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1. Let

be regular in a simply connected schlicht domain 9 properly con-
taining |z| < 1 but not the whole of |z| =1. Suppose also the
power series is lacunary with ¢, = 0 for the sequence of intervals
n, <n <N, Then if Ny/n, > 12> 1 there is overconvergence at
each point of |z| =1 in 9, extending to the whole of @ if N,/un,
tends to infinity. [Ostrowski’s theorems 2, 12-13]. It is natural to
conjecture the existence of a region of overconvergence 9 (1) corres-
ponding to a given value of 4 independent of the particular f(2) and
further that this D (1) increases with 1 and has 9 as limit as 4 tends
to infinity. These conjectures are established below in the case that D
is the whole plane cut radially from a point on |z| = 1 to infinity,
or one of a family of domains bounded by logarithmic spirals and
containing |z| = 1 apart from a single point. The method of inter-
" polating the ¢, by means of an entire function is used. With ¢, = G (n)
the representation [3, 53]

fi=a= g (=)"G (n) 2" = 2%’./19(5)5‘“

sin w ¢

establishes overconvergence provided G ({) is exceptionally small
on a particular sequence of arcs || = #»n + % This property of

G (¢) will follow from the existence of sufficiently numerous groups
of zeros of G ({) corresponding to the vanishing ¢,. The phenomenon
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of overconvergence is thus related to the general theory of entire
functions and a generalization is immediately suggested. Our hypo-
thesis need not demand ¢, = 0 for all # in n, <#n < N, but only
for sufficiently many such values of #." It is convenient to define
« occasional density » for a sequence of integers. In the special case
of the regions just described we then have the generalised asser-
tions (1) If the occasional densiiy of zero coefjicicinis is positive there
is overconvergence to f () at regular points of |z| = 1 (ii) If 4 is suffi-
ciently large and the occasional density of zevo coefficients in the gaps
is sufficiently mear wunity then overconvergence extends to a prescribed
point in the region of regularity and (iil) If N,/n, tends to infinity and
almost all c, vanish in the gaps then overconvergence extends to the
whole interior of D. These results cxtend Theorem E of 4.

The methods used do not conveniently extend to general domains
but other special cases can be handled. We can prove for example
the following theorem.

If fz) = Zw,‘cnz”

is regular on an arc C of length y on its circle of regularity |z| =1
and if the occasional density of zero ¢, exceeds 1 — y/2x then there
is overconvergence on C. From this theorem follow the gap theorems
of FaBrvy and Porva [b, 626] just as Hadamard’s gap theorem is
commonly obtained from Ostrowski’'s overconvergence theorem
[2, 13].

2. In this paragraph @ is one of a family of domains bounded
by spirals and containing the whole of |z| = 1 except for a single
point. It is evident that this point can be taken as z = 1 without
loss of generality. The statements of 1 are proved by a series of lemmas
most of which are well known. A

LemMA 1. If f(2) is regular in the whole plane less the segment
z =1 of the positive veal axis then

1) =36 )2

where G (2) is an entive function of exponential type and is moreover of

zero type in the angle |arg z| < o where a < —2-'7t may be arbitrarily

near —; 7. G (2) will depend on the choice of a.
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This lemma is a straightforward exercise in the interpolation
of the coefficients of power series as developed in particular by Porya
[5, 623]. G (2) is defined by

— 1 - =
G(z)——27”. e fe=%) de.
The contour I' joins the points — R —x¢ and — R+ =¢

without intersecting the negative real axis. R can be chosen as large
as we please. The choice of R affects G (z) although not the values
G (n) for positive integers. o in the lemma can cvidently be taken as
tan—! (R[x). The properties stated in the lemma are readily obtained
by taking I' close to the contour formed by the two radii joining
the origin to the points — R 4 1.

Poryva discusses [5, 598 — 610] the converse theory. Our results
amount to modified converses of I,emma 1. To rcach them it seems
necessary to depart from PorLva’s methods and discuss the definition
of /(2) in terms of G (z) more directly [3, 52] by the integral

r sinzl

where I encloses the points { =0, 1, 2, ... and apart from a necessary
modification near the origin consists of the radii arg { = + «.
LeMMA 2. If G (2) ¢s an entive function satisfying for a fixed o in

O<a< % 7wt the condition

lim sup 7! log |G (re”)| <0, 0= 4« (2)

7 — 00

then f (2) as defined by (1) is vegular in the vegion of the z plane defined
by the inequalities

R{e= log (—2)} <zsina

. _ (3)
R{e-=log (— 2)} < @ sin a.

