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ABSTRACT:

A coordinate free intrinsic definition of spinor fields and the Dirac
operator is presented for s#-dimensional spin manifolds. Use is made
of the modern mathematical concepts of vector bundles, principal
bundles, linear and principal connections.

IntrODUCTION: This note presents the elementary theory of spinor
fields and the Dirac operator for n-dimensional spin manifolds. In
the case of Lorentz manifolds and the standard spin representation
this material has been extensively treated by A. LicaNErRowICZ (10).
Our exposition involves no new ideas, but states the definitions and
results in a coordinate free intrinsic form.

The basic definitions (eg. vector bundles, principal bundles, linear
and principal connections) are taken from (6) and (12).

§ 1. CLIFFORD ALGEBRAS

1. The Clifford algebra over an inner product space. Let R* be a real
n-dimensional real vector space with a non-degenerate inner product,
<, >, (not necessarily positive definite). The group of proper iso-
metries of R” will be denoted by S0(#n). Consider the Clifford algebra,
a (R, over R". We shall use the canonical inclusion map R* - & (R?)
to identify R* with a subspace of &(R”). Then we have the relation

xy +yx=2<x9y>e¢ %,y eR,



20 W.H. Greub and S. Halperin

where ¢ denotes the unit element of &(R"). For every element # ¢ &(R?)
denote by L(#) the linear transformation of &(R") given by

L#v=uv v e d (RY

Let a*(R*) be the multiplicative group of &(R"). Then the ad-
joint vepresentation, Ad, of a*(R*) in &(R") is defined by

Ad(g)v =g luvg g ea* (R ved (R

2. The group Spin (n). Let G be the subgroup of &*(R") consisting of
the elements, g, which satisfy

i) R" is stable under A4 (g)
ii) det L (g) = 1.

The 1 — component of G is called the spinor group and is denoted
by Spin (n). For every element g e Spin (n), Ad(g) is a proper iso-
metry of R* and so we have a natural homomorphism

Ad: Spin (n) — SO (n).

This homomorphism is surjective and its kernel consists of the
elements ¢ and — e. Thus Spin(n) is a double covering group of
SO(n). (For details, cf. [4]).

§ 2. VECTOR BUNDLES

3. Bundle valued tensor fields. Let & = (E, =, B, F) be a vector bundle
(real or complex). A covariant tensor field of degree p on B with values
i & is a smooth assignment ¥ — 2, of p-linear maps

Q:.T,(B) X..xT,(B) ~F,

(T,(B) denotes the tangent space of B at x and F,. denotes the fibre
of & at x). Equivalently, 2 is a cross-section in the vector bundle

é ¥ ® & The &-valued tensor fields of degree p form a module
over the function ring, S (B), denoted by X?(B; &).

If £ = B X Ris the product bundle then X? (B; &) is just the mo-
dule, X? (B), of ordinary covariant tensor fields on B.

Now observe that S(B)-bilinear maps X? (B) X X?(B; &) » X?+4¢
(B; &) are given by
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(P Q) (% 7y oo Bpyg) = P (%5 Py oo ) (55 By oo By
x¢B, hieT,(B)

These induce isomorphisms

X? (B) ® X? (B; &) = X?+1(B; §)

(where the tensor product is over S(B)). In particular for ¢ =0
X? (B; &) = Sec & and we obtain isomorphisms

X? (B) ® Sec ¢ = X? (B; &).
On the other hand, there is an obvious canonical isomorphism
q
X?(B; @ 1p* @ &) — X4 (B; &).

Finally, note that we may interpret X? (B; &) as the module of
p-linear (over the ring S(B)) maps

X (B) X ... x X (B) - Sec ¢

where X (B) denotes the S (B)-module of vector. fields on B.
Next consider the space, X, (B) of contravariant tensor fields of
degree » on B. There is a unique bilinear map

i: X, (B) X X (B; §) >~ Xt~ (B;§) p=v
such that
(X, ®...8X,) D) (X,;1, ... X;) =D (X, ... X,, ... X,)
X, e X (B), @ ¢ X? (B: §).
If a is a fixed contravariant tensor field on B we shall write
i(a, @) =1i(a) D Pe X" (B; &) p=v

Observe that ¢ (X) is simply the substitution operator.

