FINITELY GENERATED IDEALS IN THE
BANACH ALGEBRA He

MICHAEL vON RENTELN

In the Banach algebra Hee of all bounded analytic functions in
the open unit disc D we consider the structure of algebraically fini-
tely generated ideals. We give sufficient «analytic» conditions, that
a function f belongs to the finitely generated ideal (fy, ..., f,). We in-
troduce ideals W (fi, ..., f,) and H (f, ..., f5), that are related in a
natural way to the ideal (fy, ..., f,), and show that there are many
connections between them. We prove that no free maximal ideal is
finitely generated and use this fact in the last section for an aplication
to ring automorphisms of Hee,

1. INTRODUCTION

I.et H*° be the ring of all bounded analytic functions in the open
unit disc D. We denote by (fy, ...,f,) the ideal generated by the
functions f, ..., f, € H>. It turns out to be convenient to define the
following set:

W(fr, o i) = A{feH>: if(5)| < Ci_\__gllﬁ (21

in D for some positive constant C}.
It is obvious that W (f, ..., f,) is an ideal in H° containing
(fi, -, fs). Then the corona theorem of L. Carleson {2 (sce also

Duren 3], p. 201 ff. and Hoérmander 5, p. 948) can be stated in
the following terms.

TuroreM 1.1. Iet fi, .., f, be functions in Heo, then we have:

Le(fi, o fi) == Te W ([, ... f).

The main unsolved problem in this direction is the so-called Rubel
problem (see Birtel [1], p. 347, problem 12).
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Rubel problem: Given finitely many functions fi, ..., f, € He°.
Tind neccessary and sufficient conditions that a function f belongs
to the ideal (fy, ..., f,).

Of course, we are looking for such «analyticy» conditions. Some
time ago, it was conjectured, that we have:

felfv o fi) == feW (fi, ... f). (1.1)

The conjecture is false, as shown by the following slightly
modified counterexample of Rajeswara Rao [7). In general we have
(f1, . fu) € W(fi, ..., f,) with proper inclusion.

CoUuxTEREXAMPLE. Let F; be the outer function Fy (2) = (z — 1)
and I, be the inner function F, (2) = exp [(z + 1)/(z — 1)]. We put
h=F, fr=F;, f=F F,

From 0 < (|Fy| — |F,|)2 we have F| F,e W (F3, F2). We show
that F, F, ¢ (F3, F3). Otherwise there exists g, g, € H> with

F,F, = Fig, + Fig,.

Since F| and F, are relatively prime, we see immediately, that g;
has a factor F, and g, has a factor F;. These factors we pull out
and have

FiFy= F}Fyhy + F} I hy, with hy, hye H.

This implies 1 = F1h; + Fyhy. For real xeD and x > 1 the
right hand side of the equation tends to zero, because lim I (x) =

r—>1

= lim F,(x) = 0. This is a contradiction.
x—>1

Even if fis such a nice polynomial as f(z) = | — z the conjecture
(1.1) is also false, as shown by J.P. Rosay [8]. In section 2 a condition
will be given on f, such that (1.1) is true.

2.  SurriciENT CONDITIONS FOR (I.1)

THEOREM 2.1. Let f, fi, ..., f, € Ho°. Suppose that there exists
a neighbourhood of the boundary ¢ D in which we have the inequa-

lity |f(2)] > 0 X |f; (2)| for some 8 > 0. If fe W(fy,...,f,), then it
=1
follows that fe(fy, ..., f,)-



Finitely Generated Ideals in the Banach Algebra H* 117

Proor. By assumption there exists an e > 0, such that the follo-
wing is valid:

SRS IFE) in 1 —e<izl <1 o

and f has no zeros on |z{ = 1 — e. Let {a;} be the sequence of such
zeros of finside |z] < 1 — ¢, in which f vanishes with a higher power

than ¥ [f; (z)|. Let B be the finite Blaschke product with only zeros
i=1

in a;, with the right multiplicities, such that f/B and Y |f;| vanish
i=1

with the same power at every a,. Let {z,} be all the zeros of f inside
2] <1 — e. By construction we have locally on these points the

