THE, LOCATION OF SINGULARITIES ON
THE CIRCLE OF CONVERGENCE OF GAP SERIES, II

BY

F. W. PontING, University of Aberdeen

1. We consider the functions

)—2, €, 2" (1)

n=0

which have exactly k different singularities (all isolated non-critical and
of finite exponential order) on their circles of convergence. We shall
prove the following theorem for any even k, and for convenicnce we
write k = 21

TueoreM. If the upper density of small coefficients in (1) is greater
than 1 — 1/1, then the singularilies (1) are located at k of the vertices of a
reqular polygon, This polygon has

k, e
@) k+ w, (b) k+2w 3)

or
il (4)

sides, where w divides k, 3 w' = k and j is an integer greater than 3.

In (3 a) the k singularities are located at the vertices of k/w regular
w-agons (%), in (3 b) at the vertices of three regular w’-agons, and in (4)
at those of two regular l-agons.

This Theorem is a generalization of a result of MacixTyYRE and WiLsoN
(1940, p. 79, Theorem 6) and depends on the argument from Function
theory there developed in § 8 and § 6.

() The qualifying phrase «on the circle of convergence » is to be un-
derstood here and throughout this paper.

(3 We take a single point to be a regular 1-agon, and a paxr of diametri-
cally opposite points to be a regular 2-agon.

9 — Collectanea Mathematica.
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The cases of k = 4 and k = 6 were dealt with in an earlier paper (*)
(PonTiNG, 1953), where it was shown that theorem 1 is a best possible
result for any even k. Examples were also given in that paper of functions
whose singularities were distributed as in (2), (3 @), 3 b) or (4). In fact,
the treatment forms a model for the present paper.

Small latin letters (except a, ¢, e, h, i and z) will denote non-negative
integers.

IFor convenience we take the radius of the circle of convergence of
(1) to be unity and the singularities thereon to be located at the points
exp (iey;) which are the zeros of

F@=ay—aqyz+ ayz® — + ... +a,7%, (ay = 1). o)

By a simple rolation of the z-plane we can take a, = 1 and these
simplifications will involve no loss of generality. We also have

a,=dk_,=2exp§—i(a1—{-o:e—{-...—(-oc,)%, (6)

where the bar denotes the complex conjugate. We make frequent use of
(6) in the subsequent calculations.

We use the results and definitions of [P] § 2. Let ¢,,; be the first
cocficient of a favourable situation which occurs with positive upper
density, and let (%)

Cn—l—j)s cn-}—q s cn-l-r s cn+s

be the first four non-small coefficients. Then from the hypotheses of
theorem 1

l<p<2l<yq, 3l<r, 41<s )
and
q—p<k, r—q<k, s—r<k ®)
We consider the following set of cases which is exhaustive.
Case 1: p==Kk;

Case 2: p<k—1, q=k+1=r—p;

() Frequent reference will be made to this paper which will be deno-
ted by [P]

3 The letters k, I, p, q, » and s will have the same significance throu-
ghout.
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Case 3: p<k—1, r—p=k+1, r—p and ¢ not both equal
to k + 1; subdivided into: (3a) s —q¢>k, 3b) s —qg<k;

Case 4: p<k—1, r— p<k; subdivided into:
Aa) k—r+p+1<r—q—1, @b) k—r+p+1>r—q—1.

The method of proof is to deal with particularly simple subcases and
then with the others. We frequenlly use the fact that a, = 1+ 0 and
show that some positions lead to the contradiction g, = 0.

These cases will be considered in §§ 4, 5, 6 and 7 respectively, using
certain relations between the a; which will be obtained in § 2. In this
way Lhe following resulls will arise amongst olhers :

o @ = ;i (E=1,2, .,d—1; j=1,2,..,w — 1),
t=d;j=12,..k— dw), 9)
and when dw + w > k 4- 1,
Opdwr; =0 (G=1,2,.,do+w— k- 1), (10)

where ()
dw + w > k= dw. (11)

From (9), (10) and (11) equation (5) becomes

F@)=(0—az+ a2z2 — e g (— 2P) X
A + ay (— 2)% + o 4 aye (—2)8). (12)

In addition we shall have one of the following :
U+ 0, = o, t=1,2,..,d); (13)
d=2, —a, =0 +08, t =00, 81 =0, (t>3);  (14)
d=3, a, = Re, @y, = Ré?, a3, =¢% RE=R+1,1e1 =1 (1))

Equations (13) and (15) will arise directly from the consideration
od §§ 4, 5, 6, 7; it will also be shown in these sections that if (13) does
not hold, then either d = 2 and ¢ — p = w or (15) holds withg—p =w
or g —p =2w. When d =2 we deduce in § 3 that (14) holds.

