: Xo—> X is well defined and con-
7n—>00

tinuous, by virtue of the continuity of R: @y—»X. Moreover, the ex-

tension is unique, since any other extension ﬁ, any o € Xo, and any

P € Do, n e N, such that |, o] - 0 (n — oo) satisfy the relation

Rl(uo) =1lim R(g{) =lim R(¢f") = R(i0). By (2), for arbitrary uo, vy €
7—>00 n—>00

e Xo, ¢V, w§ € Do, n €N, |uo, @5 - 0, |vo, p§’| - 0 (n — o0), it follows

that |R(uo), R(vo) =1lim |R(gd"), R(p§")| = lim |¢§”, w8”| = luto, val,
n—>00 7—>00

and for u e R(uo), ¢ e R(rpg”), v € X such that i, v} = 0, we have

lim jv, ™| = lv, | +1im |0, ™| = 0, i.e. ve R(1o). Hence, R: Xo!-—» X
» n . . . . .
is injective and its inverse satisfies the conditions of a mectric dis-

crete convergence with discretely convergent metrics. —

2. Compactness

In this chapter we establish a series of neccssary and sufficient
conditions for the discrete compactness of sets of sequences, where
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the concept of asymptotic precompactness is of essential significance.
In the special case of an approximation by subspaces our general
conditions permit the analysis and characterization of collectively
compact sequences of sets. The notion «collectively compact» has
been introduced in Anselone [1], [2] for linear operators in Banach
spaces and will be generalized to sequences of subsets of metric spaces.

2.1.  Asymptotic precompactness and discrete compactness

For the whole chapter we shall assume that Xo,/7,X,,lim is a metric
discrete limit space with discretely convergent metrics. In order to
define asymptotic precompactness, we need the notion of a finite
product space. For non-void subsets F,c X,,t €1, we call F = [I,F,
finite, if there exist a natural number N €N and sequences
v = (v,(”)) € X such that F, c [\J{vf’”} for each ¢ eI. For two sub-

n=1
sets S, Z of X, we now calltheset Zasymptotically Spre-
compact, if, for every & > 0, there is a finite product space F
such that the finite number of sequences v in the finiteness condition
of F belong to S, v € S, and |u, F| < ¢ for every # € Z. Obviously,
F is asymptotically S-precompact if and only if, for every & > 0,

there are finitely many sequences v = (vf")) eS, n=1,.., N¢
such that, for every # = (u,) € Z, the inequality lim min |u,, W <
w€el 1gsng N

< eis valid. If we define, according to Stummel [10], 4., theupper
and lower discretelimit of a subset Zc X by
Lim sup Z = (o Xo|IueZ3II' <I: limu = u}

el’
and Lim inf Z = {(uoe Xo| 3w € Z: lim u = uo}, resp.,
I
then we obtain the following necessary conditions for the asymptotic
precompactness.

(1) Let lim be surjective and Z c X be asymptotically D (resp. & )-
precompact. Then Lim sup Z (resp. Iim inf Z) is precompact and (in
both cases) we have Z c % .

Proof: (i) Let Z be asymptotically D-precompact. For every & > 0,

there exist N discretely convergent sequences v = (1), lim v® =

=9y, w=1,..,N, such that Hm min lu, " < e for every

el loamnN
uw = (u) € Z. We prove now that {v(()'")};L, constitutes an e¢-net for
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Iim sup Z. Let 1o € Lim sup Z, then there are a # = (1) € Z and

a subsequence I’ < I such that lim u, = 1, By assumption, we
«cr’

have lim min x, ! < e and therefore, there exist a subsequence
€l 1snsN

I" <I' anda #' e¢l,.., N} such that lu,o"| <e cel”. In
view of the discretely convergent metrics and the surjectivity of lim,
'), =

we obtain |u,, o1 — Juo, v§") (c € I'), hence iug, 95| < ¢

(ii) Let Z be asymptotically % -precompact. For every ¢ < 0, there

exist N discretely compact sequences v™ = (v{)) out of this condition
which we assume to be convergent to v’ € X, for a common sub-

. . \
sequence I’ < I, lLimv®™ =" n=1,..,N. The elements v,
wel’
n=1,.., N, constitute an e-net for Lim inf Z. Indeed, for every

io € Lim inf Z, there exists au = (u,) € Z, lim wu, = uy, such that
wel

1m1 min | #,, v, i < ¢ and, as in part (i), there arc a subsequence
"

I" I' and a #' € ., Ny such that i, o™ < & cel”; hence

{240, vg )| < e

(iii) Since asymptotic D-precompactness implies asymptotic & -pre-
compactness, it is sufficient to deduce the relation Z ¢ ¢ from the
latter. Given & > 0 then, for ¢/2, there are N discretely compact se-

("))

quences v™ = (v,*') € & such that, for every u = (u,) € Z, there is

anindex » € [ and, for every ¢ > v, there exists a number %, € {1,..., N}
such that |u,, ™ | < &/2. If we denote v, = = 9™ 1 > », then, for every
subsequence I’ < I, there exist a number #’ €¢1, ..., N} and a sub-
sequence I € I’ such that v, = 2™ el By the discrete com-

pactness of ), there exist a subsequence I'" £ I"” and a voe X,

such that lim v, = lim v'") = v,. Thus, v = (v) is discretely compact
wr €r
and lim |u, v,| = |u, v] <&/2 < &, which proves the relation Z ¢ 7. —

For the proof of the precompactness of Lim sup Z in the last
theorem it is sufficient to assume /lim ([1, X, Lim sup Z) instead of
lim = lim(I1,.X,, Xo) being surjective. Moreover, we need no assump-
tion of surjectivity for the relation Z c %7 By means of an idea in
Wolf [15], 2.(4), we shall now prove the following converse of theo-
rem (1). Here, for abbreviation, we call a set Z¢ X asympto-
tically precompact, if Z is asymptotically D-precompact.
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(2) For subsets Z,c X,,vel, let Z =11, Z, be discretely compact, let
Zoy = Lim sup Z be separable, and lim (I1.X,, Zo) be surjective. Then
Z is asymptotically precompact.

