FISCHER CLASSES IN FINITE GROUPS

by

J. R. MARTÍNEZ VERDUCH

Departamento de Algebra y Fundamentos Facultad de Ciencias - Zaragoza

ABSTRACT. — In [2] we define the concept of a α -satured Fitting class». The present work investigates a particular type of such classes, those we have called α -sicher classes relative to α , which allow us to present a version of Fischer's theorem valid for α -solvable groups. We have followed the type of proof of the cited Hartley Theorem, which is essentially based on the behaviour of the injectors of a group α with respect to the complements of self-centralizing factors of α , with the necessary modifications not disposing of the hypothesis of solubility.

1. — NOTATION AND PRELIMINARIES. — We will represent by π a set of prime numbers and by π' , the set of prime numbers which do not belong to π .

All the groups considered in the present work are assumed to be finite and π -solvable.

By the statement χ is a class of groups, we will understand a subclass of the π -solvable groups which contains all the isomorphic copies of its members and all subgroups of order 1. In particular \mathcal{U}_{π} , is the class of π' -groups.

A class of groups \mathcal{F} is called a Fitting class if:

$$N \leq G \in \mathcal{F} \Rightarrow N \in \mathcal{F}$$

$$G = N_1 \cdot N_2 \triangleright N_1, N_2 \in \mathcal{F} \Rightarrow G \in \mathcal{F}$$

It follows that if \mathcal{F} is a Fitting class, each group G possesses a single normal maximal \mathcal{F} -subgroup, called the \mathcal{F} -radical of G and which is represented by $G_{\mathcal{F}}$. Here, in speaking of an \mathcal{F} -subgroup, we simply mean a subgroup belonging to \mathcal{F} .

If \mathcal{H} and \mathcal{K} are Fitting classes, the class product $\mathcal{H} \cdot \mathcal{K} = \{G \mid G/G_H \in \mathcal{K}\}$ is also a Fitting class and such operation is associative.

Let \mathcal{F} be a Fitting class. A subgroup V of G is said to be an \mathcal{F} -injector of G if $V \cap N$ is \mathcal{F} -maximal in N for any subnormal subgroup N of G. An \mathcal{F} -subgroup V of G is a Fischer \mathcal{F} -subgroup of G, if V contains every \mathcal{F} -subgroup of G wich is normalised by V

A Fitting class \mathcal{F} is said to be π -saturated (cf. [2]) if $G \in \mathcal{F}$ whenever $O^{\pi'}(G) \in \mathcal{F}$, representing by $O^{\pi'}(G)$ the smallest normal subgroup N of G such that G/N is a π' -group.

Finally, as is usual in the theory of groups, for the two subgroups H, K of a group G, we represent by [H, K] the subgroup commutator of H and K, and if A is a subset of G, $\{A\}$ represents the subgroup generated by A, and $\{A^G\}$ the smallest normal subgroup of G which contains A.

- 2. FISCHER'S THEOREM. —
- (2.1) Definition. For a class \mathcal{F} of groups, we say it is a «Fischer class relative to π » when:
 - i) is a π -saturated Fitting class
 - ii) $N \leq H \leq G \in \mathcal{F}$, $N \leq G$ and H/N p-group $(p \in \pi)$

implies $H \in \mathcal{F}$.

(Note that if π is the set of all the prime numbers, the concepts of the Fischer class and the Fischer class relative to π , coincide, as do those of solvable and π -solvable)

We will immediately recall some results concerning n-saturated Fitting classes, which we will need later on, whose proofs can be seen in [2].

- (2.2) I,emma. Let $\mathcal F$ be a Fitting class. The following propositions are equivalent
 - i) \mathcal{F} is π -saturated
 - ii) $\mathcal{F} = \mathcal{F} \cdot \mathcal{U}_{\pi}$.

Let \mathcal{F} be a π -saturated Fitting class. It is verified;

- (2.3) THEOREM. Every group G possesses \mathcal{F} -injectors which are of π -index and conjugate in G.
- (2.4) LEMMA.
- A. (1) If $1 = G_0 \leq G_1 \leq ... \leq G_n \leq G$ is a series of a group G such that each of its groups factors G_{i+1}/G_i (i = 0, 1, ... n 1) is a π' -group or a nilpotent group, then, V is an \mathcal{F} -injector of G, if, and only if $V \cap G_i$ is a maximal \mathcal{F} -subgroup in G_i for $1 \leq i \leq n$.
 - (2) Let M be a normal subgroup of a group G and V an \mathcal{F} -subgroup of G, such that $M \cap V$ is an \mathcal{F} -injector of M and $G = M \cdot V$. Then, V is an \mathcal{F} -injector of G.
- B. Let V be an \mathcal{F} -injector of a group G, it is verified
 - (1) if $V \leq H \leq G$, V is also an F-injector of H
 - (2) V is a pronormal subgroup in G
 - (3) if $H \leq G$, $V \cap H$ is an \mathcal{F} -injector of H. Moreover $G = H \cdot N_G(V \cap H)$
 - (4) V covers or avoids each chief factor of G.