Next, let & = (E, 7, B, F) and y = (E,, w,, B,, F) be vector
bundles with the same typical fibre and let ¢: £ — % be a bundle map
restricting to isomorphisms, ¢,, in the fibres. Let y: B; — B, be the
induced map between the base manifolds. Then ¢ determines for
each p > 0 a linear map

p*: X? (Bg; £) < X? (B,; 7)
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given by

(% D) (% by ooy by) = @71 D (y 5 (AY), by, .. (BY), By).
X € Be, ]7:7- € Tx (Be).
On the other hand, let & = (E;, ¢, B, F) and 4y = (E,, m,, B, F,)
be vector bundles over the same base and let ¢: § —# be a strong

bundle map; i.e., ¢: E; - E, is a bundle map satisfying 7, o ¢ = 7.
Then ¢ induces linear maps

¢y X? (B; &) > X? (B;n)
given by
(@ @) (% 7y, oo By) = @, D (%5 By, .y 1) p=0
x€B, hjeT,(B).
Finally, let & be any vector bundle and denote by L, the vector
bundle over the same base, B, whose fibre at X is the space of linear

transformations F, — F,. Then every pair @ ¢ X? (B; L;), ¥ ¢ X?
(B; L,) determines the L ,-valued tensor field of degree p + ¢ given

by
(@ o W) (% hys oy Brpg) = D (5 s oo ) o V(%5 Py, oo Py )
x€B, heT, (B).

On the other hand, if @ ¢ X?(B; L,) and ¥ ¢ X?(B; &) then an
element @ (¥) e X?*7 (&) is determined by

D(F) (% Pyy oo pig) = D (55 Byy oo p) (P (%5 Py o Byig))
xeB,heT,(B).
The substitution operator satisfies the relation
(0) I(XQY)P(P)=:(X)D (¢ (Y)Y) X,YeX (B)
D e X?(B;Sec Ly), ¥ ¢ X?(B; &)
4. Linear commections. A limear commection in a real (complex)
vector bundle & is a real (complex) linear map

V:Sec § > X1 (B; §)
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which satisfies
V(fro)=0f-0+f Ve feS (B) oeSecé
where 6 f deuotes the gradient of f.
ExamprLe: If £ is the trivial bundle B x F, the cross-sections in &

can be identified with the smooth functions B — F. Then a linear

connection is defined by v = 6. If is called the standard linear connec-
tion.

Next, let £ and 7 be vector bundles with the same typical fibre
and let ¢: & — 7 be a bundle map which restricts to linear isomorphisms
on the fibres. Then ¢ is called connection preserving (with respect to
linear connections Vv, and v,) if

¥ 0 Vy = Vo ¥

On the other hand a strong bundle map ¢: & — 5 between vector
bundles over the same base is called connection preserving, if

Viy o @y = @y 0 Ve

If v is a linear connection in & the covariant derivative of a cross-
section o with respect to a vector field X on B is the cross-section, Vx o,
defined by

v,0=1(X) Vo
The curvature of a linear connection is the skew symmetric tensor
field, R, on B with values in the vector bundle L, given by
R(X,Y)UZVXVYO'_Vvao'—v[X’y]O' X,Y€X(B) O'GSGCE.

Next assume that & is a vector bundle over a manifold B and
that linear connections, v, and Vp, are defined in & and in the tan-
gent bundle 7. Then there are unique linear connections, v, in the

»
bundles ® 75* X & which satisfy

Vi (@0 ®.. 80 w,Q0) = _élaq@... Q (VpH)x ;¥ ... 8w, a -+
+0;Q...Qwu,®(Vexo p=0.

Since
Sec (X? 15* Q&) = X? (B, §)

we have

X1(B; @ 7p* &) = Sec (X1 7p* R E) == XP+1(B; §).
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Thus we may regard v as an operator
v: X?(B; & - X?+1(B; §).

This operator is called the covariant derivative (with respect to the
linear connections v, and vp).

Note that in the case £ = B X R, v, = §, the operator v redu-
ces to the classical covariant derivative, Finally, if a is a contrava-
riant tensor field on B which satisfies V5 2 = 0 we have the formula

(1) Vxi(@@=ia)vyx® DcX?(B;Seck) XeX(B)

Now assume that a pseudo-Riemannian metric on B is defined
and denote the metric tensor by y. Then there is precisely one linear
connection, Vg, in the tangent bundle 7 such that

1) vpy =0.
2) (Ve)x Y —(Ve)y X —[X, Y] =0 X, Y e X (B).

It is called the Levi-Civita conmection induced by the metric tensor p.