Proof: Tet (1S en be a denumerably dense subset in Zo =
Lim sup Z, and let u® = (ufk)) € X, keN, be discretely conver-
gent sequences ') — 1l (t€I), which exist by the surjectivity of
bim (I1.X,, Z,). Suppose Z is not asymptotically precompact. Then there
exists @ & > 0 and, for every # € N and for the sequences u®), k== 1,
..., n, there exist a sequence ™ — (™) e Z and a subsequence
I™ < I such that wa"), 1t,(k)| > e,tel™ k=1,.. n In particular,
for every n €N, there exists an index ¢, € I™, ¢, >, such that
!wf,':), uff)l > e, kR=1,..,m. By the discrete compactness of Z,
there is a subsequence I"” < I’ -: (1,)neny and an element zo€ Z,
such that z, - zo(t€1”), where (2)er = (wff,”),,m. To every uy) of
the dense set in Z, by the convergence u(™ -~ u{’, z -~z (Lel")
there now corresponds an index ¢ € I such that |1, z,| — u?, 20| <
< &/2,¢ = w,tel”. Tor every ¢ =, € I' such that , > max (y, ),
by assumption we have [, z! > ¢, thus |u’, z0] > |, 2] —

k : ~
— &2 > &2 contrary to the denseness of {25} in Zo. —

As an abvious generalization of a well-known definition the relation
Z c 7 in theorem (1) can be characterized by the denseness of %
with respect to Z. For two subsets S, Z of a topological space T the
set S is said to be dense with respect to Z, if Zc S. Evi-
dently, in a pseudo-metric space T a set S is dense with respect to Z
if and only if, for every ¢ > 0 and any u € Z, there exists a ve S
such that |#, v| < e. By means of the notion «dense», theorem 1.(4)
immediately vields a necessary and sufficient condition for the dis-
crete compactness.

(3) Let Xo be a complete metric space and lim be surjective. Then a
subset Z ¢ X is discretely compact if and onlv if the set v of discretely
compact sequences is densc with respect to Z.

The property of the denseness of »~ with respect to a product
space Z = II,Z, also characterizes the asymptotic precompactness
of Z, as it is seen in (1) and (2).

(4) Let Xy be a complete melric space, let Z, be subsets of X,, vel,
and let lim be surjective. Then the asymptotic precompactness of Z =
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== II,Z, is necessary and sufficient for the compactness of Lim sup Z
together with the demseness of %~ with respect to Z.

Proof: The sufficiency immediately follows from theorem (1), if one
notes that the precompact set Lim sup Z is, by the completeness of
X, relatively compact, and, moreover, the upper and lower discrete
limits are always closed in a metric discrete approximation with
discretely convergent metrics. Conversely, under the above assump-
tions the set ¢~ of all discretely compact sequences is closed in X,
hence Z ¢ & = & Therefore, Z is discretely compact and, in parti-
cular, the compact set Iim sup Z is separable. Thus theorem (2) im-
plies the asymptotic precompactness. —

It is now readily seen that the results of this section yield the
characterization of the discretc compactness of a product space by
its asymptotic precompactness.

(5) Let Xy be a complete metric space, let Z, > X,, v €I, let lim be sur-
jective, and let Zo = Lim sup 11,Z, be separable. Thew Z = II1.Z, is
discretely compact if and onlv if it is asymptotically precompact.

Proof: By (2), the discrete compactness is sufficient for the asympto-
tic precompactness of Z. Conversely, the asvmptotic precompactness
implies & to be dense with respect to Z, which, by (3) and the com-
pleteness of X, is equivalent to the discrete compactness of Z.—

As a corollary of the above theorems, we obtain the important
result that the set of all limits of subsequences of a discretely compact
product space is necessarily precompact, if the approximated space
Xo is separable. Even the following more general statement is true,
which yields the just mentioned result.

(6) Let Z,c X,,vel, let Z = 1[1Z, be discretely compact, and let
lim (I1.X,, Tim sup Z) be surjective. Then, if 1im sup Z is separable,
it is precompact.

Proof: By (2), the asymptotic precompactness follows from the as-
sumptions, hence Lim sup Z is precompact, due to (1).—
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2.2. Collectively compact sequences of sets

In the special case of a metric discrete approximation
A(Xo,I1.X,, lim) by subsets Xo, X,, €I, of a metric space M, the
above conditions can be reduced to classic compactness conditions
in M. According to Stummel [9]—1,5.(4), the convergence |uo,X,| --
— 0 (¢ € I) for each uo € X, is necessary and sufficient for the existence
of the metric discrete approximation by subsets, where the discrete
convergence is the convergence in . In this situation, we necessarily
have discretely convergent metrics. We now introduce the collective
compactness of sequences of subsets Z,c X,, ¢ €1, generalizing An-
selone 1], [2] who has defined the notion of collective compactness
for sequences of linear operators in Banach spaces. We call a se-

quence (Z), collectively compact, if the set UZ, is pre-
el
compact. I'or a complete space M the precompactness is equivalent

to the relative compactness as it is well known. By means of the
asymptotic precompactness, we obtain the following characterization
of a collectively compact sequence of subsets.

(7) A sequence of subsets Z,c X, v€l, is collectively compact if and
only if each Z,, v € 1, is precompact and I1,Z, is asvmptotically precom-
pact.

Proof: Suppose U Z, is not precompact, then there exist a & > 0 and
elements z§ e UZ, such that lzg’, zé,"’! > €, j <<k, kReN. Either
there exists a subsequence I’ < I and, for every :el’, there is a
m e N such that 25" € Z,, or all 2§, keN, belong to only finitely
many Z, But the latter case contradicts the precompactness of each
single Z,. In the first case, it follows from the asymptotic precompact-

ness that, for g4, we have discretely convergent sequences o -

0§ vel), ) ellZwde X, i-=1,.., N, and, for z =
=" e Z, eI, there is an index » € I’ such that min |z, 2| <

1= N,

< &4, ¢t = v, 1el’, Hence, there is a subsequence I < I' and a
noe(l, .., Noy such that !z, ™| < /4, t€I”, and therefore the

relation lz, vg"’)l < gf4,t > pu,vel”. holds for a wel”. Then for
. )
arbitrary ¢, xel" = {(tel”|¢t > u} we have lz,2| < |z, ol

) . . s . . 3
-l {v&""’, z,l < &, in contradiction to iz, z,{ = &, ¢ -~ =z € I', which pro-

ves the precompact ness of U Z,. The converse is trivial. —
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In a complete metric space we now characterize a collectively
compact sequence by its discrete compactness together with the
relative compactness of each set.