The inequalities (3) are evidently sufficient to ensure convergence
of the integral (1). With w = log (— 2) they require w to be confined
to the acute angle determined by the lines joining 4+ #7 to @ tan «
and bisected by the segment w << = tan « of the real axis (Fig. 2).
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In the z plane itself the inequalities (3) require z to lie in the
region 9, between two equiangular spirals (Fig. 3). Outside |z| = 1
the region is schlicht but inside has to be regarded as a multiply
covered RIEMANN surface. It may be noted that for |z| > 1 this

region increases as « increases and its limit as « tends to 5 x is the

whole of |z] > 1 except for the segment z > 1 of the real axis.
For [z] < 1 the region of regularity decreases as o increases. How-
ever if G (z) is of minimum type throughout the angle |arg z| < «
it can be shown [3, 133-138] that f(z) is regular and one valued
throughout |z| < 1. This is done by noting that

|G (0)#| < Kexp { &7+ 7cosfloglz| + mr |sin 0]} 4)
for { = re® with || <« and |3 (2)| < #. I'rom this it follows that

the integral

f G (&) 24d Cfsin w ¢

taken along |{| = <n -+ %) n from arg { = — a to arg { = o will

tend to zero as # tends to infinity if |z| < 1.
By calculation of residues it follows that

el

f(=2) = ; (=)' G () 2" (5)

It is evident that L.emma 1 can be extended to include a converse
of Lemma 2.
If G({) was substantially smaller on a particular sequence of

arcs || =n + 1, |arg {| <« then evidently the same procedure
2 p

will establish convergence of a subsequence of partial sums of (5)
into a wider region of variation of log z.
Suppose, for example, that the inequality

|G (re®) | < K exp {(— & (0) + &) 7}

is satisfied for an infinity of values » = m, 4 % where % (0) is some

12 — Collectanea Mathematica.
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continuous non-negative function and e an arbitrary positive number.
‘Then for such values of 7, (4) can be replaced by

‘G () 2

e <Kexp{(—h(0)+ c+R(®logz) —m|sinb]) 7}, &=re"

and it is evident that as % tends to infinity

converges to f(— z) throughout the region defined by the family of
inequalities

R {clog 2] < h(0) + z |sin 6]

The case () = 0 gives ordinary convergence in log |z| < 0,
|arg z| < m. These remarks can be summarized in the following two
statements.

LeMMA 3. If G (2) is an entive function of exponential type satis-
fying (2) for 0| <o then the function f(z) defined by (1) is regular
and one valued for |z| < 1 and has the Taylor series (5).

LemMA 4. If G (2) satisfies the conditions of Lemma 3 and if also
there exists a sequence of integers my, such that

|G (re®) | < K exp {(— 2 (0) + )7}, 0| <a K=Kf(g)

for all sufficiently large v = m, + % then

My
Si@) =2/ (=) G
. 0
converges to | (— 2) throughout the region defined by the family of in-
equalities
% {e? log 2} < h(0) + = |sin 0. (6)

The region in the log z plane defined by (6) will clearly be convex.
Suppose now G (z) has groups of zeros G (n) =0 for n, <n < in,

where A > 1 and #», tends to infinity. Then with arbitrary ¢ > 0

and % sufficiently large G ({)/sin = ¢ is regular in the part sectors S,

< |C|<Am, |arg {|<a
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and satisfies there the inequality

ﬁ—gfﬁﬂ!<exp{(s—n|sin 8|)7}. (7

Now this inequality is strongest on the arms 6 = + « of the
sector and can therefore be improved upon by use of a harmonic
majorant based on the upper bound on the boundary. The resulting
harmonic majorant could indeed be given an explicit form since the
interior of the sector may be conformally represented on the interior
of a circle by means of elementary and elliptic functions.

1

On or near the median circle » = A2#n, we shall have indeed
from (7) and the associated harmonic majorant the inequality

| G (re)

sin fren| < 5P L8 = H OD7]

where H () is a continuous function depending on o and 4.
Overconvergence will hold in the region satisfying

R {etlog (—2)} <H@O), [0|<o (8)

This region would coincide with the region of regularity prescribed
by Lemma 2 if

H (0) =z tan « cos 0.

No overconvergence would be established if for example H (6) = 0.
The whole of |z| = 1, |arg 2| <z will be within the region of over-
convergence if H () > z |sin 0] for |0] < «. To obtain approxima-
tions to H (f) consider the modification of (7) obtained by multi-
plication by a suitable exponential factor. On the boundary of S,

grttanaG (7). €XP (e7), ¢ = retia o)
| sinzl exp (e 7 4+ s7 cos  tan & — 7 |sin 6}),
1 1
7=nk+§, 7’=Nk—§.