(1) The letters d and w will have the same significance throughout.
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We note that <1 in (14), for then §, = 8, contradicting the hypo-
thesis that the singularities are distinct. If { = 2, then

5] + 62 == 0, a,. = 0,
and we have (13) with d = 1 and w replaced by 2w. If { = 3, then
02 - 8,0 -+ 83 = 0, @ — ay, =0,

and thus (13) arises with d = 2.
We show in § 3 that k must be equal to dw. FFrom this and (12)-(15)
it follows that F(z) takes one of the forms: (%)

1 —a.(—2#)"1(1 — aﬁf,_:'l (— z)f=tw) (16)
1 (0 -+ 0p) (— 2)¥ + 8,8, 2%, (k=2w, 8 =06}, j>3); (17)
(1 — Rezw 4+ £222¢) 7' (1 + £225%), (k = 3w, & = 1). (18)

Equation (16) gives (2) when d =1, (3a) when d > 1; (17) gives
“@); (18) gives (3 D).

2. We construct from the k by NI matrix (%)
(expf—itas{), (@=1,2 ., k;7=1,2.,N), (19

a k-rowed matrix
A, (20)

by omitting columns p, ¢, r, s, and all other columns of (19) which corres-
pond to non-small coefficients. As in § 8 of the paper of MacINTYRE and
Wirson (1940), it follows that all k-th order minors of (20) vanish, and
this forms Lhe logical basis of the suceeding arguments. The details of
the discussions from Function theory are given for three singularities
in § 6 of the above paper.

In the following, the a; are the symetric functions defined by (5) with
the convention that

a; =0 if >k or j<<O. 21

(1) See [P], §§ 3.21, 4.52 for examples of (16) ; for (17) see §§ 3.1, 4.2;
for (18), see §§ 4.31, 4.9.
(3)) See [P], § 2, for the definition of N.
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We deduce the following relations, in which we write (%)
9—p=1u r—q=v
and make use of (6).
(A) If ¢g>k-+1, then
G=0=a_;, (=k—p+1,k—p-+2,.., u—1).
(B) f r—p>k+1, then
;=0=aq_;, (=k—v+1, k—v+2, .., u—1).
(C) If u<k and v>1, then
Quyj =0, a, (j=0,1,2..,0—1).
D)y f r—p>k, v<k and s—r>1, then
ypj=0,a, (j=0,1,2, ..., s—r—1)
() If u<k and s—r>1, then
G (Aypp — Ay Q) = Qypyrj — Alyyjs (J - 0,1, 2,...,8s —r—1).

(I) f r—p>k v<k and s; —s>1, where ¢, is the next
non-small coefficient in (1) after c,,s then

W (Us—g — Oy Us—y) = Qs_gpj — Ay As_yrjy (j=0,1,2,.,5, —s —1).

Case 1 is best treated differently from the other cases, particularly
when ¢ = k + 1 and relations (4) do not hold. Neither (4) nor (B) may
be used for case 2 but (C) and (D) are sufficient. In case 3 at least one
of (A) or (B) will hold as well as both (C) and (D); when s — q¢ < k we
need (F) as well. Relations (E) are of no usc in case 3, for then a,,, = 0
sincc 4 + v =r — p >k and then these relations arc a consequence
of (D). We are unable to use (B) and (D) in case 4. When ¢ =k + 1,
(C) and (E) are sufficient for case 4¢, where we make use of § 2.41, but
whenq > k + 1 we need (A) as well. Itis deduced in § 2.43 thatq > k 4 1
in case 4b, so that relations (4) hold ; these are needed. The other results
of § 2.43 are also used.

(1) The letters # and v will have the same significance throughout.
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2.1 Relations (A) and (B) are consequences of well known results
on determinants and may be obtained by the methods of MAcCINTYRE
and WiLsox (1940, p. 78). IFor the others we need to use a few properties
of S-functions (1), and we shall use the notation and definitions of [P]. In
the proof of (E) and (F) we shall need the more general version of lemma
2 of [P] in which 4, < k; in this case (u) has A, parts and the deter-
minant | aus; — o + 7| is of order 4,.

As an example, we deduce relations (A). Columns

Li+Li+2,.,p—1L p+1,. ., k4]
of (19) are retained in (20) when
I1<j<q—(k+4+1).

The vanishing of the determinant formed by these columns implies (?)
that

0 =3 % 1k+j—P § = ak-l—j—?'
The other relations in (A) follow on using (6).
2.2 (3 Proof of (C). When 1 <u<k, ie. q—k<p<q-—1,
columns
g—kg—k+1,..,p—1, p+1,.,9—1, g+t t=1,2, .., v—1)
of (19) are retained in (20). Thep (%)

M=t = e = Aait =0, Ay =y = e = Ay =1, 4y =1+ 1

and hence § t+1, 1#—1 2 = 0. When u=1, then p =k, q =k 4+ 1 from
(7), and we have % t4+1 § = 0 from columns 1, 2, ..., k — 1, k + {4 1.
The partition conjugate to (£ + 1, 1#—1) is (u, 1¢). Hence

a, a®
€ H,

= 0,
(22)

(1) Cf. LrrrLewooD (1940).