The result to which we refer in the introduction is:

THEOREM 1. If \mathcal{F} is a Fischer class relative to π , then the \mathcal{F} -injectors of any π -solvable group G and the Fischer \mathcal{F} -subgroups of G which contain a Hall π' -subgroup of G, are the same conjugate class.

We will not prove this directly, but will only deduce it as a consequence of another (theorem) which we will see later on.

Firstly, we will detail a series of results, proved by Hartley for solvable groups and Fischer classes, which contine being valid in the class of π -solvable groups without requiring more than that \mathcal{F} be a Fischer class relative to π .

(2.5) DEFINITION. Let \mathcal{F} be a π -saturated Fitting class, H/K a chief factor of a group G, and V an \mathcal{F} -injector of G, It is said that H/K is « \mathcal{F} -covered» if V covers H/K, and « \mathcal{F} -avoided» if $V \cap H \leq K$.

By the conjugacy of the \mathcal{F} -injectors of G, the preceding definition is independient of the \mathcal{F} -injector V considered. Moreover, as every \mathcal{F} -injector V of G contains a Hall π' -subgroup of G, the chief factors

of G which are π' -groups are always \mathcal{F} -covered. The possibility of being \mathcal{F} -avoided remains limited therefore, by the chief π -factors of G (p-factors, $p \in \pi$).

(2.6) Lemma. Let \mathcal{F} be a Fischer class relative to π , V an \mathcal{F} -injector of a group G, P a Sylow p-subgroup $(p \in \pi)$ of V, and H/K an \mathcal{F} -avoided factor of G of order a power of p. Then $[P, H] \leq K$.

Proof: cf. [1] Lemma 2, page 196.

- (2.7) Lemma. Let G be a group and V a subgroup of G such that for any normal subgroup N of G, and any $x \in G$, $N \cap V$ and $(N \cap V)^x$ are conjugate in N. Then, if P is a Sylow p-subgroup of V, the following propositions are equivalent.
 - i) P is a Sylow p-subgroup of $\{P^G\}$
 - ii) If $K \le H \le \{P^G\}$ and H/K is a chief p-factor of G avoided by V, then $[H, P] \le K$

Proof: cf [1] Lemma 3 page 196.

COROLLARY. Let \mathcal{F} be a Fischer class relative to π , and V an \mathcal{F} -injector of a group G. Then, V is p-normally embedded in G for all primes $p \in \pi$.

- (2.8) Lemma. Let G be a group and p a prime number belonging to π . Let V be a p-normally embedded subgroup of G and H/K a p-factor of G verifying
 - i) it is complemented
 - ii) it is avoided by V
 - iii) $C_G(H/K) \leq H$

then every complement for H/K in G contains a conjugate of V.

Proof: cf [1] Lemma 4 page 198.

(2.9) Lemma. Let V be a pronormal subgroup of G and H/K a chief factor of G, centralised by V. Then, the subgroup $N = N_G(V)$ covers H/K.

Proof: cf [1] Lemma 5 page 198.

(2.10) Definition. Let \mathcal{F} be a π -saturated Fitting class and G a group. A factor H/K complemented in G, is said to be \mathcal{F} -complemented if every complement for H/K contains an \mathcal{F} -injector of G.

THEOREM 1*. Let \mathcal{F} be a π -saturated Fitting class and G a group. Assume that a p-factor $(p \in \pi) H/K$ of G is \mathcal{F} -complemented in $L \leq G$, whenever:

- i) H/K is a p-factor of $L \leq G$ and $C_L(H/K) \leq H$
- ii) H/K is complemented in L
- iii) H/K is \mathcal{F} -avoided in L

Then, every Fischer \mathcal{F} -subgroup of G, which contains a Hall π' -subgroup of G, is an \mathcal{F} -injector of G.

Note

Theorem 1 is an immediate consequence of this. On account of the corollary of Lemma (2.7), if \mathcal{F} is a Fischer class relative to π , every \mathcal{F} -injector of L is p-normally embedded in L for each prime p of π , and, by the Lemma (2.8) every factor of G of the type considered is \mathcal{F} -complemented in L.

