A SPECIAIL CLASS OF TRIANGULAR ARRAYS
by

I,. CARLITZ

1. Introduction. In various combinatorial problems one en-
counters triangular arrays

(1.1) 4 = (4,3) n=0,1,2,..;k=0,1,..,n)
such that
(1.2) 4,, #0 (n=0,1,2,..).

It follows from (1.2) that there exists an array

(1.3) B = (B,,k) (n=0, ,2,.;k=0,1,.., %)
such that
(1-4) Z.Ank ka = 5”7' = Z'Bnk Akj .

k==1 k=g

Moreover (B,;) is uniquely determined by (4,).
A familiar example is

S (1] R (SR v}

Indeed
83 e (- ()5 )

and similarly for the second part of (1.4). Alternatively we may
replace (1.5) by
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(1.6) A= [(— 1)k (:)] = B,

which is not essentially different.
We shall consider the special class of arrays (1.1) defined by

(1.7) O —1+3 2 % 4y,
n=1M =1
where
(1.8 @ =1+ a,
n=1 .
and
(1.9) fl) =% 8,2 (b, =1).
n=1 n!

The condition by = 1 can be replaced by by # 0; however for sim-
plicity we take b; = 1. Note that in (1.7) we have

A”0=0 (%21,2, 3, .)

It follows from (1.9) that there exists a unique

(1.10 g =3 ok

™ (cl = 1)

such that

flg2)) = &(f(2)) = =,

that is, g(z) is the inverse of f{z). All series may be thought of as formal
power series,

We may put

(1.11) P (x(g(@) = 1 +

It is then easy to show that the arrays (4,), (B,s), where B, = 0
(n=1,2,3,..), satisfy (1.4). Thus in the case of arrays defined by
(1.7), (1.8) and (1.9) we have a simple method for constructing the
inverse array.
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It will also be seen that there is no essential loss of generality in
assuming that @ (2) = ¢
A simple example is furnished by

Z _ z — z
D) = e, M) = 180 = o
Thus
) k
eril(l—z) — 2(_’&2’% (1 —2)-*
K=o K!
R C7I L (j-l—k—l) ;
=2 Al )¢
w X —1
:1+n§12k=1k—!(k—1),

Hence we have

_nl(n —1 . wp P (n —1
(1.12) An,k —_— k—!'(k . 1), Bn,k -— (— 1) H(k - 1) .

It is easy to verify that (4,,), (B,,) are an inverse pair.

The basic properties of inverse pairs of arrays are gven in § 2.
In § 3 we briefly recount the properties of the Stirling arrays (S(»,k)),
((— 1)"=*Sy(m, k)), where S(n, k), S(n, k) denote the Stirling numbers
of the first and second kind, respectively. They may be defineed
by means of

¥ — 1) .. (x —n+ 1) =Y (— 1)"*S(n, &) «*

k=0

¥ =3Sm k) x(x —1)..(x —k+ 1)
k=0

in this notation both Sy(u, &) and S(#, k) are non-negative integers.
Since Si(n,n — k) and S(w, n — 2k) are polynomials in # of de-
gree 2k, we have the associated arrays (S'y(n, &), (S'(n, )) defined
by [1]
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Sinn — 1) =2 5109 5," )
(1.13) B
S(m, n — k) =j§05' (%, ) (2k " ].)

It is well known that S;(n,k) is equal to the number of permuta-
tions of Z,= {1,2,..., m} with k& cycles while S(#, &) is the number of
partitions of the set Z, into % blocks. This suggests the enumeration
of permutations with a given number of cycles all of which are of odd
cardinality or all of even cardinality. Secondly there is the correspon-
ding problem for partition of Z,. In § 4 we discuss in some detail
the number T'(n, k), equal to the number of permutations of Z,
with % cycles all of which have odd cardinality. The generating func-
tion for Ty(n, k) is

0o .y % ¢ x[2
1+EZ—'ET1(n,k)x=exp{x/2 logl+z}=(lﬁ) .
n=1M! 1 1 —=z

- 1 —2

This implies the recurrence
Tn+1,R)=Tmn k—1)+nn —1)T(n — 1, k).
Analogous to the first of (1.13) we have

=1

k
Ty — 20 = BT (5, )

=0

the 77;(k, j) have a simple combinatorial meaning (§ 6).
In § 5 we discuss the inverse of the array (7'y(n, £)). This is de-
fined by means of

[ee]

exp (v tanh 2) =1 + Y Z—TT(%, k) x*.

n:=1
The T'(n, k) satisfy
Tn+ 1,k =Tnk—1) —kk+1)THn k+1).

Also we have

k—1
T(n, n — 2F) =7§0T’(k, 5) (3 k”_].) .
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A combinatorial interpretation of T'(n, ) is not known. However
if we put

L

(%)
k! In's

(__. ])‘/z("—k) T(n}k) =

it is known [3] that T is equal to the number of up-down sequences
of length #» + & with % «nfinite» elements.