Finally, if £ is a vector bundle over B with a linear connection,
Ve, and if 75 is given the Levi-Civita connection, the second covariant
derivative of a cross-section satisfies

(2 V2o (X,Y)—Vio (Y, X)=R(X,Y)o X, YeX(B) ocSecé

where R denotes the curvature for v,.
The Laplacian of a cross-section, o, is the cross-section, Ag, de-
fined by

Ao=1(g) Vo

where g is the contravariant metric tensor on B.

Note that if & is the trivial bundle B X R and if v, is the stan-
dard connection, this reduces to the classical Laplacian of a func-
tion.

§ 3. PRINCIPAL BUNDLES AND ASSOCIATED VECTOR BUNDLES

5. Principal bundles. Let P = (P, n, B, G) be a principal bundle
with structure group a Lie group G. Then G acts without fixed
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points from the right on P. We shall denote this actionby T: P X G —
— P and write

T(2,8)=z-g zeP, geG.

Since every fibre G, = x~! (x), x ¢ B, is a submanifold of P, the tan-
gent space T, (G,) is a subspace of T, (P). It is called the vertical
subspace and is denoted by V,(P). A vector field, Z, on P is called
vertical, if every vector Z(z), z ¢ P is contained in the vertical subs-
space V, (P).

A covariant tensor field, @, of degree p on B with values in a vec-
tor space, W, is called horizontal, if D (Z, ..., Z,) = 0 whenever one
of the vector fields Z; (7 = 1 ... p) is vertical.

Next, let Q be a representation of G in W. Then @ e X? (P; W)
is called equivariant, if

TH*DP=Q(@E NP geG.

A tensor field which is both horizontal and equivariant is called
basic. The spaces of horizontal (equivariant, basic) tensor fields of
degree p are respectively denoted by X?, (P; W), X?; (P; W) and
X?, (P; W). Note that X0, (P; W) = S (P; W) and thus X0, (P; W) =
= S;(P; W).

Next, let P= (P, n, B, G) and P = (g, =, B, G) be principal bundles.

A homomorphism P — P is a pair (@, o) where

) oG —~ Gisa homomorphism of Lie groups.

2) ¢: P— D is a smooth map satisfying

p(z-8) =90 zeP,geh.

Then ¢ is fibre preserving and hence it induces a map y: B — B.

6. Principal commections. A principal commection in a principal
bundle P, is smooth assignment of projection operators

V(): T.(P) ~ V. (P)

in such a way that the diagrams

r,(p)—Le  1,(P)
V) V(g
Y aT Y

V,(P) —'—:g—> V. (P)
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commute. The operators V (z) and H (2) = ¢ — V (2) (¢ the identity
map) are called the vertical and horizontal projections.

Suppose a principal connection is defined in P and let @ be a ten-
sor field on P with values in a vector space W. Then the horizontal
part of @, H* @, is the tensor field given by

(H* D) (7, Ly, ..8p) = D (7 H (2)C4, ... H (2) &)
zeP,CieT,(P).

If fis a smooth function on P with values in W, then H* df is a
horizontal tensor field of degree 1 on P. It is called the covariant
exterior derivative of f. If f is equivariant (with respect to a represen-
tation of G in W), then H* §f is also equivariant and hence basic.
Thus H* § restricts to an operator

H* 6: S(P; W), — X1 (P; W).

Next, let ¢: P — P, 0: G — G be a homomorphisur of principal
bundles P and P over the same base B and assume that principal
connections, V and V are defined in P and P. Then @ is called con-
nection preserving, if the diagram

T,(P) o)., Ty (P)

A

l v, l ch(Z)
(do)

Vz (P) ——z—* ep(z)(ls)

commutes.

If for every z € P the linear map

(dg),: V., (P) >V (P)

A A
is an isomorphism, and V is a given principal connection in P, then
there is a unique principal connection, V, in P such that ¢ is con-
nection preserving. V is called the induced principal connection.

7. The associated vector bundle. Let P = (P, n, B, G) be a principal
bundle and let Q be a representation of G in a vector space W
(real or complex). Then an equivalence relation in the product ma-
nifold P X W is given by

(2, w) ~ (28, Q (8) ') zeP,wcW,gegG,
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Denote by P X W the quotient manifold of equivalence classes and
by

g PXW P X W

the corresponding projection.