(8) Let M be a complete metric space and Xo be a closed subset of M.
Then a sequence (Z),r vs collectively compact if and only if each Z,,
vel, is rvelatively compact and I1,Z, is discretely compact.

Proof: (i) Let (Z,) be collectively compact. By (7) and (1), & is dense
with respect to Z = II,Z,. Since M is complete and X, is closed, X,
is a complete metric space. Thus, by (3), Z is discretely compact.
The relative compactness of each Z,, ¢ € I, follows trivially from the

relative compactness of U Z,.

(ii) Proving Z = II,Z, to be collectively compact, in view of (7) and (5)
it is sufficient to prove that Lim sup Z is separable. According to a
well-known theorem of the set theory that the union of a denumera-
ble number of denumerable sets is at most denumerable, this follows
from the precompactness of each Z,, tel.—

Theorem (7) and (8) can be further simplified, if the assumption of
Vainikko [14], 1., example 2, is valid. If M is complete and the rela-
tion Lim sup Z = U Z, with Z = II,Z, is satisfied, then the collec-

el
tive compactness of (Z,); is, by definition, equivalent to the com-

pactness of Lim sup Z as well as to the asymptotic precompactness of
Z. Moreover, it is equivalent to the discrete compactness of Z, if
M is separable and X, is closed.

3. Mappings

In this chapter we study the topological properties of sequences of
mappings in the underlying pseudo-metric spaces. The basic concepts
of the theory of discretely convergent sequences of mappings yield
characterizations of topological properties. For example, stability is
equivalent to continuity and inverse stability is equivalent to openness.
The main result of section 3.2 is the equivalence of discrete convergence
and the fundamental relation (8). Thus we establish important state-
ments concerning existence as well as continuity of limits of discre-
tely convergent sequences of mappings. Finally, theorem (11) proves
an interesting characterization of the discrete convergence by means
of the Lim-convergence of the associated graphs. Hereby, we gene-
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ralize and extend results of classic functional analysis as well as a
result of Stummel [9]—111,1. We assume that the definitions of
stability and inverse stability and their various characterizations
in [10], [12] are known.

Let Xo, [IX,, im¥ and Y,, ILY, lim¥ be two metric discrete
limit spaces with the same denumerably infinite, linearly ordered
index sequence I, and let (4,) be a sequence of mappings 4,: X, 1—»
I-—> Y, 1€ I. The sequence (4,) is viewed as a mapping of X = I1.X,
into Y = 1Y, and we write, for abbreviation, 4 = (4,).

3.1. Continuous and open mappings

We shall now prove the following characterization concerning the
continuity of 4 = (4,).

(1) The following statements are equivalent:

(i) 4 = (A) s continuous at the point uw = (u,) € X.

(i) For every v e {u}, the relation A v e {Auy holds.
(iii) A ds stable at .

Proof: According to the definition of stability in [12],2., and the
representation {#} = (v e X : ju, v| = 0}, the statements (ii) and (iii)
are obviously equivalent.

(i) = (ii). For every ¢ > 0 and every v € (u}, by lu, v) = 0 and the
continuity of 4 at the point #, the relation |Au, Av| << & holds. Hence

|Au, Av| = 0, ie. Ave(Au}.

(iii) = (i). According to the stability at «, which is equivalent to the
asymptotic equicontinuity at » (cf. [12],2.(1)), for every &> 0 resp.
€/2, there exist a d > 0 and a v € I such that the relation |, v,| < 0
implies [Au, A,v,| < ¢/2 for every ¢ > » and every v,€X, Let
v € X with |, v| < 0, then there exists a u > » such that |u,, v,| < §,
v > p, and |Au, Ap,| < g2, ¢ > p. Hence [Au, Av| < /2 < e.—

The concept of inverse stability is suitable for the characterization
of an open mapping. A sequence (A4,) is said to be inversely
stable at u=(u)eX in the generalized sense, if,
for every sequence v = (v,) € X, the condition lim [4x, Ayp| =0
implies lim ju,A”'Ap,| = 0. Further, a mapping A between topolo-
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gical spaces 1, and 7, is called open at the point uweT],
if, for every neighbourhood U of u, the set AU is a neighbourhood of
Au, and A is said to be open, if it is open at every point u € T,.
The following theorem shows that an open mapping 4: X —> Y,
may be characterized not only by the generalized inverse stability but
also by the coutinuity of the associated inverse A~!, which is a map-
ping of AX c Y into the pseudo-metric space of all non-void subsets
of X. Moreover, we characterize the above generalized inverse stabi-
lity condition of Grigorieff [5],3., which originates in a definition of
Wolf [15],3., for linear operators, and is equivalent to the inverse
stability of [10], [12] for injective mappings 4,, ¢t € I.

(2) The following condition (i) implies (ii), and condition (ii) implies
(ii1). Comversely, if A is surjective, (ii) tmplies (i), and, if (u} = A~ Au,
(iii) smplies (ii).

(i) A is open at the point ue X.

(i) A s tnversely stable at w in the gemeralized sense.

(iif) A= ¢s continuous at the point Au.

Proof: (i) = (ii). For every ¢ > 0 and v € X such that [4v, Au| = 0, Av
belongs to the neigbourhood V = AB,(u) of Awu,Ave V. Hence,
there exists a v’ € B,(u) such that v" € A—! Av. Therefore, for every
e>0, we have |u, A='Av| < |u,v'| < e thus |u, A=' Av| = 0,
which proves the generalized inverse stability.

(ii) = (iii). From the generalized inverse stability at u it follows that,
for every & > 0 resp. ¢/2, there exist a v €I and a ¢ > 0 such that
the relation |[Au, 4,v| < é implies |u, 47" A,v| < g2 for every
¢ 2, v,€X, (cf. [5],3.(16)). Let w e Bs(Au) N AX, then there exist
aved~'wand apu > v with |4, 4u,| < 6,1 > pu, and therefore we
have |u, A" w,| < €2, v > p, and |u, A~ 'w| < g/2 < e. Hence, in
particular, [4—! Au, 4= w| < ¢, which proves the continuity of 4!
at Au.