In § 7 we discuss the array (U(n, k), where U(n, k) is equal to the
number of partitions of Z, into % blocks of odd cardinality:

Vi
1%!

b8

1-- U(n, k) ¥* = exp (x sinh 2).

"

This enumerant was introduced in [2]. It satisfies the recurrence
Umn+2,k)=Umnk —2) -+ k2U(n, k)
or, preferably,

Un + 2, 2k) = U(2n, 2k — 2) + (2k)2 U(2n, 2F)
{ URn+1,2k+1)=U@2n—1, 2k —1)+ Qk+1)2 U2n — 1,2k + 1).

Moreover

k—1
U, n — 2k) =E°U'(k,j) (3k” ].) .

In § 8 we define the array (V(n, k)) by means of
1+ %’;E V(n, k) x* = exp (x(cosh z — 1)).
n=17%: %
Clearly
Ven+ 1,k)=0(k=0,1,2,..).

Also it is proved in [2] that

|
Vs k) =2 Uon, ),

Pk ]
so that a detailed discussion seems unnecessary. The enumerant
V(2n, k) is evidently equal to the number of partitions of Z,, into
k blocks all of even cardinality. Incidentally it follows from the
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generating functions that the number of permutations of Z,, with
%k blocks all of even cardinality is equal to

(2n)!

o Sim ).

In the final § 9 we discuss several additional examples of pairs of
inverse arrays. The computation of the inverse arrays makes use
of the Lagrange expansion formula.

2. Inverse arrays. It follows from (1.7), (1.8) and (1.9) that

1 S 2"
@.1) gale) =3 D4, k=123

Similarly, using (1.10) in place of (1.7), we get

oo

1 S
(22) .H a gk(Z) :”E;km Bnk (k = I, 2, 3, ...).

Assume that @, = 0 for some £ > 1. Then by (2.1)
2 Ank - 0

so that
Ap=0mn=FkE+1,k+2..).

In particular 4;, = 0 and therefore (4,;) does not have an inverse.
Hence a necessary condition that the array (4,;) possess an inverse is

(2.3) @ #0 (h=1,23,..).

Now assume that (2.3) holds and replace z by g(z) in (2.1). Then,
by (2.2),

o (eE) =3 L4, 2 825,

that is,

1
k' a, zk E 2 B Ank

nka

This gives
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1 1 :
(2.4) g Z B]% * a—ﬁA"k = 5]k (], k - 1, 2, 3, ---).
Similarly we get
(2.5 ), A ——Bﬁ— O (1LE=1,2,3,..).
n=k Ay a

Hence if we put

' 1 , 1
A nk = “_1. Aulﬂ B nk — a—k Bn/\‘l
it follows that

(2.6) ]2 A’y By kE'BI"k Ai=9, (n,7=1,2,3,..),
=] =]
that is, (4,:), (B’,x) are an inverse pair.

Thus we have proved that for arrays (4,,) defined by (1.7), (1.8)
and (1.9), a necessary and sufficient condition for the existence of
an inverse is given by (2.3). Moreover the inverse is given by (1.1) or,
equivalently, (2.2).

If we take ¢(z) = ¢, then (1.7) and (1.1) become

" 12

(27) 1/)—1‘{"V z—vAnkq’
n=171'

and

(2.8) w—1+2"2mﬂ

respectively. It is clear from (2.5) and (2.6) that there is no essential
loss in generality in restricting ourselves in the remainder of the

paper to ¢(z) = €.
3. Stirling arrays. For

(3.1) fe) = —1,
(2.7) becomes

M

e
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Thus we have

(3.2) Ay = s Ek: (— l)k"“<k) "= S (n, k),

k! s=0 N

the Stirling number of the second kind.
The inverse of (3.1) is given by

(3.3) g () = log (1 +2).

Hence

e8d) = grlog(l+s) = (1 4 2)* =1 + ), Z—' xx—1)...(x —n+1).
n=1 .

Thus
Y Bust=x(x —1)...(x —n 4 1) > 1)
k=1

and therefore
(3.4) B,, = (— 1)"*S,(», k),

where S; (#, k) denotes the Stirling number of the first kind.

We recall that [7, Ch. 4] that S; (#, £) enumerates the number of
permutations of Z, = {1, 2, ..., w} with & cycles while S (», k) enu-
merates the number of partitions of Z, into % blocks.

The Stirling number S (n, k) satisfies the recurrence

(3.5) S+ 1,8 =Smk—1)+ kS k).

It follows from (3.5) that

k==t

(6  Smr—R=3%S k) (2 o j) (k= 0),

where
37 Sk+lL)=Ek—7+1)S(kj—1)+Q2k—7+1)S (& j).

On the other hand [7, Ch. 4]

2

(3.7) JOUES 0(’;) bin —j kb — ),

I
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where b (n, k) is the number of partitons of Z, into % blocks, each of
cardinality > 1. Moreover

(3.8) S'(k+34,5) = b2k +j, B).