() We have A, =4, = ... = Atj—p =1, Atj—pr1=..=24 =0. As
usual, zero parts are omitted.

(3 From (8), u < k# and v < k; the cases of v = k, v = k are conside-
red in §§ 6.11, 6.13 respectively.

(%) See [P], footnote to § 3.1.
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where e, is the column vector of length ¢ with unity in the first row and
zero below, and
al) = (au-i-h Ay 25 eey au+t)s

]:It == ("'.—6-?—1)’ (U', =1, 2, .., f),
When ¢t =1, (22) becomes
Ay O = Aytq Qg = Uyt .

When t > 1, we assume that (C) is true for j =1, 2, ..., { — 1.
It @, = 0, then from this assumption,

Ay = Quiyg = oo = Ay oy = 0.

Hence, from (22),
Ayyy =0,

since the cofactor of this term has unity on the principal diagonal and
zero below, and thus a,,; =0 = a,a,

If a, + 0, subtract a, times row 2 of (22) from row 1 ; the new first
row is

0, 0, ..., ayyy — a, q,.

Hence, as above,
Ay 1y — Ay Ay == 09

relations (C) follow, but this process stops when { =» — 1.
2.21. Relations (D) are similarly established by using columns

r—kr—k+1,.,9—1,q+1,..,r—1, 1r+17],

G=1,2.,s—r—1).

2.3. Proof of (E).
Columns

q—kq—-Lk+1,.,p—1,p+1,.,9—1,r+7],
G=1,2,.., s —r—1)

of (19) are retained in (20), and as in § 2.2,

(23)

a, alv+1) ‘ = 0.
& Hyyj
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If a, # 0, subtract a, times row 2 of (23) from row 1 and use () (C).
Then the new first row is (0, aj., a*?), where

0=(0,0,..,0), af = ay — a, QG_y,

* (7 * * *
a'l = (nv-{-1¢+15 Ay 16425 ooey av-;—u+j)-

Hence (23) becomes

aty, a'h| =0

€; H;

1 7

(24)

When j =1 (24) becomes a;., a; = Gjyy11, L€.
@ (Qysu — A Q) = Gyyyuty — Ay lyiys

and a similar procedure to that of § 2.2 gives (E).
If a, = 0, then relations (C) still give (24) from (23).
2.31. Relations (F) are similarly established.
2.4. We now enumerate some consequences of these relations in

forms chosen to simplify their application.
2.41. 1If, as in case 4a, and case 1 when r = 2k,

1<k—r+p+1<v—-1,
we have from (C),
Apripti @ = QGp—vtj (=1, 2,0 —(k—r+p+1).
However, a,—p—; == a,—; a, from (C), and (6) gives

Up—r+p+i = Ab—v+j Qh—u-

Hence
Ap—ytp4j = Ay AQp—yy Ap—y 4 pt 5+

Thus we have either a,a;_, + 1 and

a;=0=a_; (=k-—-r+p+Lk—r+p+2.,0v-1), (25

or
y Qyy = 1. (26)

(1) If v=1, the new first row is (0, ay+1. a5+2, ..., @v+1+j) ; the remainder
of the argument is unaltered.
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When (26) holds, relations (C) become
Ay Ay pj = @}, G=1, 2,..,v—1),
and then (6) gives
Ay Ay j = Up—_js G=1,2,..,0—1). 27)
Now k —v +1<r— p—1, and thus (C), (26) and (27) give
a, a; = Qyyj, G=1, 2,.... k —u). (28)

2.42. Similarly, when r—p>k-+1 and 1 <k--s+q+1<s—r—1
as () in part of case 3b, or case 2 when s= 2k + 1, we have either
a,a,_,+1 and

a;=0=a,_;, (=k—s+q+1, k—s4+q+2,..,s—r—1), (29)
or a,dq;_, = 1 and
Aypj = Uy @, G=1, 2,...k — ). (30)

243. When k—r+p-41>v, then k+p+q+1>2r>3k+2
from (7), and thus p 4+ ¢> 2k in case 4b. We consider this together
with other relations from case 4b and assume

Ay Ty, 1—p<k p<k—1, p4+qg>2Fk 31)

Since p<k — 1 it follows that ¢ >k 4 1 and so we may use
relations (A). From the last two inequalities of (31),

k—u+1<2k—q<p-—1,
and hence relations (A) give
a; =0, G=k—u+1L, k—u+2,..,2k —gq).
Now, by definition
a; =0, G=k+1, k+2,..,2k — p).
Hence relations (E) contain
= @i — Ay Qpeutj = CGripri (@uro — G &), (G=1,2,.,k—p)