(iii) = (ii). Iet {u} = A~ 'Au. For each v € X such that |4v, Au| = 0,
we have w = Av € By(Au) for every 6 > 0. Thus, by (iii), the relation
[A—14v, A='Au| < e is true for every e > 0. Hence |4~ 14v, A-'Au |
= 0 and, by the assumption 4—'An = {u}, |u, A=14v| = 0.

(i) = (i). Let 4 be surjective. For an arbitrary neighbourhood U of »
there exists a ¢ > 0 such that B,(#) c U. As we have proved in part
‘(ii) = (iii)’, for /2, there exists a ¢ > 0 such that for all w € By(Au) N
N AX the relation |i, A='w| < g/2 < ¢ is valid. Thus, by the surjec-
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tivity of A, for every w € Bs(Au), there exists a v € A~! w such that
the relation |, v| < g holds. Hence w € A B,(u) and B,;(Au) ¢ AB,(u) c
c AU, which ends the proof. —

Usually one calls a bijective mapping A4 bicontinuous
at the point #, if A4 is continuous and open at the point #.
According to Stummel [11], a sequence 4 = (4,) is said to be bista-
ble at u,if A is stable und inversely stable at ». By (1) and (2),
the bistability of a bijective mapping A at # is equivalent to its
bicontinuity at u. '

If we consider the images of all representatives v of a class % € X,
then, in general, the set of classes defined by Awv, v 612, consists of
different classes. However, if there is a subset Z ¢ X and, for every
class # € Z, there is a class w € ¥ such that all representatives v € %
are mapped into w, then A defines a mapping of Z into YV, which
we denote by A. Condition (lii) of theorem (1) now affirms that
this mapping A: 2 1—> Y exists for 4 = (4), if 4 is stable at each
sequence # of a subset Z c X. Moreover, A is continuous, which
yields a new equivalent stability condition.

(3) A sequence A = (A,) is stable at each u € Z ¢ X if and only if A is
a continuwous mapping of Z into Y. Moreover, the stability of A at

u = (u) €X is equivalent to the following condition:

(4) For every e > 0, there exists a 6 > 0 such that, for every z = (z,) €
€ (u}, there exists an index v € I such that the relation |z, v,| < 6 im-
plies Az, A, v| < & for every « > v,v,eX,.

Proof: (i) From the functional property of A, for every we Z and
—_— A A A as

ve{u} =u, it follows that dve Au = (Au). Thus, by (1), 4 is

stable at each u € Z. Conversely, by means of the stability of A at

each 2 € Z, there exists the well-defined mapping A: 2.5V, as we
already mentioned above. Moreover, A is continuous, as for every

2e 7 and an arbitrary representative z €z and, for every & > 0, there
is, by (liii), a 6 > 0 such that Av € B,(Az) for all v € By(z). Thus,

let v e Z such that lz;,Az] < 0, then for an arbitrary representative
v €v we have lv, 2| = |1;, zA' < 6; hence |/sz /‘1%5 = inf {|Ax, Ayl:xezA,
y ev} < |Az, Av| < .
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(ii) The above proof also establishes that, setting Z = (#} and given
€ > 0, there exists a § > 0 such that the relation |v, 72[ < ¢ implies
[Av, Au| < e for every v € X. Further, let », € I be the index in the

condition of the asymptotic equicontinuity at #, then, for any z € #,
there exists an index », > », such that |u,, 2| < /2, ¢ > »,. For every

v = (v,) € X such that lv, 2| < §/2, ¢ = »,, we have |v, z{ = |v, 'zlil <9
and therefore |4v, Az| = |Av, z@l = |Av, Auj < e. Conversely, (4

immediately implies the asymptotic equicontinuity at # and, thus,
the stability at u.—

The stability condition (4) shows that in the condition of asympto-

tic equicontinuity of [12],2.(1), which is equivalent to the stability,
we can choose the number & uniformly for all z € {#}. For the inverse
stability and the generalized inverse stability analogous characteri-
zations are true, where the number § > 0 can be chosen uniformly
for all z such that Aze{Au}. We omit the proof. Concerning the
bistability, we can state the following theorem.
(5) A bijective mapping A:X —>Y is bistable at all we Z ¢ X if and
only if the mapping A:2v > Y and the mapping (A/> l):A/\Z;—--> 7 asso-
ciated with the sequence of inverses A= = (A,”') exist, are continuous
and satisfy the rvelation

Proof: Since a bijective mapping A is inversely stable in Z if and
only if A~! is stable in AZ, by means of (3), it is enough to prove

A ~ A AA A .
the relation 4—! = (4~!). The inverse A :AZ — Z exists, as, for

arbitrary 12, v e Z such that Au — AAvA by the inverse stability the
relation !ﬁ, 7:'| — 0 holds, i.e. % = 9. Moreover A7 = A/} and, for

everyza =AzedZ and every representative w e w, the equality
(f‘l‘:‘) Az = (.//1\1) w = (A/\‘w) is true. Choose w = Az, zeze Z,
then (A/rl) Az = z; hence the assertion is proved. —

At the end of our studies concerning continuity and stability we
characterize the uniform continuity of A in a product space by a
uniform stability condition, which is even necessary for the stability

13 — Collectanea Mathematica
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at each discretely convergent sequence of a discretely compact pro-
duct space. Besides this, we state the important result that stability
at every scquence of a product space is equivalent to the uniform
stability and uniform continuity.

(6) Let Z, be non-void subsets of X,, vel, and Z = II.Z,. Then the
Jollowing statements (i), (ii), (iii) are equivalent to each other:

(i) A = (4) is uniformly continuous in Z.

(i1) Tor every e << O, there exist a vel and a 6 < 0 such that, for
everv « = v and all u,v, €Z, the velation |u,v| << implies
Au, Ay < e

(iii) A s stable at all e Z.

If limX 1s surjective and Z = I1.Z, = 11 X, = X is discretely compact,
the following statement (iv) is equivalent to (i), (ii), and (iii):

(iv) A s stable at all dzfscretelly convergent u € X.

Proof: Refering to theorem (1), condition (iii) follows from (i).