As for the Stirling number S; (», k) of the first kind, we have
first the recurrence

(3.9) Sin+ 1,k =S (n,k—1)+nS;(n k),

which implies
k-1

(3.10) Sy (m, 1 — k) =7_=i0 Sk, 5) (2 o j) k> 0),

where
(311) Sy(k 4 1,j) =2k —j + 1) (S} (k j — 1) + S} (k. 7).

We have also

(3.12) S m k) =3 (’?) Ao —j k—j),

i=0\]

where d (n, k) is the number of permutations of Z, with & cycles,
each of legth > 1. Moreover

(3.13) Sitk+7,7)=da@2k+ k).

For references to S’ (n, k) and S (n, k) see [1], [4], [8].
We remark that

exp (€ —z—1=1+ Y

and

exp {x(log -l—l_—z —z)} =1+ S z;’ a (n, k) x*

-4

It follows from (3.8) and (3.13) that

(3.14) exp {x(e“—z—l)}zl—}—i — S'(m —k,nw— 2Fk)x*
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and

(3.15) exp {x(log Il—z — )} Ej f? §<] 1 (m—F, n—2F) x*.

The generating functions (3.14), (3.15) are not quite of the kind
we have been discussing. However if we replace x by xz-1 we get

n—1

(3.16) exp {xz-l(ef—z—1)}=1-F i z )

— ) &
il o (n + k)1 + R S'(n, n—k) %

and
(3.17)

exp {xz*l (log i 1_

w—1
S n! i
i )}_1-]_” ln'kEO(n"‘k S{(n, n—k)x*,

respectively; (3.16) and (3.17) are of the desired type. This suggests
that we put

(3.18)

4 AN k), B i B (1<k<
nk:m (71/,%— )) nk = (11;—1"/3) S (’}’L " — ) ( = \ﬂ')'

However

z71(ef —z — 1) and z—l(log I l_z — z>
are not a pair of inverse functions and (4,,), (B,;) are therefore not
an inverse pair.

The generating functions (3.16), (3.17) are presumably new.

4. The numbers T’y (#, k). From the general results on the cycle
index of the symmetric group [7, Ch. 4], if we put

(4.1 exp{ (z+—z3—{——25+ )} 1+ :iz T (n, k) x*,

n=1

then clearly T (n, &) is equal to the number of permutations of Z,
with & cycles all of which have odd cardinality.
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Since
1 1 1 1 1 14z
232 g3 - — = —2) = =
z—|—3z +52 + ... 2log(l—}—z) 2log(l 2) 210g1—z’
we may replace (4.1) by
5 o (14 Ak
(4.2) 1+ ”gl oy E: T (n, k)x* = (1 — z) .
Put
(4.3) Ty,(%) = kgl Ti(m, k%% Tio(x) =1

and (4.2) becomes

My
N

(4.4)

" l
—ﬂA@=C+%ﬁ

"11'!! 1 —2

I

Differentiation with respect to z gives

& o % 14231 % (l—f—z)-;x
,Eo_! Tiwr1 (#) = 1T —2)2 (1 —-z) T 1 —22\1 =z -

Hence

oo n
" b4

] Tl,n+l (X) =X

14s
2y

(1 — Z2) =, m Tl,n (x)-'

n=0

I

so that

45) T (x)=aT,(x) +nm—-1)T,,_, (% (n = 1).
Therefore, by (4.3), we get

46 Tin+1L,k=Tnk—1)4+nn—1)T;(n—1,%k),
which may be compared with (3.9), the recurrence for the Stirling

numbers of the first kind.
By means of (4,6) the following table is easily computed.

3 — Collectanea Mathematica
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k

=y 1 2 3 4 5 6 7 8
1 1

2 0 1

Ty k): | 4 | o sl ol 1

5 24 0f 20 0 1

6 0| 184 0| 40| O 1

7 | 720 0} 784 0| 70 0| 1

8 0 | 8448 02464 0 | 112 | O 1

For x = 1, (4.5) becomes
. Tiwir () =Ty, (1) +nn—-1)T, (1)
If we put t,,:= T,,(1) we get '
(4.7) bpr =1, +n(m —1)t,_, (n>1).
By the above table
to=ty=1, 13 =3, t4 =9, 5= 45, tg =tys, tg= 1575, ty = 11025.
These values suggest that

b, = 12-32-52  (2n — 1)2
(4.8) { 29 ( )

th-i-l = (2% + l) th'

This is easily proved by induction, using (4.7).
We note also that ;

(4,9) Ti(n, k) =0 (m =%+ 1 (mod 2)),
(4.10) - Ti(n, m) =1, '
(4.11) CTi(2n 41, 1) = (2n0)!
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For k=mn — 1, (4.6) becomes
Tiym+1,n—1)=T;(nn—2)+n(n—1).
It follows that

(4.12) Tim+1,n—1)=-m+ 1)nn —1).