"

n
inequalities ¢, X, | fi| <|f/B| < d, ¥ |f;| with positive constauts ¢, dj.
fas1 i

Because {z;} is a finite sequence, there exist positive constants
g, 01, C; with 1 — |z,| > ¢ + ¢, and

0 X IFEISIUBE <G Y GE i ionl<a (2)

For z with |z — 2z,| > &) and |z] <1 — ¢ the functions f and B
are bounded away from zero; therefore, in consideration of (2.2),
we have for some 0, > 0:

RE UG SPBE i A<i—e (3

From (2.1) it follows for some d;3 > 0

"

o X Ifi ) <I(fIB) ()] in 1 —e<lz|<]1, (2.4)

because B is bounded away from zero there. (2.3) and (2.4) provide
for 64 = min (4,, 93)

% 3 14,6 < |U/B) @) in D. 23)
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Then we have 0,4|f; (2)| < |(f/B) (2)] in D for every 7 e{l,
and therefore there exist functions Fy, ..., F, € H> with

fi = (f|B) F. (2.6)
The other assumption fe W (fy, ..., f,) says that
@I<C X If@ i D 27)
for some C > 0. We claim
(2.8)

'f(z)i sCZlB(Z)l 2 fz (Z)| in Iz <1

"
!
i=1

for another constant C,.
B is in |z — z;| > ¢; bounded away from zero, therefore frcm

(2.7) we can deduce
If ()i < C31B (2)] _;1 fi@ in 2z — 2] > e (2.9)

for some C3 > 0. For |2 — z;,| < ¢; we have in consideration of (2.2)
the same inequality with the constant ;. Hence we have esta-

blished (2.8).
Using (2.6) in (2.8) yields 1 < C, ¥ |F;(2)|. By theorem 1.1 there
i=1
X (Fif)g =

exist g, ...,g, € Hee with 1 = Y, F,; g, This gives f =
i=1 i=1

= Y f.(Bg) and therefore fe (fi, ..., f.)-
i

CororrLArRY 2.2. Let f be a function continuous in the closed
disc D, holomorphic in D and without zeros on the boundary ¢ D.

Then we have

felfio ) == feW(fr, ... f).
, fu), such that (1.1)

Now we will give a condition on the ideal (f},
holds. Recall that {z;}, with 2, € D, is an interpolation sequence
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in Heo, if and only if for every sequence {W,} el there exists a
function fe Ho with f(z,) = W,. About interpolation sequences
in H* a great deal is known (see e.g. Hoffman [4], p. 194 ff.).

THEOREM 2.3. Assume that in the ideal (7, ..., f,) there is a
Blaschke product, whose zeros are an interpolation sequence in He°,

Then we have (fy, ...,f,) = W (f, ..., f,).

Proor. Iet B e (fy, ..., f,) be such a Blaschke product with zeros
{(z}. Let fe W (f1,....f,). We define Wy: = [f(z) fi (Zk)]/'gl | fi (ze) 2.

The W, are well defined. If the denominator is zero, then the singula-
rity on the right hand side of the equation is removable, and W,
is defined in the obvious way. Our assumption implies {W,} €l°°.
Because {z;} is an interpolation sequence in He°, for every 7 € {1, ..., 7}
there exists a function g; € Ho with g; (2;) = W;,. We conclude that

I =

fi(z) W,

<
|

\g|

\,’

-
I

—_

-

i&) () = 1 (z) — ]

{f (&) 1fi )12 X 1fi (z) 13 = 0.

=1 i=1

=:fKZQ -

s

According to the factorization theorem of F. Riesz (see Duren [3],
n

p. 20) B divides f — Y, f. g, i.e. there exists a function g € H> with
=1

f—Y fg =gB. 1t follows that fe (B, f| ...,f,); since Be (fi,...,f,)
i=1
we actually have fe (f; ..., f,).

REMARK. Theorem 2.3 is a generalization of the corollary in
Hoffman [4]. p. 206. We note that our condition does not depend on
the system of generators; for example, it may happen that no func-
tion f; is a Blaschke product.