Then a surjective smooth map o: P X; W — B is determined by
the commutative diagram

PxwW—21 . px,w

7Ty l@
Y

P > B

where 7, denotes the obvious projection. This map makes P X W
into a vector bundle over B with W as typical fibre. In fact, if we set
W, =071 (%), x € B, then there is a unique linear structure in W,
such that g restricts to isomorphisms

.: W ->W, x =7 (2).
The vector bundle

£= (P x W, o B, W)

so obtained is called the associated vector bumdle of P (with respect
to the representation Q) and g is called the principal map. Note that
the linear isomorphisms ¢, satisfy the relations

3) ng:qx°Q(g) ZCP»gEG'

Since the principal map restricts to isomorphisms on the fires,
it determines linear maps

q¥: X? (P; W)« X?(B; §) p=0

(cf. sec. 4). Clearly, if @ ¢ X?(B; £) then ¢* @ is a horizontal tensor
field. Moreover, relation (3) implies that g% @ is equivariant with
respect to the representation (). Hence g# can be regarded as a map
into X?5 (P; W). It is easy to verify that this map is an isomorphism,

g*: X1, (P, W) = X?(B; &) p=0.
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In particular, for p = 0, we have an isomorphism

L

g¥: S; (P; W) Sec £&.

8. Assoctated commections. Assume now that a principal connection
is defined in the principal bundle P and let & denote the asso-
ciated vector bundle with respect to a representation of G. Then
there is precisely one linear connection, v,, in & such that the dia-
gram

q‘-ﬂ:
Sect — 1" o S.(P;W)
lvg H*6
Y

q#
X1 (B; 8 — T x1,(P, W)

commutes. V, is called the associated linear commection.
Next, let ¢: P - P,9: G - G be a homomorphism of principal
bundles over the same base. Assume that representations

0:G ~GL (W), (Q:G ~GL (W)
are given such that

O =0() geG.

Then there is a unique strong bundle map, v, between the associated
vector bundles such that the diagram

PxwW—_2X" _puw

q q
Y " LY
PX Wt s Px W
: 0
i B k

commutes. Moreover, if ¢ is connection preserving with respect to

principal connections in P and P, then y preserves the associated
linear connections,
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Finally, let Q: G - GL (W) and R: G— GL (V) be representations
of G and consider the induced representation, S, in the space L (V; W),

S(ge=0(ge-poR(g! geG gL (V;W).

Then there is a natural strong bundle isomorphism

~

w: L(P XeV,PXcW) = P x¢cL(V;W)

(here L (P X V; P X W) denotes is the vector bundle over B whose
fibre at x is the space of linear transformations maps from V, to
w.,).

Moreover, if a principal connection is defined in P and if the asso-
ciated vector bundles are given the associated connections, then
is connection preserving.

9. G-structures. et M be an n-manifold with tangent bundle
Ty = (T, 7wy, M, R") and let G be a Lie group. A G-structure on M
consists of

1) A principal bundle P = (P, =, M, G).

2) A representation R: G — GL(R").

~

3) A strong bundle isomorphism «: P xX; R* = —1,,.

Assume that a G-structure is defined on M and let Q be a repre-
sentation of G in a vector space W (real or complex). The represen-
tations R and Q induce a representation, S, of G in the space L(R"; W).
Consider the associated vector bundles

E = (1) Xe R”, 9, A’I, R”)
n= (P xX¢cW,o, M,W)
¢ = (P x¢ LR, W), o, M, LR W)).

Let f: R* - W be a linear map invariant under the representa-
tion S;i.e.,

Se)f=1 geG.
Then f determines a tensor field I'; ¢ X' (M; #) given by
Iy (% 1) = ((gn)so folge). o o:[lj h xeM heT,(M) zea!(x).
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(Note that, since f is invariant, the right handsi de of the equetion
above is independent of the choice of z e ™! (x).

ProrositioN I: Assume that a principal connection is defined in P
and let &, 7 and { have the associated connections. Give 7, the linear
connection induced by «. Then the covariant derivative of I’ is zero,

l Vel =10

Proor: Let

B L(ay: ) = L (& 7)

be the bundle map induced by «,

ﬂ(q’l):(p«todz ch.
Counsider the sequence of isomorphisms

4

Sec L (v 1) é Sec L (£ 7) 2 Sec ¢ L. S, (P; L(R*; W),

]

Then f and I’ are connected by the relation

(4) | gt BT =f

as follows from the definitions. (Identify f with the constant func-
tion P -- f).

The bundle maps f and » are connection preserving and so we
have the commutative diagram

i “ B
X1(M; n)=Sec L(zy;n) é Sec L (& 1) :’f» Sec ¢ -q:- S; (P; L (R% W))

| v, | VLt | Ve VA | H* ¢

X2(M: n) = X' (M: L(x,; 1) ﬂ§ XU (M L(E; ) = X1 (M; ©) = X', (P; L(R% W)).