Proof: We will assume that the theorem is false and consider a group G counter-exemple of minimal order. Let V be an \mathcal{F} -injector of G and E a Fischer \mathcal{F} -subgroup of G such that it contains a Hall π' -subgroup of G, but is not an \mathcal{F} -injector of G.

We will call the \mathcal{F} -radical of G, F. Necessarily F is a proper subgroup of V, whereas, in the contrary case, E = V. Because F is not an F-injector of G, we can consider the subgroup H of G, given by:

- a) $F \triangleleft H \triangleleft G$
- b) H is minimal with respect to the condition $F \leq V \cap H$

We note $V_0 = V \cap H$ and $N = N_G(V_0)$. We observe that because F is a proper subgroup of $V \cap H$, $V \leq N < G$ holds. Moreover by (2.4) B - 3, $G = H \cdot N$.

We will set out the separate steps of the proof.

(A) $E \cap H$ is not an \mathcal{F} -injector of H

If $E \cap H$ is an \mathcal{F} -injector of H, then it is conjugate to V_0 in H, and we may assume without loss of generaly that $E \cap H = V_0$ But tehn $E \leq N < G$ and by the inductive hypothesis, E and V would be conjugate in N in contradiction to G's being a minimal counterexample.

We will now consider a normal subgroup K of G such that $F \leq K \leq H$ and H/K is a chief factor of G.

- (B) 1. -H/K is a p-elemental ($p \in \pi$) abelian group.
 - 2. K is the unique maximal member of the set of normal subgroups of G lying between F and H.

By the choice of K and G being π -solvable, H/K is either a π -group or a π' -group. We will assume that H/K is a π' -group. Since $E \cap H$ contains a Hall π' -subgroup of H, $H = (E \cap H) K$ is verified, and given that $(E \cap H) \cap K = E \cap K = F = V \cap K$ is an \mathcal{F} -injector of K. We coclude by (2.4) A - 2, that $E \cap H$ is an \mathcal{F} -injector of H. Then, by (A), H/K is necessarily a p-elemental abelian group $(p \in \pi)$ (H/F) is also a π -group, since \mathcal{F} is a π -saturated Fitting class and $V \cap K = F$ is an \mathbb{F} -injector of K).

We will now assume that at least two elements K_1 , K_2 , exist, maximal in the set of normal subgroups K of G such that $F \leq K < H$. Because H/K_i is an abelian group (i=1,2) and $V_0\left(K_1 \cap K_2\right)/K_1 \cap K_2 \leq H/K_1 \cap K_2$, the subgroup $V_0\left(K_1 \cap K_2\right)$ of G is normalised by H, and since $N \leq N_G\left(V_0\left(K_1 \cap K_2\right)\right)$; $V_0\left(K_1 \cap K_2\right)$ is a normal subgroup of HN = G. By the choice of H made, $H = V_0\left(K_1 \cap K_2\right)$ is verified and thus $K_i = K_i \cap H = K_i \cap (K_1 \cap K_2) V_0 = (K_1 \cap K_2) \cdot F = K_1 \cap K_2 (i=1,2)$, that is to say, $K_1 = K_2$ as we wanted to prove.

(C) HE = G

If HE < G, then E is an \mathcal{F} -injector of HE and thus $E \cap H$ is an \mathcal{F} -injector of H, in contradiction to the result proved in (A).

(D) H/K is unique minimal, normal subgroup of G/K

Let J/K be a normal minimal subgroup of G/K, distinct from H/K, then, J/K. $H/K = H_1/K$ is a normal subgroup of G/K which properly contains H/K. By (C), $H_1 = H_1 \cap HE = H(E \cap H_1)$. We will consider the subgroup H_1^* of H_1 , defined by $H_1^* = (E \cap H_1) \cdot K$. We will prove that H_1^* is a normal subgroup of G. Since G is π -solvable, two possibilities exist for the order of J/K.

- a) If J/K is a p-elemental abelian group $(p \in \pi)$, then, H_1/K is an abelian normal subgroup of G/K, so H_1^*/K is normalised by H/K; and since H_1^*/K is also normalised by EK/K because $(E \cap H_1)$. K is by E, we conclude $H_1^*/K \leq EK/K$. H/K = G/K and therefore $H_1^* \leq G$.
- b) If J/K is a π' -group, then H_1/K is π decomposable. By the same reasoning as in the preceding case, H_1^*/K is normalised by EK/K. As E by the hypothesis, contains a Hall π' -subgroup of G H_1^*/K contains a Hall π' -subgroup of H_1/K , then $J/K \subseteq H_1^*/K$, and therefore $J \subseteq H_1^*$, thus verifying $H_1^*/J \subseteq H_1/J \cong H_1/K / J/K \cong H/K$, then $H_1^* \subseteq H_1$, because H/K is abelian. The two previous assertions allow us to state that H_1^*/K is normalised by $(EK/K) \cdot (H_1/K) = G/K$ and therefore that $H_1^*/K \subseteq G$, in this case also.