1

3. A PriNcrpAL IDEAL RELATED TO (fy, ..., f,)

DeriNtrioN 3.1. By H(fy, ..., f,) we define the intersection of
all principal ideals containing the ideal (fy, ..., f,).
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THEOREM 3.2. For fy, ..., f, e H>® we have:

(1) W, . fi) e H(f1, ..., fi)-
(2) H(fi,...,f,) is a principal ideal.

Proor. Let % be a function in Hee with (fy, ..., f,) € (#). This
implies that there exist functions 4, € Hoo with f; = hh; (s = 1, ..., n).
Assume that f is in W (fy, ..., f,), in other words there exists a cons-

tant C, such that we have |f(z)| < C Z |f(2)] in D. Therefore we

n

get [f(2)] < Clh(2)] X |k (2)], and this implies f € (4). Thus we have
1

established (1).

Now we show that H (fi, ..., f,) is a principal ideal. We can assume
that every f, # 0 (kR == 1, ..., n). The canonical factorization theorem
in H? spaces (see Duren [3], p. 24) gives f, = G, F, with inner func-
tions G, and outer functions

. 1 ¢ +2 )
= A fr— | it
F, (2) ¢ €Xp (.ZﬂJo i log /e (e )|dt.
with A, e€C, 2] = 1. It is known that any non-empty collection of

inner functions has a greatest common divisor (see Hoffman [4]

p- 85). Therefore let G be the greatest common divisor of the func-

tions Gy, ..., G,. Let us define % (¢%): = max {|f, (¢%)]: 1 <k <m}.

Then we have & (¢") >0, log % (e*) € L1(8 D), h(e*) € Lo° (8 D).
Consequently

—— |
F(3): = exp (21:J - jz log s (¢") dt)

is an outer function in Hee. F divides every F,. Clearly by construc-
tion F is a greatest common divisor of the outer functions Fy, ..., F,.

Therefore (FG) is the smallest principal ideal over (fy, ..., f,);
it follows that (FG) = H (fy, ..., f,)-

CororrArY 3.3. If (fy,...,f,) is a principal ideal in H<°, then
so is W (fi, ..., f,). In fact the two ideals coincide.

Our question is now: Can W (fy, ..., f,) be a principal ideal, when
(f1, ---, f,) is not? A negative answer is provided in the following
theorem.
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THEOREM 3.4. (fy, ..., f,) is a principal ideal in He°, if and only
if W(f,..,f,) is a principal ideal.

Proor. TFor one direction see the corollary above. Now let
W (f1, ..., f,) be a principal ideal in He°, i.e. (d) = W (fy, ..., f,) for a
function d € He. Then by theorem 3.2. we have (d) = H (f1, ..., )
and it follows that 4 is a divisor of every function f;, i.e. we have
fi=dF, with F,e H> (i = 1, 2, ..., n). Because d € W (f, ..., f,,)

there exists some constant C > 0 with !d(z)! < C ¥ [f; (2)] in D.
i1

Consequently we have C-1 < Y (F,(2)| in D. In observation of
i=1

theorem 1.1, this implies 1€ F, ..., I',) and thercfore d € (fy, ..., f,)-
Thus we have established that (d) = (fi, ..., f,)-

If the function 1 is in the ideal W (fy, ..., f,), then it is also in the
ideal (fy, ..., f,). What occurs, when we only have 1 e H(f, ..., f,)?
Does it follow that e W (f},...,f,) and thercforec [e(fy,..., f,)?
That is not the case, as the following counterexample shows.

CoUuNTEREXAMPLE. Let n = 2, let f| the zero free inner function
fi1(2) =exp [(z + 1)/(z — 1)] and f, a Blaschke product, whose real
zeros have a cluster point at z = 1. For every function fe W (fi, f»)

there exists a sequence {z;}, 2, € D, lim 2, =1, such that lim f(z,) == 0.
k— o0 k— oo

Therefore we have W (fy, fa) # H (f1, f2) = H.

4. PrRIME AND MAXIMAL IDEALS RELATED TO THE IDEALS

(f1, - fu) and W (f, ..., f,)

As we have seen, W (fi, ..., f,) is an ideal which in general properly
contains (fy, ..., f,). In consideration of the relationship between
these two ideals the following question arises naturally : How diffe-
rent can these ideals be? One may guess, that a function f in
W (/y, ..., f,) cannot be too far away, in some sense. from (f, ..., f,).
We will see, that this is true. Before we proceed, let us give a
definition.