Taking &k =n — 3 in (4.6) we get
Tiyn+1,n—3)=T1nn—4+nmn—1)T;n—1,1n—3).
By (4.12) this becomes
T+ Ln—3) —Ty(nn—4) = nln—1)3 (s—1) (4—-2) (53

nn—1)(n—2)(n—3)(n—4)

Wl -

+nmn—1)(n —2) (n — 3).

This yields
. o 7+ 1 7w+ 1
(4.13) 11(n+1,1z—3)—40( . >+24( : )

For example

T, (7,3) = 40 (Z) + 24(2) — 280 -+ 508 — 784.

Note that T (#, # — 2) is a polynomial of degree 3, Ty (n, n — 4)
is a polynomial of degree 6. In (4.6) replace 2 by n — 2k 4- 1, so that

414 Tiy(n+1,n—2k+1)=T;(n, n— 2k)
+nmn—1)Ti(n—1,n—2k4 1)

From this it follows by induction that Ty (» + 1, n — 2k 4 1) is
a polynomial in # of degree 3%.
Put (compare (3.10))
3k

(4.15) Ty(nn — 280 = ¥ T (k) (3 . ].).
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36
Then by (4.14)
% ’ n41Y\ - . “ - w—1
T (&, ]< ):;go] (%, 7 (3/‘3— )—l—n(n—l) § T (k—l’])<3k-]’—3)’
so that ‘
5 ’ 1 n s ’ - ” | .
ST (3 " )= BT =105 Vel 3k 442+ (- 3)
3%—3
=7‘§(‘)Tl(k 1 ){(3/6 j__l)(3k—]—l)(3k—]_)
+(3k _’f,-_z) Bk—j—2) (3k—j—3>}
":Eo(gk_’;_l) Bhk—j—1)(Bk—j—-2)T1(k—1,7)

Br—j—1)@Bk—j—2)T\(k—1,j — 1)
3k—2
=% (k—j—1) Bk—j—2) (T} (i—1,j— 1)

, . ”
4T (/e——l,])(3k_]._]).

It follows that

(4.16) Ti(kj) =@k =7 —1)Bk—7 —2) (T} (k— 1,7 — 1) + Ty (k — 1, 7).
We wish to show that, for all 2> 0

(4.17) Ti(kj)=0 (R <j < 3k).

By (4.12) and (4.13), (4.17) holds for & = 1, 2. Assume that it holds

ul; to and including the value 2 — 1, so that
3k — 3).

Ti(k—1,7)=0 (k—1<j5<
< 3k —2, (4.16) implies T (%, 7)=0; for j=3k—1,

Then, for £ <j <
3% we clearly have the same conclusion. Thus (4 17) holds for all

k> 0.
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In view of (4.17) we may replace (4.15) by

(4.18) ﬂ@w—ﬂﬂ=§ﬂ%w@ﬁﬁ) (k < 0).

=0

1]; 0 1 2 3
1 2
Ti(k j): 2 40 24
3 8-7-40 76 64 o
4 [11-10-8-7-40|7-82:9-10-11 6-82~9-71—~ 8!

For j = 0, (4.16) becomes
Ty(k 0) = (3k — 1) 3k —2) T (k — 1,0),
which implies

(4.19) T (k, 0) = 3;(:3-%-

For j =k — 1 we have

Ti(kE—1)=2kQk—1)T](k—1,%k—2),
so that

(4.20) : Ty (k & — 1) = (2k)!

5. The inverse of (T1 (n, ). To construct the inverse of (T (n ))
we requiere the inverse of the function

This is evidently

e — 1 e — e*

2= 5 1T e e tanh .
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We accordingly put

(5.1) oo = 1+ 3 = T (n, )2

n=1 :

It follows that the array (1" (n, k) is the inverse of (T (n, k)).
It is convenient to put

(5.2) T,(x) =X T (n k)x*, To(x) = 1.
k=1
Thus (5.1) becomes
90 z”
ztanhz — §V °
(5.3) e }::o i T, ().

Differentiation with respect to z gives

n

o nl T?l"rl (x) = x sech2 z.egxtanhz

s

(5.4)

n

Also it is clear from (5.1) that

1 > 2t
(5.5) i tanh®z = "éo al T (m, &) (B = 0).

Thus (5.4) becomes

o "
Yy z T,.1(x) = 2 (1 — tanh2z) estanhz
o

k'ﬂ!
so that
S _ 1 E—1, _ k1)
”=>_]:‘—1 m T (n + 1, k) == m (tanh p 4 tallh Z)
= Y LTk —1)—k+1) X LT k41,
n=k41 7! n—=k -1 W

Comparing coefficients of z*, we get
(56) Tm+1,k=Tmk—1 —kk+1)TMmn k4 1).
This is equivalent to

(5.7) T\ () = 2T, (x) — kT4 (3.
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For k =n + 1, (5.6) reduces to

Tw+1,n+1)=T(nn).

Since T (1,1) =1, we gat

(5.8) T (m n) =1

It also follows from (5.5) that

(E=0,1,2 ...