Next we will prove that $E \cap H_1^*$ is an \mathcal{F} -injector of H_1^* (we note in the first place that H_1^*/K is distinct from the trivial subgroup of G/K since in the contrary case $E \cap H_1 \leq K$, and thus $H_1 = H$, in contradiction to the previous observation). Due to the construction of the subgroup H_1^* , the \mathcal{F} -subgroup $E \cap H_1^*$ and $E \cap H_1$, coincide, thus we can state $H_1^* = (E \cap H_1^*) \cdot K$. Since $(E \cap H_1^*) \cap K = E \cap K = F$ and F is an \mathcal{F} -injector of K, we conclude from (2.4) A - 2 that $E \cap H_1^*$ is effectlively an \mathcal{F} -injector of H_1^* .

Due to the conjugacy of \mathcal{F} -injectors we can assume $V_1^* = V \cap H_1^* = E \cap H_1^*$, thus disposing of the following sequence of \mathcal{F} -subgroups.

 $F = E \cap K \leq E \cap H \leq E \cap H_1 = E \cap H_1^* = V_1^*$, being some of the preceding contents necessarily strict because H is a proper subgroup of H_1 , and therefore $N_1^* = N_G(V_1^*)$ is also a proper subgroup of G. Because H_1^* , is a subgroup normal in G, E and V are subgroups of N_1^* , then by the inductive hypothesis they are conjugate in N_1^* , in contradiction to the fact that G is a minimal counter-example, in conclusion, the affirmation (D) remains proved.

(E) G = KN, equivalently N covers G/K

According to the choice of H made, V doesn't avoid the thief factor H/K of G, then necessarily $(V \cap H)K = H$ and therefore $G = HN = (V \cap H)KN = KN$.

As F < N < G; the previous result allows us to assert that the set of thief factors of G, between F and K, which are not covered by N, is not empty. Let A/B be one of these factors, with A of maximal order. (\mathcal{F} π -saturated Fitting class implies that A/B is a p-elemental abelian group ($p \in \pi$). Because G = AN, the subgroup $B(A \cap N)$ is normal in G, then by the definition of A/B $A \cap N \leq B$, and therefore the subgroup BN complements A/B in G.

(F) $A = C_G(A/B)$

Let C be the normal subgroup of G given by $C = C_G(A/B)$. Necessarily $C \cap H < H$, since if $H \le C$ is verified, V_0 would centralise A/B and as V_0 is pronormal in G, then, from the Lemma (2.9) N would cover A/B in contradiction to the choice of such a chief factor of G. Because A/B is abelian, $F \le A \le C$, then $C \cap H$ is a normal subgroup of G lying between F and H, which by (B) verifies $C \cap H \le K$, that is to say, $H/K \cap CK/K = \{1\}$ and by (D), is now $C \le K$.

Then $F \leq A \leq C \leq K$ and $C \cap D \subseteq DA = G$, that is, $C/C \cap D$ is a factor of G between F and K which is trivially avoided by D, so, a fortiori by N. Due to the choice of A/B made, we conclude $C = C_G(A/B) = A$.

We will now consider the subgroup L of G, given by $L = K \cdot E$. As $K \subseteq G$ and $F = E \cap K$ is an \mathcal{F} -injector of K, it holds from (2.4) A, 2 that E is an \mathcal{F} -injector of E, then by the inductive hypothesis, E is a proper subgroup of E. In such subgroup E of E, E is a self-centralizing, E-avoided factor of the power order of a prime number P ($P \in \mathcal{P}$), complemented by $P \cap E$, hence, following the Lemma (2.8) $P \cap E$ contains an E-injector of E. Without loss of generality we can assume following the inductive hypothesis that $E \subseteq P \cap E$.

Since $V \leq N \leq BN = D$, it holds that E and V are F-injectors of D < G, and are then conjugate in D, the final contradiction which completes the proof,

REFERENCES

- [1] B. HARTLEY, On Fischer's dualization of formation theory, Proc. London Math. Soc. (3) 19 (1969) 193-207.
- [2] J. Martínez Verduch, On the theory of Fitting classes of finite π -solvable groups, Rev. Acad. Ciencias Zaragoza T. XXIX n.º 3 (1974).