(1) See §§ 6.421, 5.21.
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since 2k —z<s—r—1 from (7). Then since a,., *+ a,q, from (31),

a4, =0=a,_; (j=k—r4+p+1, k—r+p+2,.,2k—1). @32
244 We consider as in part (!) of case 3b,

as_q + a,a,_,, s—q<k, r—p>k+41, s —r>u (33)

Since, from 33), u=r—p-4q—r>k—r-+q41>s—r and
sy — r > u, we find from (B) that relations (F) contain

aj (as—q — as—r) =Us—gj — QAsyrj = 05

1

for j=k—s+q+1, k—s+q+2,...,u—1—s+r. Hence
a;=0=a,_;, (j=k—s+q+1, k—s+4+q+2,..,u—1—s+4r), (34)
since a,_, + a,a,_, from (33).
3. We assume (%) in this section that:
(i), (9), (10) and (11) have been established,
(i), u= fw,

(iii), if (13) does not hold, then either d =2 and u = w, or (15)
holds with u = w or u =2w.

We define the copstants
UH
by

(4 a0 &+ 3 8B e 4 Qg 01 = D U, (35)
j=0

Lemva 1. If u= [w, if (9), (10) and (11) are Irue, and if column
p+t—NHw, (U>f+1)C)
of (19) is retained in (20), then

MNe—1 -+ Nt —o Ay + .. + Ni—y Qoo = 0.

(Y) In the discussion of case 3b, the elimination of certain simple sub-
cases leads first to the situation of § 2.44 and then the discussion of a sub-case
involves § 2.42. See §§ 6.42, 6.421.

‘ (?) ~As explained in § 1, the results (i), and (iii) will be established in
3§ 4, 5, 6, and 7 ; (ii) will also be established in these sections.
(3) Since u = g — p, this ensures that this colum comes after column g.
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Proof.
Columns

q—%k qgq—Lk+1,.,p—1, p+1,.,9-—1, p+-(@{t—1DHw
of (19) are retained in (20), hence, as in § 2.2,
Wt —f—w+1, o=t} =0, (36)
The partition conjugate to ({ — f — 1) w + 1, 1/#-1) is
(fw, 16=1-Dw), (37)
We define the w by w matrices B, by
By = (8gw—w-+<—0);

where (21) holds. The first row and the first column of B, will be
denoted by '

Bes Ve
respectively.
Then (36) and (37) imply that the determinant of the {—f—1) w41
by ({ — f — 1) w 4 1 matrix

[ Igf+1 Bivz «vvn- Bi—1 Qo |
B] 32 ..... Bl——f-l Vi—1
\ 0 B] ..... B;_,_g YVi—f—1
L0 0 ... B, ve

is zero. We denote this determinant by A.
From (35), we have

77;' + a, Mj—1 + + ajw = 0, (] = 0)’ (38)
so that (9) applied to (38) gives

Bis1 +mpBi + - + 1B =0, _
Viee T MmYit1t o + 00 =0, (=1, 2..).
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Hence in A, we add

t—f—2

-

{i—s—1-; x column (jw + 1){
i=0

to the last column.
The first element of this new column will be

Ay + M AQw—20 T+ - +77t—f~1 Aty
= — Py Qo + ooe + Me—1)s (39)

from (38). All the other elements, except the last w — 1, will be zero.
Now add

t—f—2
ST {n; x row (jw + 2)f

i=1
to row 2, which becomes,
1, @, ay,-ap—4, 0, 0, ..., 0.

Then subtract a;, times this new row from the first row, and thus
remove the first w terms. Similar operations will remove every term in
the first row except the last, which remains unaltered. The cofactor,
of this last term has unity on the principal diagonal and zeros below.
Since A is zero, the lemma now follows from (39).

LemMa 2. If the upper densily of small coefficients of (1) is greater
than 1 — 1/1, if (9), (10) and (11) are true with

w=u d=2, u? + ay, a, + 0,
and if 8,, 0, are defined by
14+ ayl + a8 = (1 —6,0) (1 — 6,0), (40)

then for some [ > 3.
8y = 8.

Proof. From [P], theorem 2, there will be a block of [ consecutive
columns of (19) which come at some point after column ¢ and which are
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retained in (20). Since d = 2, we have from (11) that k> 2w and so
w <[ and for some 7, column

p+ilw—w
will be one of these columns. Since u = w then [/ = 1 and so by lemma 1,

N1 = 0.
IFrom (35) and (40),

Mot = (B — 8)~1 (87 — b))
and hence

8 = ob.

As mentioned in the paragraph after (15), { = 1, and { cannot have
the values 2 or 3 when a, + 0 and a2 + (g

This lemma establishes (14), the stipulations a, + 0 and o + y,
ensuring that (13) and (14) are distinct.