39

(5.9) (—)*T(2n+ 1,1) =T, (tangent coefficient).
i 1 2 3 4 5
1 1
2 0 1
T (n,k): 3 » -2 0 1
4 0 — 8 0 1
5 16 0 — 20 0 1
6 0 | 136 0| —40 | o

If we replace z by ¢z, (5.5) becomes

1

k! n==k
n=Fk(2)

— tan*z = i (— 1)

n—t 2"
& k)mT(n,k).

Since the coefficients of tan z are positive, it follows that

(5.10) (— DE"D T (1, k) > 0

For k =n + 1, (5.6) reduces to

(n >k, n = k(mod 2)).

Tn+1,n+1)=T(n n)

and therefore

(5.11) T (n,n) =1

(n > 0).
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For k=n — 1 we get

Th+1lLn—1)=T(mn—2) —um—1),
which yields

(5.12) T(n,n—2)=—%n(n—l)(n—2).
For k=1 — 3 we get
T+ 1Ln—3)=T@n—4) —(n—2(n—3T(mn—2
=T (n,n—4) +%n(n — 1) (n — 22 (n — 3).
Tt follows that

(5.13) T(n,n—4)=40(’6“>+ 16(2‘).
Similarly we find after some computation that

(514 T n—6— — 40.56(3) — 7152 (;‘(— 272 (;‘)

We accordingly put

(5.15) T(n,n—2k)=jg]0 T’(k,j)( k> 0);

i
3k —j
the upper limit of summation is justified in the induction.

Assume the truth of (5.15) up to and including the value 2 — 1.
Then by (5.6)

Th+1,n—2k+1) —T(n,n—2k =
—(n—2k+1)(n —2k+2)T(n,n — 2k + 2),

so that
k—1 k—1
. 1 . "
Y T (k, (”+.)—VT’k, ( .):

k—2

—(n-2k—|—1)(n—2k+2)i§0T’(k—1,]’)(3/3_’3._3),
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that is,
k—1

EB Tk j) (3k —nj — 1) -

| k_z, . n”
—(n—2k—,—1)(n—2k+2)7_§0T(k—],])(3k_]._3>.

Then very much as in the proof of (4.16) we find that

(5.16) T'(k,j) = — Bk —j—1)(Bk—7—2)T"(k — 1,)
—2(k =) Bh—j— DT (h—1,7—1)
—k—=HE—-7+NDT"k—1,7—2).

j
5 0 1 2
oo 1 —2
T (R, j):
2 40 16
3 — 5782 —17-162 — 272
Clearly
(5.17) (—1)*T" (R, 7) >0 0<j<k—1.

Also it follows from

T (k,0) = — 3k — 1) (3k —2) T" (k — 1,0)
that
(5.18) (— DT’ (%, 0) = 5%

Taking # =2k + 1 in (5.15), we get
TQrEA1,1)=T (k k—1).
Hence by (5.9)

(5.19) T' (B, b — 1) = (— 1)* Ty, .
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Also, by (5.16),
k—1

S (— )T (k) =S\ — D {Bh—f— 1) Bk —j — 2 T (k— 1)

=0 7
+2(k—) @Bk —j— )T (k—1,7—1)
FE—DE—F+ DT (k—1,5—2)

=2 (=DT"(k—1,7)){3k —j — l)v(3k ~—j—2)

—2(k—j—1)(3k —j —2)

+&—7—2)(k—7—1)

k=2
=2kQE—1)3 (= 1T (k—1,7).
i=0
It follows at once that
k=1
(5.20) s (= 1T (B, 7) = (— 1)k (2k)L

=3

j=
The presence of the term in 7" (k — 1,j — 2) on the right of
(5.6) might lead one to expect that this would result in non-zero
T’ (k, §) with j > k. That this is not the case is proved in the following
way. Assume that
T'k—1,7)=0 (j=k—1).
Then by (5.16)

—T (k) =Q2k—1)Q2k—2)T' (k— 1,k

+ 0T (k—1,k—1)4+0T(k—1,%k—2)=0,

— T (kE+1)=Q2F—2Qk—3)T'(k—1LEk+1)
—20QFk 2Tk -1,k +0T(k—1,k—1)=0

and generally
T (k) =0 (7 = k).

6. Combinatorial interpretation. As mnoted above T (#, k) is
equal to the number of permutations of Z, with % cycles all of which
have odd cardinality. Similarly if we put

(6.]) exp {x (% 23 + %ZS + 7]%‘27 + )} = 1 + i z”| % anxk:

n=1

J

S
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then C,, is equal to the number of permutations of Z, with % cycles
all of odd cardinality greater than 1. Comparing (6.1) with (4.1)
we get

LTy B2 = 5(7) ¥ 5 Cur

k
so that

Ty(n k)=X (7) Coci—ir

i

Replacing £ by # — 2k this becomes

> (n
(6.2) Tifmn—28) = % (]) Cim o
On the other hand, by (4.15),
~( n , .
T\ (n, 0 —2k) = %‘(% _~].> T (B, ).