* Zse q*
Here v, denotes the covariant derivative for 5, H*4 is the covariant
exterior derivative for P, and all the other operators are associated

linear connections. Hence by (4), v, ", corresponds to H*df(=0)
under the isomorphism g+ x, f,.
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§ 4. SPIN MANIFOLDS

10. Spin structures. Let M be a connected oriented n-manifold and
equip the tangent bundle 7, = (T, 7,, M, R*) with a pseudo-Rie-
mannian metric, y. Recall from sec. 2 the homomorphism

Ad: Spin(n) -> SO (n).

A spin structure on M is a G-structure with G = Spin(n) and o = Ad.
Thus a spin structure on M consists of a principal bundle P == (P, x,
M, Spin(n)) and a strong bundle isomorphism

~

o P X Spin(n) Rn — T.‘\!'

An n-manifold neced not admit a spin structure. Indeed, if (3, y)
is an orientable Riemannian manifold (y positive definite) or an orien-
table Lorentz manifold (i.e., y has signature » — 2) with orientable
time cone, then M admits a spin structure if and only if its second
Stiefel-Whitney class is zero. (cf. [11]). If M is a non-compact Lo-
rentz 4-manifold of this type, this condition is equivalent to the
parallelizeability of M. (cf. [5]).

A manifold together with a spin structure is called a spin mani-
fold. Let M be a spin manifold and consider the principal bundle
of positive orthonormal n-frames, P = (13, 7, M, SO(n)). Then there
is a natural homomorphism of principal bundles, p: P — 13, Ad:
Spin () - SO () which makes P into a double covering of P. Mo-
reover we have the commutative diagram

P % Rn . q > I)XSpin-(n) Ru

\9‘

>

it /e

|
(5) et |

A Y p Y
I) X R” -——q > P X 50 (n) R"' =

‘[M

z\z

A .
where « is the canonical isomorphism.

11. Spinor fields. Let M be a spin manifold and let Q be a representa-
tion of Spin (#) in a vector space W (real or complex). A spinor field on
M (with respect to Q) is a cross-section in the associated vector bundle

& = (P Xspm(n) VV) 0, A/[; W)
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More generally, a fensor spinor fiald of degree p on M is a cova-
riant tensor field of degree p on M with values in & Thus a spinor
field is a tensor spinor field of degree zero.

If
q: PxW-—>P XS{n‘n(n) w

is the principal map for the representation @, then
g¥: Xty (P; W) — Xt (M; &)

is an isomorphism between tensor spinor fields of degree p on M and
basic tensor fields of the same degree on P with values in W.

12. Conmections in a spinor bundle. Let (M, v, o) be a spin ma-
nifold. Let v, be the Levi-Civita connection in 7, corresponding to
the pseudo-Riemannian metric y. Then there is a unique principal
connection in P which induces Vg Via % (cf. sec. 10). Since the map
b P~ Pisa convering projection, the connection in P induces a
principal connection in P. This connection, finally, determines linear
connections in the associated vector bundles. In particular, we have
an induced linear connection in P X g,y R* and the isomorphism
o is connection preserving (cf. sec. 8).

13. The Dirac field of a represemtation. Again let (M, y, «) be a
spin manifold and consider the Clifford algebra @(R") over the
underlying pseudo-Euclidean space R*. Let @ be a representation
of @(R") in a vector space W (real or complex) and consider the
corresponding representation (obtained by restricting @)

0: Spin (n) — GL (W).
Then we have the associated vector bundle
N = (P Xspinm W, 0, M, W).
On the other hand, @ restricts to a linear map
fiR* L (W; W)
(where L (W; W) deuotes the space of liuear maps W — W)

and a simple computation shows that

(fodd(g)y=0Q (g f(y)oQ(g)' geSpin(n) yeR"
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Thus we may regard f as an invariant element of L (R*; L (W; W)).
It follows that f determines a spinor tensor field Iy e X* (M ; L (n; )
as described in sec. 9 (note that L (1; %) plays the role of % in
sec. 9).

DeriNiTION: I is called the Dirac field associated with the represen-
tation .

The Dirac field is given explicitly by

Ty (k) = (qn): o f (g oo, ™t (B)) o (gy): "
xeM,zen" ' (x), heT, (M)

where ¢,: P X W - P Xgpy W and ¢: P X R* > P X, R" are
the respective principal maps.