(iii) .= (ii). Suppose the contrary, then there exists a & > 0 such
that, for every » el and every 6 = 1Jt, ¢t = 1,2, ..., there exist
an index ¢ > v and elements u? o9 e Z, with luf’), Y| < 1/,
142" A0 > e, 0= 1, We can select the indices such that ¢, <, <t ...
and thus I’ = (y)n is a subsequence of I. Given a fived sequence
it = (u,) € Z and denote #,' = u, v/ =u, el —I',u' = ul, v, =
=¥ =y el', then the convergence |u',v/| — 0 (c € I) holds.
On the other hand, |4, A,v| > €, ¢ €', contrary to the stability
of (4) at (u).

(ii) = (i). For an arbitrary ¢ > 0, let 6 > 0, » € I be derived from con-
dition (ii) and # = (u,), v = (v,) € Z such that |u, v| < d. Then there
exists a »; > » such that lu,v| < é,¢ = », and by (i), it follows
that |4, u,Av,) < e ¢ > v,. Hence |[Au, Avl < e

(ii) == (iv). Let I, X, be discretely compact, let limX be surjective, and
let (iv) be valid. Suppose (ii) is not true, then there exist a & > 0,
a subsequence I’ < I, and elements u, v, € X,, ¢€l’', such that
lu,v,| -0 (tel’) and [Au,Av| > €, tel’. By assumption, there
exist a subsequence I < I’ and a uo € X, such that u, — uo (t € I").
For limX is surjective, we can prolong the sequence (i)~ to
a convergent sequence (t)er, %, — o (¢ €I). Set z, =v, tel’,
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2, =u, tel —I' then lim [u,z]| = 0, and, by (iv), it follows that
el

lim |Am,A.2| =0, contrary to |4Au,,Az| > €, tel’. The converse

el

is trivial. —

3.2. Discrete comvergence

The mapping A defined by the sequence A = (4,) enables us
now to establish a new characterization of the discrete convergence
of (4,) by means of an equality of mappings. For the sake of clearness
we denote the set of all discretely convergent sequences in X and
Y by DX and DY, resp.. A sequence of mapping A;:X,1—> Y, te 1, is
called discretely convergent to dAo: Xol— Yo, lim A, = Ao,
if lim* is surjective and if, for every u € D¥, the relations Aw € DY
and lim¥ Au = A¢lim*u hold. Furthermore, a sequence # e X is
said to be discretely (4)convergent, if ueDX and
Au e DY. We denote the set of all discretely (4,)-convergent sequen-
ces by D4. Then we obtain the following equivalence theorem.

(7) Let lLimX be surjective. Then (A,) comverges discretely to Ao,
limA, = Ao, if and only if Aisa well-defined, continuous mapping
of DX into DY and the following relation holds:

(8) Ao = lim"¥ A(lim¥)-1.

Proof: By definition, the convergence lim A, = A, follows from
relation (8), since the mapping of the discrete convergence also maps
classes of discretely convergent sequences. Conversely, lim A, = Ao
yields condition (lii), and thus A is stable at each # e DX. Then
by (3), 4 is a well-defined, continuous mapping of DX into DY, and
lim¥ A(lim¥)~1 is also defined. Hence, the definition of km A, = A,
implies Ao = lim¥ f’f(limx )~l—

A simple corollary of (7) yields the existence of a mapping

Ao: Xol—> Y, which is a discrete limit of a given stable sequence

A = (4).

(9) Let lim* be surjective, let A = (A,) be stable at each w € D 4, and for
every vo € Xo, let there be a v € (limX)~vo such that Av e DY. Then
there exists a mapping AoXol—> Yo such that lim A, = A,.

13* — Collectanea Mathematica
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Proof: Since A = (A,) is stable at cach u €D, it follows that 4 is a
well-defined mapping from D, in DY (cf. (3)). Moreover, by assump-

tion, we have D, = D¥, since, for every « € DX, there existsa v € D4

— _ AN
such that « € (v}, and the stability at v implies Au € {Av} = (4v) €
€ DY (cf. (lii)). Thus, theorem (7) yields the assertion for A, =

= lim¥ A (lLim~)—1.

As another important result of the equivalence theorem (7) we
obtain complete information of the continuity properties of discrete
limits of sequences of mappings, which relation (8) makes immedia-
tely obvious. The continuity of a discrete limit has been already
proved in [12},6.(2).

(10) Let Xo, 11X, lim¥ and Y, ILY, lim"¥ be wmetric discrete limit
spaces with discretely convergent metrics, and let Ay Xo—= Yo be the
limit of a discretely convergent sequence of mappings A X, 1—=Y,, vel.
Then Ao is continuous in Xo. Moreover, Ao is uniformly continuous in
Xo or Lipschitz-continuous or an isometrv, if A: DX1—»DY has the
corvesponding property.

The proof is an immediate consequence of the continuity of 4,
the isometry property of limY and (limX)~! (cf. 1. (2)) and the repre-

sentation of 4, in (8). The Lipschitz-continuity of A holds, for in-
stance, if the mappings 4,, ¢ € I, are uniformly Lipschitz-continuous.

The discrete convergence of mappings may be described by con-
vergence properties of the associated graphs as in classic functional
analysis. In Stummel [9]-111,1., a generalized strong convergence
permits a simple characterization by means of the graphs. The fol-
lowing characterization theorem generalizes and extends this result.

For two metric discrete limit spaces

Xo, I1.X,, im© and Y, IY, lim"

there o bviously exists a metric discrete limit space of the products,
Xox Yo, II(X,xY), lim. If we denote the graphs of the mappings
Ao, A, by G(Ao), G(A,), then the following theorem can be stated.

(11) The Lim-convergence of the graphs, that means
(12) Lim sup [1,G(4,) = Lim inf I1,G(A,) = G(4.),
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is necessary for the discrete convergemce A, — Ao(v € I). Converselv, (12)
ts sufficient for A, — Aot €1), if, for every discretely convergent se-
quence (u,) € DX, the sequence of images (A4, u,) is discretely compact.