Rewriting (6.2) in the form

n
Ty(n,n—2k) = ;(313 __]-) Car—jr—is

it is evident that
T’I (k» .7) = C3k—7’,k—7’:
or, if we prefer,

(6.3) T (kR +7,7) = Canyzjn-

Hence T (k + 7, j) is the number of permutations of Zj;,.,; with
k cycles, all of which have odd cardinality greater than 1.
We may rewrite (6.1) in the form

23k+21

Bk + 25

€xp { (* log +z >} =1+ 1Ek Capy2jn ¥

Replacing ¥ by xz~2 and making use of (6.3), we get

N DU 1+2 M _
(6.4) exp {xz -<§- log T z)} =

n ) T
-Eklm'f "G+ k) —R)x
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This may be compared with (3.17).
Turning next to T (», k), by (5.1) we have
(6.5) grtanbs — 1 V) z_' , T (n, k) %~
=172 k=1
We now put

(6.6) grtanns=n — 1 4 3 £ S p .y
a3 n! %

It follows from (6.5) and (6.6) that

7

T(n k)=2X% (7) D, jr = 2 (;L) D;iir—n
7

so that
roIn
(6.7) TWn—ZM:EK)Q%%
j=2k \]
By (5.15)
k=1 n
T, n— 2k = Tkg( .)
( EPEATIAa

Rewrite (6.7) in the form
n
T(n,n—2k) = 21: (3k _]->D3k—7',k—7'

and it is clear that

or, if we prefer,

(6.8) T"(k + 7, J) = Dipyajn-
Rewrite (6.6) in the form
}vk Z3k+2]
% (tanhz—2) — _ A .
e 1 ‘| i,EkD3k-r21,k (3k+2])’

Replacing x by x2~2 and applying (6.8), we gat

(6.9) exp {xz-2(tanh z —2)} =1 +

n!

ﬁg%gﬁifmrgw+ﬁ%WfW“
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The generating function (6.9) may be compared with (3.16).
A combinatorial interpretation of T (%, k) is not known. However
if we put

tantz = ¥ T 27 [n!
n==~k
then, by (5.5),
6.10) (— 1B T (n, k) = - T
( M (71:, - ,; "o
It is known [3] that T4 is equal to the number of up-down

sequences of length # 4 % with % «nfinite» elements.
A combinatorial interpretation of 7’ (n, k) is not known.

7. 'The array (U (n, k)). Put

"

8
[l
sk

(7.1) exp (x sinh 2) =1 +

”

] U (n, k) x*,

b3 H
Bl

It

1 =1

so that U (n, k) is the number of partitions of Z, into £ blocks of
odd cardinality. It is convenient to take U (0, 0) = 1. Clearly

(7.2) Un, k) =0 (m=~F%+1 (mod 2)).
We also put

(7.2) U,x) =X U(n, k)" Up(x) =1,

so that (7.1) becomes

(7.3) exp (¥ sinh z) = i — U, (x).

Put F(x, 2) = exp (v sinh 2). It is easily verified that

02 F o0F 2F
_—_ = 2 "ﬂ —_— — 2___
(7.4) R 22F + 2 P + z Sy

This implies

Un—Z (x) = x? Un (x) +xU, (x) + x2U, (x) = x2 Un (x) + (xD)z Un (x)
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which is equivalent to

(7.5) Umn+2,k=Umk—2)+ kU(n, k).
We replace (7.5) by the pair of recurrences

U@2n+ 2,2k)=UQ2n,2k —2)+ (2F)2U (25, 2k)
(7.6) UR2n+1,2k4+1)=UQ2n —1,2k —1)
+ 2F+1)2U002n — 1,2k 4 1).

k
n

1 1
U@2n,2k):| 2 4 1

i4 64 | 336 | 56 | 1

0 1 2 3 4
n
0 1
1 1 1

U@2n+ 1,2+ 1):

2 1 ‘10 1

3 1 91 35 1

4 1 | 820 966]84 1

It is clear from (7.6) that

(7.7) Umn,n =1 n=0,1,2,..),
(1.8) U@n,2) =222  (n=1,23,..)
and

(7.9) U@2n+1,1)=1 n=0,1,2,..).
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By the first of (7.6)
U@2n+2,2n) —U@2n, 2n — 2) = 4n2 n=1,23,..).
It follows that

(7.10) U@2n,2n —2) =

Wi N

nn—1)2n —1) = (23n>‘

Next taking £ = n — 1 in the first of (7.6), we get

U@n+221n—2) —U@n, 2n —4) =
—4m — 12U @2n 2n — 2) n=234,.).

Making use of (7.10), it follows that U (2# + 2, 2#n — 2) is a poly-
nomial in # of degree 6. It is easily proved, by induction on &,
that U (2%, 2n — 2k) is a polynomial in # of degree 3&.