The favourable situation [P] from which all our results are deduced
begins wilth C, 44 for a sequence of n of positive upper density. Let the
last coefficient of the second 0 block in situation (ii), or the second
1 block in situation (iii), or the third 0 block in situation (iv) be

Cn 47,
and let

N,

be any suitably chosen finite positive integer. Then there are only a
finite number of possible distributions of non-small coefficients in the
N, coefficients following c,,,. Hence there will be a subsequence
of n of positive upper density for which the n, + N, coefficients:

Crui1s Crpms oees Cn+n.,+N,,

have the same distribution of non-small coefficients. In the subsequent
argument we consider only those c¢;, for which

n+1<jw<n-+4 ny+ N,

LemyMA 3. If the conditions of lemma 2 hold and if t, is the least t
such thal

A

then n; = 0 if, and only if, j + 1 is a mulliple of 1.
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Proof. The condition is clearly sufficient. If 7; = 0, we have

j+1 j+1
0" = &

from (35) and (40). If
j+1=gt L1, (to>1,=0),

then &) = 8% which is only possible when ¢ = 0.

Levva 4. If (9), (10), (11) and (1) are satisfied, then
N5 =(— &), nsjr1=R(=ePT" 0= (—""2 95553 =2n57.4=0.

Proof. From (15) we have d =3 and

(1 4+ ReZ + Re?0*+ 303 (1 — Rel - 28%) =1 4- £5¢5.
Hence in (35)
Znili=(1—Rel + &2 (1 + &5t

and the lemma follows.

Levva 5. If (9), (10), (11) and (13) hold, then

Njavi 05 Miaj+1+0, 7, =0(@+#0,1(modd +1)).  (41)

Proof. 1f d =1, then (41) follows from (35) since aq, cannot now
be zero. If d > 1, (35) becomes

2777' Cj = (1 — Ay C) (1 - a!:if.-_[_l f"“)"I

from (13), and the lemma follows.

Leyya 6. When (9), (10) and (11) are irue, one of the following
sets of columns of (19) is not relained in (20):
(i) p+ijtow, p+ (Gto4-Diw, .oy p+ (Gl + 1, — 2 w;
) p+sjw, pL+Gj+-DHw, p+-Gj+dw;
Gi) p+djw, p+GBji+2)w, p-+GBj+3w;
iv) p+jd+Dw, p+jd+ 1w+ u;
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for j =1, 2, ... These results hold when: (i), d =2, u=uw, > 3;
(ii), d = 3, u = w and (15) holds ; (iii), d =3, u =2u and (13) holds ;
(iv), relations (13) hold.

Proof. 1f (13) is not true and d = 2 then u = w, f=1 and the
lemma follows from lemmas 1, 2 and 3.

When (15) holds and the set (ii) of columns of (19) is retained in
(20) then u = w, { = 1, and from lemmas 1 and 4,

0=mn; =(—2 0=nm1=R(=e%, 0 =mn;,,=(— e

However |e| =1, R®= R 41 from (15), and thus each of these
three results is in contradiction to (15). When (15) holds and the sel
(iii) is retained, then u = 2w, f = 2, and Lemmas 1 and 1 give

0 = 15 + @nspsr = (— &), 0 =100 + aurpsing = (1 — R%) (= )72,
0 = M543 F @umsjre = — R(— &)/,

since @, = — n; = Re from (35). Each of these three results is in con-
tradiction to (15) as abhove.

If (13) is true and the set (iv) of columns of (19) is retained in (20)
then since fw =u<k < (d + 1)w from (11), we have f << d 4 1 and
so from lemma 5, f — 1 consecutive #; in lemma 1 are zero.

The relation of lemma 1 thus reduces to

Njari =00 Myt Gow =0,

each of which is in contradiction with the results of lemma 5.
We define

w'—1
¥ (2) = ;117 Z w Mz, (mM=0,1,..,w —1)
i=0

Com -t 27 HT,

= L
=

<.

where ' is a prime factor of w and w is a primitive w’-th root of unity.
From (12), ¢ (z) of (1) has dw singularities on dw/w’ regular
w'-agons, and k — dw other singularities. Hence cach ¢,, (z) has at most

dw + (k — dw)w' (43)
singularities. '
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Our favourable situation begins with ¢, for a consequence of n of
positive upper density. There will be subsequences of n where the n are
all congruent modulo w’ and at least one of these must occur with a po-
sitive upper density. We may thus consider the behaviour of the coeffi-
cients of any particular ¢, (z) in some favourable situation and know
that this pattern will be repeated in a sequence of positive upper density.
We will deal only with such favourable situations.

3.1 (") When (13) does not hold and d = 2 and {;, > 3, lemma 6 (i)
shows that at least a fraction (?)