Proof: (i) Necessity. Obviously, G(4.) ¢ Lim inf /1,G(4,) holds, if
A, = Ao(e € I). Suppose G(4o) 3o Lim sup I1,G(4,), then there exists a
(240, wo) € Lim sup TT,G(A,) such that (w0, wo) ¢ G(Ao), i.e. Ao 1te # wo.
Furthermore, there are a subsequence I’ < I and elements #,' € X,,
vel’, such that u,’ — uo, A1, — wo(c € I’). By assumption 4, -» A,
(¢ € I), we have the convergence A, — Aouo(c € I') and thus Aeue =
= wo, contrary to Aoue # w,. Therefore, we have proven that G(4,) c
c Iim inf I1,G(A4,) c Lim sup I1,G(A,) c G(4o) and all sets are equal.
(i) Sufficiency. Let (12) be valid. Let #, ~ uo(t € ) and let I' < [
be an arbitrary subsequence. Then, by the discrete compactuess of
(Aae) there exist a subsequence I < I' and a w, e Y, such that
Ay, --wo(t €1”). Thus the definition of the upper discrete limit
entails the relation (uy,w0) € Lim sup I1,G(A4,). Assumption (12) yields
(00, wo) € G(Ao) and therefore wo = Aotte and A, — Aoro(e € I").
As it is well-known, this proves A, -» Aoo(t € I). —

4. Compactness of mappings

The equivalence theorems in chapter 2 now immediately yield the
equivalence of discrete compactness and asymptotic precompactness
of a sequence of mappings. As a corollary, we obtain an interesting
compactness property of a mapping by means of discrete compactness
and asymptotic precompactness. Thus we also obtain a result of
Wolf [15],2.(4), concerning the precompactness of a mapping which
is comsistent with a discretely compact sequence of mappings. In the
case of an approximation by subspaces, the concepts of discrete
compactness and asymptotic precompactness characterize a collec-
tively compact sequence of mappings. The definitions of collective
compactness in Anselone {11, '21 and in this chapter are equivalent
in the special case of [1], {2]. As an application of our general char-
acterizations, we finally prove a generalization of the classic com-
pactness criteria of Arzeld and Ascoli.

4.1. Discrete compactness

A sequence of mappings A X, —>Y,, tel, is called discre-
tely compact, if, for every discretely bounded I1,Z,c 11X,
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the product space [[,4,Z, is discretely compact. Obviously, (4))
is discretely compact if and only if, for every discretely bounded
sequence (u,) € Il.X, the sequence of images (A4%,) is discretely
compact. Furthermore, we call (4) asymptotically pre-
compact, if, for cvery discretely bounded II,Z, c I1.X, the
product space I[,A,Z, is asymptotically precompact. Then, accor-
ding to theorem 2. (5), the following theorem is true.

(1) Let Yo be a complete metric space, let A(Yo, ILY,, limY) be a me-
tric discrete approximation with discretely convergent metrics, and let
Iim sup 114X, be separable. Then (A,) vs discretely compact if and
only if it is asymptotically precompact.

As a further result of the theorems of section 2.1, we obtain suffi-
cient conditions for the precompactness of a mapping A¢:Xol—> Y,
by means of discrete compactness and asymptotic precompactness.
Assumption (3) of the following theorem especially holds, if 4., 4,,
v €1, are consistent (cf. [10], 2.).

(2) Let Xo, IIX,, limX and Yo, 11,Y, lim¥ be metric discrete limit
spaces with discretely convergent metrics, let Lim* (I1,X,,Xo) be surjective,
and for every bounded set Z,c Xo let the relation

(3) AoZoc Lim sup A(lim*)—! Z,

be satisfied. Then each of the following conditions (i), (ii) is sufficient
for the precompactness of Ao Xol—> Yo

(1) (4,) s asymptotically precompact.
(i) limY(I1Y, Iim sup IT,A X)) is surjective, Lim sup [1,A X, is se-
parable, and (A) s discretely compact.

Proof: (i) Given a bounded set Zoc Xo, then § = sup {juo, vo ¢ %o,
vo € Zo} < o0. According to 1.(2), the relation [R¥(vo), R*(20)| == [v0,20]
holds for every wo,20 € Zo, where RX = (limX)~!. Hence sup{|v, 2| :
v,z € R¥(z0)} < 0 and R*(Z,) c Bs(u) c II,Bs(us,) for each u = (u,) €
€ R¥(Z,). Let u = (1) be an arbitrary sequence of R¥(Z,). Since the
product space IT,B,(1,) is discretely bounded, by assumption (i), it
follows that IT,A,B,(u,) is asymptotically precompact. Thus, accor-
ding to 2.(1), Lim sup I1,4,Bs(u,) is precompact. By assumption (3),
we have A¢Zo c Lim sup ARX(Zy) ¢ Lim sup I1,4,Bs(1,) and hence
the precompactness of A4oZ,.
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(ii) Under the assumptions of (ii) the sequence (4,) is asymptotically
precompact, due to 2.(2). Thus, part (i) yields the precompactness
of Ao.-—-

Theorem 2.(7) and 2.(8) now enable us to characterize the notion
of collective compactness of a sequence of mappings in Anselone
[1], [2]. In [1], [2] linear operators are being studied which map the
same Banach space into itself for all indices, whereas here we shall
consider a more general situation.

Let (A) be a sequence of mappings 4,: X, —> Y, t € I, where X,
and Y, ¢el, are subsets of a metric space M, and M,, resp.,
which constitute discrete approximations A(Xo, I1,X,, lim*) and
A(Yo, ILY, im™:) with subsets X, c M,, Yoc M,. The sequence (4,)
is called collectively compact, if, for every discretely
bounded sequence of subsets Z, ¢ X,, t € I, the product space IT1,4,Z,

is collectively compact, i.e. if |JA4,Z, is precompact in M,. The
el

discrete boundedness of 17,7, in an approximation of subspaces is
cquivalent to its uniform boundedness, if each set Z,, 1 € I, is boun-
ded. Hence in the special case of [1], [2], the definition of collective
compactness in [1], [2] and the above definition are equivalent. From
theorem 2.(7) it now follows that a sequence (4,) is collectively
compact if and only if every operator 4,, ¢ € I, is precompact and (4))
is asymptotically precompact. For a complete metric space M, and
a closed subset Y,, theorem 2.(8) yields equivalence of collective
compactness and the compactness of each A, together with the dis-
crete compactness of (4,).