ProrositioN II: The Dirac field has the following properties:

1) Ly ) o Iy (x5 ) + Iy (05 Bg) o Iy (265 ) = 2 < By, iy >
xeM, hy, by e T, (M).
2) If v, is the Levi-Civita connection in 7, and P and P X s

W are given the induced connections, then the covariant deriva-
tive, v, in X (M; L,) satisfies

Proor: 1) Set

Then
<YLY > = <hy hy >.
It follows that
Iy (%, hy) o Ty (%, hy) + Iy (%, hy) o Ty (%, hy) =
= (2.): [f 1) o f(y2) +F(y2) o f ()] o (g)s™" =
= (2,): P (V172 + Y251 o (¢,)." ' =

= (%)zd’@ <y1:y2] > B) O(Qf])tﬁl =
=2<yLy2>t=2<h, hy >

3 — Collectanea Mathematica
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2) This is an immediate consequence of Proposition I, sec.9.

14. The Divac operator. Let (M, y, «) be a spin manifold ‘and let
® be a representation of &(R*) in a vector space W (real or complex).
Consider the associated vector bundle

n= (P XSpm(,;) Wr 0, 115[; W)~

Recall from sec. 12 that the Levi-Civita connection in 7,, determines
a linear comnnection in 7%, with covariant derivative v.
We shall use @ and v to define a linear operator

D: Secn - Sec g
to be called the Dirac operator.

Let I'y e X' (M; L,) be the Dirac field associated with the repre-
sentation @. Then, if ¢ € Secn, we can form I'; (Vo) € X?(M; ) (cf.
end of sec. 3). Applying the operator 7(g) (g the contravariant metric

tensor) yields a cross-section in %. This cross-section is denoted by
Do,

(6) Do =i (g) I'; (Vo)

The linear operator D; Sec 5 — Sec # so obtained is called the Dirac
operator associated with the representation @.

ReMArk: If M is a Lorentz manifold (» = 4) with spin structure
and @ is the Dirac representation of &(R* in the complex vector
space C4, the Dirac operator defined above coincides with the classi-
cal Dirac operator.

15. The square of the Dirac operator. Consider the operator
D% Secn — Sec .

To obtain an explicit expression for this operator, define the com-
mutator [y, I';] e X*>(M; L,) by

(I} Y] (%5 by, Bo) = Ty (565 By) o Ty (x5 hy) — Ty (5 ho) o Ty (%, y)

xeM,  hy,hyeT, (M)
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On the other hand, the curvature tensor, R, for the induced con-
nection in % is also an element of X?(M; L,). Hence we can form
(I, I']e Re X*(M; L,) (cf. sec 3). Finally, let g denote the contra-
variant tensor field on M of degree four given by

g~(x; Ry, ha, hs, ) = g (%5 By, ha) g (%5 By, ).
xeM,h;eT, (M).

ProposrrioN III: The square of the Dirac operator is given by

~

D2=p —1/4i(§) (T}, T}] R)

Proor: Let ¢, ..., e, be a local n-frame on M and let el, ..., e* be
the #n-frame. Determined by

(&, e,y =0y (v, p=1..n).

Then
¢=3e®e
and "
E:Z@@@@M@ﬂ
Set "
v, =1(e)ov
and

Now formulae (1), (0) and Proposition II, 2) imply that
D2oi(g) I'tv (i(g) I3V o) =
= S LL(%.6(8) ;7 ) =
~S1,6@ 9.7 9).
This yields

(1) D2o=3SIIil)v.,ve=3T,T.i()il,) viec
v,u

v,
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Now write
r,r,=12I,I,+I,oI')+ 1/2[I", T,]

and observe that, in view of Proposition II, 1),

I'yoI', +T'yo Iy = 2¢°, e*) e
It follows that
(8) TyoT,= (e, ey o+ 12[T,, T,
Combining formulae (7) and (8) yields

D20 = 3 (e, ey i o) i(e) V o +
+ 1200 1314 () () V20 =
= Ao—1/4[1, I] (( (e) 7 (e)) — i (en) 7 (e)) V20)
Finally, applying formula (2) we obtain
Do =A0—1/4[l,, TR (e,e,)0=

—ho— 3 Ti6Re®eRe) (T, I]oR)o =
v,

~

1. .
ZAU—*Zi(g)(LPfrFf]"R)U

which completes the proof.



(7)

(8)
)

(10)

(11)

(12)
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