(to — D/t w)

of the coefficients in (1) are non-small and occur in one g, (z), say
@m, (2), since u = w. However, from the hypotheses of the theorem less
than a fraclion

1/1

1

of the coefficients can be non-small. Thus, at most, the remaining non-
small coefficients are a fraction

Ul — (ty — 1)[(Lo ) (44)

of the coefficients and these have to be shared among the remaining
w' —— 1 functions ¢, (z). We assume that (44) is not negative for then
we have a contradiction and the situation is impossible.
If less than
1/Qu+ (k —2u)w')

of the coefficients of a particular ¢,, (z) are non-small, then from (43)
the only possibility is that this ¢, (z) has no singularitics.
Now, fron (44) and (11), since d = 2,

lltO/(tO - 1) = l> u. (43)
Since {, > 4, we have from (45),

=
hu—1(t,—1) 1 1 1 B 3 ‘
B A e A A T N TR A

(') The arguments of §§ 3.1, 3.2 and 3.3 are extensions of those of [P]
§§ 3.32, 4.11, 4.33. The argument of the present paper shows that the distri-
bution of § 4.33 of [P] es impossible ; this is immaterial for it is sufficient to
show that the theorem follows from any possible distribution of the coefficients.
(» In this case, u = w.
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where u == d' w’. Tlence at most (1)
1
= —1
5@ =1
of the remaining ¢, (z) can have singularilies, so that at least
1
~ (' — 1
5 (0 — 1)

have none. This can only happen when the singularities of ¢ (z) cancel
in these ¢, (2).
Let the singularities of ¢ (z) other than those at the vertices of the
(2 u/w") w'-agons be at
L, Loy ooy Loy (17)
These singularitics of ¢ (z) can only cancel in ¢, (z) if they are in
scts of two, or more, at some of the vertices of regular w'-agons. Suppose

that exactly f of (47) are at the vertices of some regular w’-agon. Let
these vertices be

By By Bwsy ey foy—y
where

w; = w9, W —1=e>e>...>e6_1=1).
Then of the w’ functions

@ (0 2),
only

9@, @ (@12, e @ (@1-19)

have a singularity at z = §.
Suppose that

1< =@ — 1) (18)

DN —

and let
@n; (2), @ —1=n>n>..>n=0),

be t of those ¢,, (z) which have no singularities.

(1) If w = 2, we find that only @m, (2) can have singularities, the sub-
sequent argument still holds. In future we will not deal with w” = 2 separately.

10 — Collectanea Mathematica.
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Now @ (o’ z) is regular at z = f unless j =0, — e;, — €y, ..., — €_y,
and thus g, (2) can only be regular at z = g if

D,(2) =@ o™ ez + . + o e (w_y2)

is also regular at z =: f.
We need the following :

Lemya 7. If g is a prime, if b is any posilive integer, and if o + 1
is a g"-th root of unily, then the i-th order delerminant.

716
Ay = I")r—l

s (ot =12,.,1; mg=1, ; =%, j > 0), 19)
is non-zero when n; and e; are integers which salisfy
g—1=e,>e>.>¢_1=1, g—1=n>n..>n=0 (50)

Proof. The determinant (19) is the product of

Il (- o) (1)

0<r<y<i—1

and the S-function

) -
fng —t4+1, ng—t+2,..,m_4—1, n (32)
of
1, 0y, Mgy wvoy y_1.

It follows from the conditions of this Lemma that the product (51)
cannot be zero. MrrcHELL (1882) has shown (1) that (52) may be expan-
ded as a polynomial in » with positive integral coefficients whose sum
is (54). Since w#® = 1 we find that (52) will have the form

fot oo+ foo? + ot fyor (=g —1) (3)

where the [; are non-negative and

Sh= T (34)

(1) Mitchell proved this result when ¢ = 4 and stated that his method
would establish the general result. Schur (1901, § 23, particularly (44) (45)
and (46"")), proved this result by the use of characteristics of irreducible inva-
riant transformations.
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Now (53) can only vanish if it has one, or more, factors (*) of the form
14+ o + o+ ...+ i, G=1, ¢ 9% ..., g" V). (595)

IFrom (50), the prime g cannot divide (54); thus none of the factors
(55) can divide (53). The lemma now follows since (52) cannot vanish.
Let
Qo:

be the cofactor of the element in row ¢ column 7 of (49). Since the @,(z)
arc regular at z = B, it follows that

0, D, (2) + 2y Py (2) + oo + 2, D,(2) = Ay (2)

is also regular at z = . From lemma 7, 4, + 0, and thus we have the
contradiction that ¢ (z) is regular at z = §, and so (48) is not true. Hence

1 . . . .
there are at ]eastg (w" 4+ 1) of the singularities at (47) which lie on
cach w’-agon.

. 1
In this case there will be less than (k — 211),’(5 w’) of tihese poly-

gons and hence the number of singularilies of each ¢, (z) will be

less than
21 4 (k — 2u)2.