Now using only the «two constants» theorem and noting that
the harmonic measure of the circular arcs of the boundary of S, is
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small when 2 is large we see that given 8 > 0 we shall have on and
near the median arc

11
————‘ < e, [¢] =7, r—n2NZ <1

provided A is sufficiently large. This ensures overconvergence in the
region defined by (8) with

H () =x tan « cos 6 + 4.

With é sufficiently small any prescribed point in 9, is included
in the overconvergence region. This establishes the first two conjec-
tures stated in the introduction. We may note in passing that by
using the estimate (9) for |6| <« < « and the original approxi-
mation (7) in the rest of the range a proof of BoUrION’S theorem
[2, 33] in this special case would result.

3. 'The procedure of comparing G (z) with sin 7z in a region where
the zeros of G (2) include those of sin #z can be modified by using
a different comparison function. In order to exploit known results
on entire functions with measurable sequences of zeros it seems con-
venient to introduce a new density measure for sequences of integers.
We compare a given sequence {4} with a measurable sequence
{22} of density d. If in some arbitrarily large intervals r < A< ir
the sequence {4,} includes {2F} we say that {2,} is of occasional
density to the basis (1, 1) at least 4. The occasional density 4 to the
basis (1,4) is the upper bound of such 4. The occasional density with-
out qualification is the limit of 4 as A tends to unity from above.
If {2,} includes {2} in a sequence of intervals n,< 4, < N, with
N,/n, tending to infinity, we say that the occasional density of {21,}
on an infinite basis is at least 4. If 4 is the upper bound of such d, we
call 4 the upper density on an infinite basis. The comparison function
to replace sin w2z will be

Gr ()= J ] — 2.

If the occasional density of the sequence {4,} is unity, [5, 571
1, 281] there will exist a G* (2) possibly depending on £ > 0 such

that for sufficiently large |z| = »n + % and sufficiently large |z| with

arg 2 = 4+ «
e~ 8ld < |G* (2)[sin mwz| < e®lil.
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Given ¢ in advance the same inequality will be available asso-
ciated with a sequence {1,} if its occasional density is sufficiently
near unity. These remarks suffice for the extensions of the results
of 2 as stated in (ii) and (iii) of 1. To establish (i) note that if the
occasional density of {4,} is positive there will exist a G* (z) with
a positive density 4 of zeros. This function will satisfy the inequality

exp {(h|sin 0] —e)7} < |G* (re?)| < exp {(h|sin 0] + )}

for6 =+ a or vy =un 4 ; and 7 sufficiently large.

G (2)/G* (z) will be regular in a sequence of part sectors S, and will
satisfy the inequality

|G (re?)|G* (re) | < exp { (e — & |sin 0|7}

on the boundary. Denote by Si a part of S, defined as follows. If

S, is defined by 7,<|z| <17, |argz| <« then Si is defined
1 3

by Mr,<|z| < M7, |argz| < % «. It is evident that there exists

a positive ¢ such that for { = 7¢® in S; and & sufficiently large then
|G (rei®)| G* (re®) | < e—9".

The integrand of (1) will now satisfy in S; with some positive
6’ the inequality

|G () 2fsin m | < exp { —8" 7+ (h—mn) |sin 6|7 4% (£ log 2)},0=re

if % is sufficiently large. This is sufficient to establish the overcon-
vergence on |z| = 1. The conclusion follows also from Ostrowski’s
original theorem on observing that |G (n)| < exp (— ¢’ n) for the
integers in S;.

©

4. Suppose f(2) = Zc,, 2" is regular for |z| <1 and that its

>

singularities on |z| = 1 are within the arc |arg z| <#. Then the
coefficients ¢, can be interpolated by an entire function G (z) of expo-
nential type 2 = and satisfying the inequality

| G(re®)| < exp {(n|sin 0|4 ¢) 7} (10)
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for sufficiently large » and || < « with a certain positive value of «.
Conversely if G (z) is regular in |arg z| <o« and satisfies (10) the
integral (1) defines a function regular in the region defined by the
inequalities
R{e* log(—2)} < (w — ) sin «
R {e=log (— 2)} < (w — 7) sin a.
The representation (5) follows as before. The considerations

developed in 3 will also continue to apply provided % > %. This
establishes the statement (i).
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