Vainikko [14] has studied a similar situation as in [1], [2], consi-
dering mappings 4,:X,1—> X, and subspaces X, of a complete
space X,. There the relation 4,X, c Lim inf IT.X, is assumed instead
of surjectivity of lim (I1.X,,X,), where 4, is a mapping of X, into
itself. This constitutes a metric discrete limit space Xo,/1.X,, lim of
the domains of definition and an approximation A(4.Xo, I1.X,, lim)
of the images. For a discretely compact sequence (4,) which is con
sistent with the restriction of 4, to Zo = Liminf I X,, theorem (11)
implies the compactness of the restriction A,|Zs, since the domains
of definition of A¢|Z, and A4,, t eI, also constitute an approxima-
tion A(Lim inf /11X, I1.X,, lim).
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4.2. Compactness criteria in spaces of fumctions

Equicontinuity together with compactness at each point of a
product space is necessary and sufficient for the discrete compactness
of a sequence of functions in a discrete approximation of spaces of
functions. In view of applications this is an important generalization
of the compactness criteria of Arzeld and Ascoli.

Let Y, be a complete normed space and, for a denumerably infi-
nite, linearly ordered index sequence I, let Y,, ¢t € I, be linear sub-
spaces of Y, which constitute a metric discrete approximation
A(Yo, ILY,, lim¥) with the convergence in Y, as the discrete conver-

gence, i.e. [y, Y,| =0 (t€I),y0o€ Yo, or Yoc Lim inf I7Y,. In such a
case there always exist restriction operators 7 Yo—>Y,,
¢ €I, this means that limYy, = v, is equivalent to the convergence
relation limj|#Yyo — v,|| = 0. Then, the metrics are discretely conver-

gent. Here we still assume the existence of a sequence of restriction
operators 7Y, e I, being equicontinuous at each point 1o € Y.
Further, let X, be a compact metric space and X,, ¢ € I, be closed
subspaces of Xo. Then the Banach spaces Iy = Cy (Xo), E, = Cy (X)),
t€ 1, of bounded continuous functions of X, and X, with values
in Y, and Y, resp., constitute a metric discrete approximation
A(EoILE, ,u—Ulim) with discretely convergent metrics, if the relation

(4) Lim inf I7X, = Lim sup II.X, = X,

holds. The discretely uniform convergence wu-lim is
defined by

(5) u-lim 1, = o == sup ||, (x) — rYuo(x)i; =0 (t€)
rex,

for every sequence uo € Cy (Xo), #t,€ Cy,(X,), ¢t €. Here we do
not prove the existence of the metric discrete approximation
A(EoILE,, u-limm) and refer to corresponding results for spaces of
K-valued, bounded continuous functions in Stummel {11], § 8, where
K = R resp. K = C. By X, c X, relation (4) is equivalent to X, c
Lim inf I1 X, and moreover, by the compactness of X,, it is equi-
valent to the convergence do(Xo, X,) = sup x, X,! = 0 (¢ €I). Thus,

x€X,
A(Xo,I1.X,, limX) is a metric discrete approximation with the conver-
gence in X, as the discrete convergence limmX. Therefore, it is again
possible to define restriction operators #}:Xo-»X,, ¢ €I, which still
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satisfy (cf. Stummel {10}, 5.(5)) (%o, 7 %] < 2 do(Xo, X,), %0 € Xo. We
do not need X, ¢el, being equicontinuous but we assume that
each X is continuous.

Let us mention that, by the discrete compactness of I7.X,, the
discretely uniform convergence of » = () € II.LE, is equivalent to
the discrete convergence of mappings in the sense of section 3.2, i.e.
Um¥u(lim*)=' = w-lim u.

We shall now state the following characterization of the discrete
compactness of a sequence in A(E,, IL.E, u-lim).

(6) Let condition (4) and the above assumptions with continuous X,
vel, and equicontinuous vY, 1€ I, be satisfied. Then the discrete com-
pactness of a sequence u, € Cy (X)), t € I, is necessary and sufficient for
the following two conditions:

(1) (u) is equicomtinuous.
(i) Ior every sequence (x)e€ll X, the sequence of images (m,(x,))
is compact in Y.

Proof: (i) Necessity. Assume that, for every subsequence I’ < I,
there exist a subsequence I < I’ and a function u, € Cy (Xo) such

that wu-lim u, = u,. Suppose (i) is not true, then there exists a g > 0
el

and, for every # € N, there are an index i, and elements x{, z" € X

tn > Sy n
with (x™, 2 < 1/ and lu, (7)) — u, (&7)|| > €. If the index
set (¢, nen consists of finitely many pairwise distinct indices, it con-
tradicts the assumption of the uniform continuity of each #, e 1.
If I' =(,) is a subsequence, the compactness of X, implies the exist-
ence of a subsequence I € I' and of an element x, € X, such that

W x| >0, |2, xet >0 (1, €I, m — ). By assumption, there
is another subsequence I’ < I and a function u, e Cy (Xo) such

that wu-lime 2, = we. Since the restriction operators #Y,cel, are
v 1
assumed to be equicontinuous, it follows that 'u, (¥{"")-u0 (¥0)|| <

n

< sup Y u, (8) — rYuo(x) "L | r¥ate(x) — wo(x0) jj >0 (t, el B —

tn
-~ o). Analogously, iju, (2" - we(xo)i! -0 (¢, e I'""", # -~ ), con-
- I tn ty I 1
trary to |ju,, (&) —u, (7)), = e, 1, € I', which proves condition (i).
Moreover, we have proven that, for every sequence xoe X,,

x, € X,, 1€ 1,and every subsequence K < I, the relations u-lim u, = u,
13:¢4

and |x, %] - 0 (. € K) imply the convergence |lu(x,) — wo(%0)|| = 0
(¢ € K). Hence condition (ii) is valid, since, for every sequence (x,) €
e I1.X, and every subsequence I’ < I, there exist a subsequence



202 Hans-Jiirgen Reinhardt

I'" < I' and a %o € X, with |x, 2] - 0 (¢ €I"") and, moreover, there
exist a subsequence I'"" < I and a function #, € Cy (Xo) such that
u-lim 1w, = u,.

161’“

(ii) Sufficiency. For Eq = Cy (Xo) is complete, by theorem 1.(4) and
2.(1), it is sufficient to prove the asymptotic precompactness of
T {uycllE, Given ¢ > 0 and, for ¢/6, let 6 > 0 be the number in
the condition of uniform equicontinuity of () following from (67)
and the assumption that X, is compact and X, is closed for every ¢ € 1.