But 2k — 2u <2k =41 and thus from (46),

l_t_Q_—l< 1 - 1
l tyu 41 ~2u -k —-2u)2°

Hence, from the argument preceding (45), none of the other ¢,, (z)
has any singularities. Thus only ¢, (z) has any singularities. The remai-
ning w' — 1 of the ¢,, (z) have none. From Lemma 7, this implies that
there is a singularily at each vertex of every w’-agon, and that
w' divides k — 2u.

3.11. If w2 is a factor of u, then we define

] u""-:-l ) - .

3 2 e @Ea), (m=0,1,., 0% 1),
j=0

w' —1

= % 2 &=mi P’ (& Z), (m =m (mOd lU’)):
=0

l-[Im (Z) =

(3) There are no other polynomials in w with rational coefficients which
divide these factors.



156 F. W. Ponting

from (42), where £ is a primitive w’-th root of @ and hence a primitive
w'2-th root of unity.
The functions ¥, (z) can have

2u+(k—2u)wn’

singularities at most, and as in § 3.1 we see that at least

w'? — % w +1)

have none.

We now argue as in § 3.1 with w’ replaced by w’2 and ¢ (z) replaced
by ¢ (2), for only ¢, (z) contributes singularities to ¥,, (z). Then ¢,,(z)
will have dw singularities on dw/w'2 regular w'2-agons and k—dw singula-
rities on (k — dw)/w’ regular w’-agons. The vertices of two or more of
these w’-agons must be at the vertices of a regular w'-agon. Suppose
that there are exactly ¢ of these w’-agons imbedded in a w’2-agon and
let their vertices be

ﬂf‘ia ﬁ&"‘l m, ﬁf—l 0)2 LR ] ﬂé_:’ O)Til’—ls (j == Os f)’ fgs .. fl—l)
where f# is a singularity of ¢, () and

IU’—1,>,]‘1>/2>...>/‘¢_1>0.
If

< % ' — 1), 56)

we can find ¢ values of m which are congruent to m,; modulo w’, where
the functions ¥, (z) are regular at z = .

A similar argument to that of § 3.1 will show that ¢, (z) is also re-
gular at z = f. This is a contradiction and so (56) is false. As in § 3.1
we deduce that w'2 divides k — 2u.

3.12. We continue this argument with all the powers of w’ which
divide u, and then repeat the whole process with any other prime fac-
tor of u. This shows that u will divide k — 2 u, which contradicts (11)
if k> 2u. Thus we are left with k =2 u.

3.2. When (15) holds, similar arguments to those of § 3.1, ctlc., will
show that k = 3 w. The expression (44) is replaced by

1/l — 3! w)
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and (45) by
Sw/3=1=3w)/2.

‘Then, similarly to (46), when w = d' w’,

’

_3_ dSw — 31 1

— _ <

1 GIU
5w hwl A 6d Ldl—6w 3wt (—3w)w,

o~ -t

and as before we deduce that w divides k — 3 w. Hence k = 3w from (11).
3.3. When (13) holds, slightly modified arguments will show that

k = dw.
Relation (44) becomes
1/l — 2/(dw + w).
Now, when d is a positive integer,

(Al —dw)(dw+w—2) —1(d+ w=—82 — wrd(d - 1) +
+Iw(Bd+3)<0, (57)

since
Gd+32—32dd+1)=—7d>*—2d + 9<0.

When d' v’ = w,

d < é w,
so that
P 1 1 1 2
= : > - > 2
dw + (k—dw)w'  4l—2dw—d) 4l—dw ~ 1 w4+ w’

from (57).
The remainder of the argument follows as before.

4. (M) Case 1, p=*k.
Columns

1,2 k-1, k+j

(1) All the distributions of § 4 are included in the favourable situations
(ii) (i) or (iv) of {P].
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of (19) are retained in (20), and as in [P] §§ 3.21, 4.8,

h={j{ =0,
G=1,2,.c,q—k—1,q—k-+1,..,r—k—1, r—k+1,..,s—k—1), (38)

where h; is Lhe j-th complete homogencous symmetric function of
exp (— io)), exp (— [ot), ey €XP (== T o1).

We nole that s — k — 1 = k from (7).
We use the well-known relations

g — Qg_yhy +ag_shy — + ... + (= 1)¥¢h, =0, (9g=1,2.) (39
When ¢ > k 4+ 1, we have immediately from (38) and (59),
=0 G=1,2,.,u—1) (60)

sinccq —hk—1=q—p—1=u-—1.

We consider the cases of ¢ =k +1,¢> 31 and 3l=¢>k -1
in §§ 4.1-4.122, § 4.2 and §§ 1.3-4.332 respectively; the further sub-
division depends on the position of r and certain other factors. 4.1,
g =1k -+ 1(). There is no general result which follows immediately
from this situation and we proceed to the discussion of the subcases
r>2k and r <2k in §4.11 and §§ 4.12-4.122. The results of § 4.12
apply to §§4.121, 4.122 but those of § 4.121 do not necessarily hold in
§ 4.122, The decimal numbering of the sections and sub-sections will be
used in this manner.