In the next place, taking £ = # — 1 in the second part of (7.6),
we get :

URn+ 1,20 —-1)=UQ2n —1,2n —3) + (2n — 1)2.
This implies

(7.11) U@n+1,20 — 1) :(2“3+ ‘).

Again we can prove by induction that U(2#n + 1,2%n — 2k + 1)
is a polynomial in 7 of degree 3%.

It is not immediately apparent from these results that U (» »n — 2&)
is a polynomial in # of degree 3 k. To see that this is the case we
proceed differently. Put

o zﬂr

(7.12) exp (¥ (sinh z —2)) = 1+ 71 % (%)
n=3 7.

where .
a,(x) = X a(n, k) x*
k
Comparing this with (7.3) we get

U, (x) = S (”) va, (%) .

i=0\]
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so that
k

(7.13) U, k)= % (”) aln —j, k —j).
i=0\7

Replacing j by # — j and & by n — 2%, (7.13) becomes
3%, '
(7.14) U, n—28) = 3 (].)a(j,j-zk).

7=2k

The upper limit is precisely 3% in view of the results already obtained
for # even or # odd. Thus U (#, n — 2k) is indeed a polynomial in #
of degree 3% but, more precisely, of the form (7.14), that is, if we
take (7.14) as definition of U (n, » — 2k) then it follows that

Umn,n—2k =0 (0 <n<2k).
In conformity with the notation used proviously we put

k—1

S . n
(7.15) U n— 20 = U (k) (54 _].).
Comparing (7.15) with (7.14) we evidently have
(7.16) Ulk))=aBk—7j—k).

The upper limit in (7.15) is £ — 1 rather than % since a (1, 0) = 0
for n > 1.

l.c 0 1 2 3
]
1 1

Uk yg):| 2 10 1
3 280 56 1
4 | 15400 | 4620 | 246 1

We have been unable to find a simple recurrence for U’ (%, j).
It follows from (7.12) that

H

. b3
Iy (sinh z — 2)* = ; e (n, &),
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which yields

(7.17) w+namk+n=2(

n .
) — 27 —1,R).
Z o0 )e—2i—1H

By (7.16) this becomes

(7.18) (k—m) U’ (k, m)=f§1(32£i-:n)U’(k—j, m—j+1) (O<m<k).

For example, for m = 0, (7.18) reduces to

3k

RU (k, O) =<3

)Uw—Lm
or,

3k —1

(7.19) U@@:(z

)Uw—Lm
Thus

(1200 U (k 0) = (3 kz_ 1) (3 kz_ 3) (;) — k(f(’;)!;k.

For m = 1, (7.18) becomes

3k—1
3

3k—1

w-nwwn=< ;

)Uw—Ln+( )Uw_;m,

from which U’ (%, 1) can be computed. For example
3U’ (4, 1) = 165.56 + 462.10, U’ (4,1) = 4620.

For m =k — 1, (7.18) reduces to

k

vk -0=3 (35Ut -5k
i=1\27 +1

Since U’ (k, k) = 0 for £ > 0, we put

(7.21) Uk kE—1) =1 (k> 1).

For m =k — 2 we get

k—1
2U (b k—2) = (2k—|—2 (2k+2)’

) ’ i i =v

: =1

4 — Collectanea Mathematica
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so that
(7.22) Uk k—2)=2% -2k —2 (B = 2).

A recurrence of a different kind can be found in the following
way. Put

F = exp (x sinh 2), G = exp (x(sinh z — 2)),

so that F = ¢*G. Then, by (7.4), G satisfies

02G G 026G oG
= 2z) 2
72 + 2% 7z %2 oy + (% 4 2x22) e + (xz + x222) G.

This implies

(7.23) aln+ 2,k +2am+1,k—1)=kan k) +

+nQ2k—1am—1L,k—1)4+nmn—1)am—2,k—2),
which is equivalent to
(7.24) Uk+1Lj+1)+2U0Fk+1,j4+2) =

= G+ BP0 (k) + Bk —5) @k — 25 — U (k5 + 1) +
+ 3k —5)3k—j— 1)U (b j+2).

For example, for j = — 2, this reduces to
20 (k+1,00=(3k+2) (3k+ 1)U’ ( 0),
in agreement with (7.19). For j = — 1 we get

U'k+1,0+2U (+1,1) =
=@k+1)QE+ 1)U (kO0)+ 3k@BE+ 1)U’k 1),

and so on.
It would be desirable to find a simpler recurrence than (7.24).

8. The array (V (n, k)). Put

Z v, M),

"
on!

Mg

(8.1) exp (¥ (cosh z — 1)) =

n
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where
V,x) =XV (n k)
k
Clearly
(8.2) V@en+1,k=0 (=012, ...

Also it is shown in [2] that
(2&)!

= Zh gl

(8.3) V(2n, k) U(@2n, 2Fk)
and

(84) VQ@u+2,k=0k—1)VQ2nk—1)+kV(2n k.