DerINTTION 4.1. ILet I be an ideal in a commutative ring R with
identity element. Then prim rad (/) [max rad (I)] denote the inter-
section of all prime [maximal] ideals containing I.
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Note that prim rad (/) and max rad (/) are again ideals. prim rad (/)
is usually called the radical of the ideal I. Kelleher and Taylor [6]
show for various rings of holomorphic functions restricted by growth
conditions, that we have W (fy, ..., f,) € prim rad (fy, ..., f,). In par-
ticular if (f}, ..., f,) is a prime ideal, then it follows that (fi, ..., f,) =
= W (fi, ..., f,)- Note the analogy to the Hilbert’s Nullstellensatz in
algebraic geometry. Unfortunately their techniques exclude the ring
Heo (see also Hormander [5]), and they stated the question, whether
the same result holds for the ring Hec. We will give some results in
this direction.

TuroreM 4.2, Let fy, ..., f, € Hee. Then we have W (f}, ... f,) €
c max rad (fy, ..., f,)-

Proor. Let (f, ..., f,) be a proper ideal in H<°, the other
case is trivial. Assume that there exists a maximal Ideal M with
(fi, -, fu) € M but W (fy,...,f,) = M. That is, there exists a func-
tion ge W (fy, ..., f,)with g ¢ M. This implies (g, M) = H°°. There-
fore there exists fe M with 6 <|f(z)| + |g(2)] in D for some posi-

tive 0. Now ge W (f}, ..., f,) tells us that (g (2)| <C i Ifi (&)} in D
i=1

for some C > 1. We deduce that (0/C) < |f(2)] —I—ﬁ‘, ifi(®)] in D.
i=1

By theorem 1.1 we have (f, fi, ..., f,) = H®°, consequently M = Heo,
a contradiction.

THEOREM 4.3. If (fy, ..., f,) is a prime ideal in H°°, then either
(ft, s ) = W(f1, ... f,) or a chain of infinitely many ideals lies
between (fy, ..., f,) and W (fi, ..., f,).

Proor. Throughout the proof we will use the mnotation
I=(f,...f,) and W=W/(fy, .. f[,) Let I +W. First we show
the existence of one ideal W, properly between I and W. Assume
that there does not exist such an ideal. We consider the quotient
ideal Q: = I: . Since the inclusion I ¢ W is proper, we have
1¢0Q,i.e. H°\ Q # . Choose any function g € H>°\ Q. Then there
exists a function fe W with fg ¢ I. Therefore we have I ¢ (I, fg) c W
and the first inclusion is proper. By assumption no ideal lies bet-
ween I and W, hence

(I fe) =W (4.1)
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From (I, fg) € (I, f) € W and 4.1 it follows that
& fl=w (4.2)

For every /i € H there exist, in view of (4.1), functions gy, ..., g,
H e H>~ with

fh= X fig: +/gH,

hence we get
fh—gH)el (4.3)

Now (4.2) and (4.3) give:
(1l —gH)W = (Il —gH)I +(1 —gH)fc I

This implies | —gH e€Q, i.e. 1 €Q + (g) == (Q, g) Therefore Q must
be a maximal ideal in H°°. By theorem 4.2 we have W c Q and
consequently

w2 e I (4.4)

Let F, Ge WN\I, then by (4.4) it follows that -G € I. Because [
is a prime ideal, this is a contradiction.

Therefore between I and W there must lie an ideal, distinct from
both, say W,. The same proof on I and W, yields an ideal W, with
ITcWy,ecW, and I # W, = W,. By induction one can sce that
infinitely many different ideals lie between I and W.

DrrIiNirioN 4.4, We call an ideal I in He fixed, if and only
if all functions of I vanish in some common point of D. Otherwise
we call [ a free ideal.

We note, that every fixed maximal ideal in H*° is principal. A
free ideal of He° can be finitely generated, in contrast to many other
rings of holomorphic functions. However, the ideal cannot also be
maximal, as the following theorem shows.