Moreover, there exist points x(l), . xé‘v" in X, such that the balls
B, (x§"), n =1, ..., N1, cover X,. By assumption, there is an index
v1 € I such that [#Xx™, x| < 6/4,¢> v, n =1, ..., N, and there is
another index », > »; such that do(X,, X,) < 6/4, ¢ > »,. From con-
dition (ii), it follows that (e, (rXx{")).e; is a compact sequeince in Y,

for every w = 1, ..., N; thus, the set Z = | (u,(r} a§")} is relatively

compact in Yo. Therefore, there exist points 2z, ..., 232 in Z such
that the balls Bela(z(”')), m=1,..,N,, cover Z. By means of the
set @ = {g: {1, ..., Ni}l—>{1, ..., N,}} of finitely many functions, we
define I, = el |ju,(#Xx{")-2?"|| < ¢/6, n =1, ..., N} and H,=
= (v, € Cy (Xo) 1 v,(x) = u,(r¥x), x € X,, vel, v > v, for each pe®.
Then It = el:v > v} = U I, and the diameter of H,, ¢ €®, is

7ED

bounded by 2¢/3. Indeed, for arbitrary ¢ €®, 4,1, €1, and x € Xo
there exists a ne{l,..., N} such that |x, x§"| < 6/4 and |7 x,,
¥ 2 < 7K %o, %ol + | %o, 2| 4 127, 7 X x| < 2d0(Xo, X,) +6/2 < 6.
Thus |, (¥Xx0) — u,(rXx) || = v, (%) — v,(*§") || < &/6 and, analo-
gously, {[v,(x0) — v,(*¥¢")|| < &/6, and, by definition of H, {|v,(¥o) —
0,(¥o) || < 4¢/6 for every x,€ X,. If we denote an index of I, by
t, for each ¢ e ®, then the asymptotic preompactness is satisfied
with the sequences " = v,|X,eCy (X)), t€l, ¢ €®. Indeed, for
every t > v,, there is a ¢ such that (eI, and for an arbitrary
%, € X,, there exists a n € {1, ..., N1} such that |x, 2{"|| < /4. Thus, as
ix, X < 6/2, we have |lu(x,) — vP(x)|| < lu(v) — u,(rXe)i] -
2 €
3
lim min sup [|#,(¥) — 2!®(¥)|| < &, and we need only prove that
el geEP 1€X,

1) — n | o () — 09 < 5 +

+ g = &. Hence

u-lim v® = v, p € D, where vif(x0) = u,,(r5%0), %o € Xo. But this is
obviously true, since the continuity of v{' implies the discrete con-
vergence of (%) to y§®' (in the sense of 3.2).—
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An anlogous equivalence theorem can also be stated, if X, 11,
are not closed in X,. Then, in theorem (6), one must use the uniform
stability condition 3.(6ii) instead of (i). In the case of K-valued
functions or functions with values in K* neN, i.c. Yo=Y, = K*
K =R or K= C, theorem (6) remains valid, if X,, X,, t€, are
subsets of a compact metric space .}/ but the relation X, ¢ X, is not
assumed. In such a case, by means of the extension theorem of Tietze,
it is proved in [11), §8, that condition (4) is even mnecessary and
sufficient for the existence of the metric discrete approximation
A(EoJLE,, u-lim) with discretely convergent metrics.



10.

11.

13.

14.

15.

RETERENCES

ANSELONE, P.M.: Convergence and ervor bounds for approximate solutions
of integral and operator equations. Proc. Symp. Wisconsin, Madison 1965,
231-252.

— Collectively compact and totally bounded sets of linear operators. J.
Math. Mech. 17, 613-621 (1968).

AUBIN, J.P.: Approximation des espaces de distribution et des opérateurs
différventiels. Bull. Soc. Math. France Mém. 12, 1-139 (1967).

BOURBAKI, N.: Eléments de mathématique, Iivre 1II, Topologie Générale.
Paris: Hermann & Cie. Act. Sci. et Ind. Nr. 1142, 1143, 1235, 1045, 1084;
1958 until 1963.

GRIGORIEFF, R.D.: Uber diskvete Approximationen nichtlineaver Gleichun-
gen 1. Avt. To appear in Math. Nachr.

KEeLLEY, J.L.: General Topology. Princeton: Van Nostrand 1955.
PETRYSHYN, W.\'.: Projection methods in nonlinear numerical functional
analysis. J. Math. Mech. 17, 353-372 (1967).

RINow, W.: Die innere Geometrie dev metrischen Raume. Berlin-Gottingen-
Heidelberg: Springer 1961.

STUMMEL, F.: Diskvete Konvergenz lineaver Operatoren I. Math. Ann. 190,
45-92 (1970). /1. Math. Z. 120, 231-264 (1971). [II. In Proc. Oberwolfach
Conference on Linear Operators and Approximation 1971. Int. Series of
Numerical Mathematics 20, 196-215. Basel und Stuttgart: Birkhiduser
1972.

— Discrete convergence of inapping. Proc. Conference on Numerical
Analysis. Dublin, August 1972. New York-London: Academic Press 1973.

— Approximation nethods in analysis. Aarhus Univ. Lecture Notes
Series 35, 1973.

STUMMEL, F., REINIARDT, J.: Discrete convergence of continuous mappings
in metvic spaces. Proc. Conf. «(Numerische, insbesondere approximations-
theoretische Behandlung von Funktionalgleichungen», Oberwolfach, De-
cember 1972. Lecture Notes in Math. 333, 218-242. Berlin-Heidelberg-
New York: Springer 1973.

VAINIKKO, G.M.: Galerkin’s perturbation method and the geneval theory of
approximate methods for mnonlinear equations. U.S.S.R. Comput. Math.
Math. Phys. 7/4, 1-41 (1967).

— The compact approximation principle in the theory of approximation
methods. U.S.S.R. Comp. Math. Math. Phys. 9/4, 1-32 (1969).

WOLF, R.: Uber lineare approxvimationsvegulire Operatoren. Math. Nachr.
59, 325-341 (1974).

Dr. H.-J. REINHARDT

Math. Seminar der Universitit

D-6000 Frankfurt amm Main, Robert-Mayer-Strae 10
Fed. Rep. Germany