If we put
2R)! =

(8.5) V2 k) = (2,, 0T o, B

then

(8.6) Vin+ 1,k)=Vmnk—1) + kT (n,k).
k 0 1 2 3 4
n
0 1
1 1 1

V(n, k)

2 1 S 1
3 1 21 14 1
4 1 85 | 147 | 30 1

In view of (8.3), properties of V (2#, &) can be read off from those
of U(2n, 2k). In addition it is clear from (8.1) that V (2#, &) is the
number of partitions of Z,, into %2 blocks all of even cardinality.

9. Some additional examples. We now exhibit several additio-
nal examples of pairs of inverze arrays. I. We first take

(9.1) f2) = ze*.
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It is known [6, p. 125] that the inverse function is given by

o M"_l "
(9.2) g = ”{]1 T
Moreover
(9.3) ge®) — 14 3 w'_
n=1 "

Thus we have

+
bs
[ %%
=[]
=
i
®
&
I
o
kY
C)
I
Py
"R\
G
x
I
T

Therefore

(9.4) A= (- 1)"—k(’;) pren (1 <k <m).

In the next place we have

1+3 2

R B"kxk = ¢%&(3),
= :

By (9.3) this is equal to

We have therefore

(9.5) B,, — (Z - ;) v (1 <k <n).

II. As a second example we take

(9-6) fle)=z2(1+2"
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It is known [6, p. 125] that the inverse function is

kad An \ 2"
(97) £ (Z) - n§=:1 (’}’b — I)Z
Moreover
* [ An 2"
E—_p <
9.9) er=r% ("5 w>0.
Thus

=
I
o
<
I
=}

=0 k=0
where
(@,=a(@+1)..(a+n—1).
Hence
0.9 Ay = (= 17} G

As for B,,, we have

eozn

I+ X 2

2 (m—=1!7 An
L+ X5 Zl(k—l (n~k)'
Thus
w— 1)1 2
(9.10) A ] (n " k).

53
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ITI. As an example of a different kind we take

(9.11) flo) = z(L)ﬂ',

et— 1

where 2 is independent of z but otherwise arbitrary. We recall [5,
Ch. 6] that Bernoulli numbers of order 1 are defined by

V4 2 . had (%) 2"
(9‘12) (e,—__l) — ”go Bn "’;" .

It follows from (9.12) that BY is a polynomial in 1 of degree #.
It follows from (9.11) and (9.12) that

since B — dwo. We have therefore

(9.13) A,, = (Z) BYH, (1 <Ek<n).
For 2 = — 1 it is evident from (9.11) that we have

(9.14) Ayp=Sn k) (1 <k<m,

so that

(Z) BY™Y =S, k),
a known property of BY.

To construct the inverse array (B,,) we make use of the I,agrange
expansion [6, p. 125]:
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Let

(9.15) u=2z[¢(2),

where ¢ (2) is analytic about z =0, ¢ (0)

016 R LA

axr—1

# 0. Then

J..

Moreover if f(z) is analytic about the origin then

2 L f (x) (¢ (%)"
(9.17) f&) =f(0) + 2; ;—[ dxr—1 : ]n=o'

In particular

(9.18) ok gl % [d”“ w1 (g (x))”}]ﬁo.

dxn—l

For the application we take

46 =

Z

Then, by (9.18),

(9.19)

Since, by (9.12),

dn—l - eF — 1)}.71 B \ (=)
[W {x ( . =B,

it is clear that (9.19) becomes

020 (@) =k g B

el_l.

€@r=¢% n,[d‘i A 5.

k=1,23,.

).
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It follows that

n

ZBus =14 3 7 (2

i8
™

1+

n

2

I
N

_ o xk 2" (=)
=1+ 2 a=m B am —m B

=1+ 2_} iy (n_ll)Bﬁ,:’,;")xk

and therefore
(9.21) B, = (" - 1) BT (1<k<gn)

It is interesting to compare (9.21) with (9.13). We remark that,
for 2=1, (9.21) reduce to.

(9.22) B,, = (—1)""*S;(n, k) (1<k<gmn).
Thus

(2 1) B = - sy,

which again is a known property of B{.

IN. The last example can be generalized considerably. Let

0.23) £ =z{§ ., m} (o= 1)

n=0

be analytic about z = 0. Define A be means of

2
(-] zﬂr . oo (A) zﬂ
) “m) =X Ao

n=0

(9.24) (

so that 8% is a polynomial in A of degree # and A = 0 for #n > 0.
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It follows from (9.23) and (9.24) that

Therefore
(9.25) A, = (Z) B,

To construct the inverse array we again apply (9.18). We have

€@r=+% 7 [% {x"-‘ (f (x))""‘}]x=0

—k.,zkn(n_k)uﬁ( = (k=123 ..).

It follows that

o xk c: P "
=1+ 3 . —y1 Pr

=1\ pi—im 4
(k — 1) PP
and therefo2e

n — 1 ~ 28
(9.25) B,, = (k B 1) (=7,
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