Theorem 4.5. No free maximal ideal in He° is finitely generated.

Proor. Assume M is a free maximal ideal, which is finitely ge-
nerated, i.e. we have M = (fy, ..., f,) for fi, ..., f, € H=. M is a pro-
per ideal; therefore there exists a sequence {z;} in D and a point «

on the boundary 0D, with lim z, = « and lim f; (z,) = 0 for every
k—> o0 k—>o00
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ie{l, ..., n}. We can choose a subsequence {a;} of {z;} which is ac-
tually an interpolation sequence in H° (see Hoffman [4], p. 204,
corollary). Therefore there exists a function fe H* with f(a,;_,) =0
and f(a,,) =1(k=1,2,..). We claim (fy, ..., f,, f) # He. Other-

wise by theorem 1.1 we have [f(2)] +3X |f;(2)! > 6 in D for some
=1
8> 0. In particular it follows that |f(asi_.)i + 3 if; (@se_1)i = 9,
i=1

consequently ¥} | f; (@24_)| = 0. This is a contradiction to lim f; (z,)=10
i=1

k—> 00

for every 7€({l, ..., n;. Now we show that f¢ (fy, ..., f,). Otherwise

there exists some constant C > 0, such that {f(2)] < C 3 |f; (2)! holds
i=1

in D. In particular we have [f(a,,)| = 1 < C X |f; (@), and this is
i=1

also a contradiction to lim f; (z;,) = 0 for every i e {1, ..., n}.
ko0

5. AN APPLICATION TO RING AUTOMORPHISMS OF Ho°

Let the complex constants be identified with the constant func-
tions in H®. Tet @: H* — H* be a normed, i.e. @ () = ¢, ring
automorphism. We say @ is generated by a conformal map ¢, if and
only if there exists a conformal map ¢ of D onto D with [Df] (4) =
= flp (4)] for every Ze D. The following theorem is a generaliza-
tion of the theorem in Hoffman [4], p. 143. We should note, that
the proofs there essentially use the linearity of @, which we do
not assume.

THEOREM 5.1. Every normed ring automorphism of H> is ge-
nerated by a conformal map.

Proo¥. For ieD let M; = {feH>: f(2) =0} and M = {1.
M, is a maximal ideal and also a principal ideal. Therefore so is
@ (M,), since these properties are preserved under ring automor-
phisms. From theorem 4.5, we deduce that @ (M) is a fixed ideal,
i.e. there exists a point u in D with @ (M;) € (z — u). Since D (M)
is maximal, we have @ (M;) = (z — p) = M,. It can be easily
verified, that @ is a bijection on M.
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e claim that @ (1) = 2 for every 1 € C. Assume that there exists
a leC with | (%) — 4| =206 > 0. We choose the polynomial
g(2) = 49 + 0z Then Ay is in the closure of the range R (g) of g,

i.e. Age R (g). This is equivalent to the statement, that g — 4 is
non-invertible in He°. Since @ is an automorphism, @ (g) — @ (4g)

is non-invertible; therefore @ (4g) € R [P (g)]. Since @ is normed, we

have @ (i) = 4 for every A€ Q(¢) and therefore Q(?) n R(g) =
= Q (i) n R{® (g)]. That g is not constant implies that @ (g) is not
constant. Therefore the ranges R (g), R[® (g)] are open sets. Since
Q(:) is demse in C, we have actually R(g) = R[® (g)]. Hence

D (X)) e R(g) = (A +2: |z] < 6. In particular |D (4g) — 4| < 4,
and this is a contradiction to the assumption.

Let us define a map 7: D — M by means of 7(4): = M,. 7 is
clearly bijective. Let ¢: = v 1o Do 7. Then, as a composition of
bijective maps, ¢ is bijective. It remains to show, that ¢ is also
analytic. For 1€ D, fe H® we have f — f(1) € M,. Consequently
QIf—fAI=D(f) —P[f(A)] €D (M;) = M,;. This implies that
D (f)lg(A)] = DPIf(A)] = f(4). Now let g be the identity function
in H>, choose f= ®~1(g). Then it follows that ¢ (1) = f(4) ; since f
is analytic, ¢ is a conformal map.
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