4.11. If r> 2k (58) and (59) now give

a=a, a,= a3, ..., ay = af,

and thus (16) occurs with w =1 and d = k.

When r > 2k + 1 we shall have the contradiction that af“ L0,
but this will not affect the general result. Unless we show directly that
a certain distribution of non-small coefficients is impossible, it is suffi-
cient to show that the theorem is true even tough consideration of
the positions of further non-small coefficients may show that the original
distribution was impossible.

(t) Cf. [P], §§ 3.2-3.22, 4.8-4.82.
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4,12, If r =< 2k, equations (58) and (59) give

aq=d, (=12 .,1r—k—1), (61)
QG — Ay_p—3 by + (— 1y =F h,_;, = 0. (62)

From (7), r > 31, and hencer —k — 1> L
1121, I r—k—1>1 (6) and (61) give

— -1 —l+1 E
Q1 = Qq+y, a " =a; , ais =1 or 0,

— —2k—r r—k
Ar—p = Aek—r = Uy = .
Then (62) gives h,_; = 0 and hence (16) arises as in § 4.11 when
a, + 0; we have the contradiction a, == 0 when a, = 0.
4,122, MW If r—k —1=1, then cquations (59), (538) give

@ — a1 by + (— 1y ~Fagp_, hy_ = 0. (63)
Set
h= (= 1)y,

then (62) and (63) (%) become, on using (61) and (6),

~l— I+1 — 1—
a ' =d +h, 1=a1a1+alih.

. 1 - N .
Now d; = u; = q; = dy, from (61) and (6), and hence

1 —aa = (qa) (1 — aqa).
Thus
4G a =1, h =0,

from (63) and so (16) again follows.
4.2. When ¢ > 3/, then u =g — p>1 and (60) gives

(11=(12=...=L11=0

and (16) follows from (6).
43, 3l=q>k+ 1.

(3) This case has to be treated separately from § 4.121, for (61) does not
now contain @, ; = aljﬂ since v — k — 1 =1; and if » = 2 £ then (63) is the
same as (62). Cf. [P] § 3.22.

(3) Since these two equations are the same when % = 2, the argument
must be modified here and elsewhere. The case of 2 = 2 was considered by
MACINTYRE, and WILSON (1940), and hence we assume k2 > 2.
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431. If r>2k, then r —p — 1= k so that the relations (C)
contain a = a,a,_;. Now (60) gives

A = (ly = oo == (g == )

and using (C) we must have u dividing k in order to avoid the con-
tradiction q; = 0. Relations (C) also give

klu . 11 P .
a, =a,=1, Ay = Qy, t=1,2,.. k),

and hence (16) follows since (12) now becomes
F(z) =1 4.ay(—2)* + ab22* + ... + d/* 2=,

4.32. When r =2k then k —r+p+1=1<vp —1, since
31l =q.

Then the conditions of § 2.41 are satisfied and we have either
(25) or (28).

4.321. If (28) holds then (16) follows as in § 4.31.

4,322, 1f (25) holds then

a, =y =..=ay—y = 0.

If(Y) v > [, then (16) follows as in § 4.2,
If (®) v =1, then (64) and (6) give

F@) =1+ q(—2)}+ 2~

If f =1 or a; =0, then (16) follows; if a1, 0 then (17)
follows from Lemma 2,

4.33. When r <2k, then from (7), [<r — k < k. From (39),
(5) and (58),

(F@) ' =2hz=1+h,z* +h_pz7~% +0(F+1).
Sct

2= C’ hy = (_ l)u+1 Y1, hy_p = (_l)r—k—l Va,

1+ a8 e + @l =1 — 9, 0% — 97—k 0(EFHY)]-T -
b 0 0 b gy R (1R 20, L o B0R0% ). (6D)

(3) In this case v cannot be less than [, for » = 2k and 3/ =gq.
(3 We now have favourable situation (ii) of [P].
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We need only consider
vve T 0, ) (66)

for if v, = 0 then since r — k < k, (65) gives the contradiclion a, = 0,
and if », = 0 then u must divide &, and (635) gives (16).

4.331. If u does not divide r -- &, then a,_; == », from (65).

Since 2k — r < r — k, from (7), then 7, =a,_ = asx—, = 0 unless
2k —r is a multiple of u, from (65). Let

2k — r = qu.
Hence u does not divide k. Now for some b,

bu>r—k> (@ —1u
Then from (65),

b
a,,u = V1.

Now k —bu<<2k —r<<r—k and k — bu cannot be a multiple
of u, and hence from (60) and (65),

b —
V1= Apy = Qg —py = 03

contradicting (66). Thus we consider
4.332, r — Lk = bu.
In this case u must also divide k, otherwise (65) gives a; = 0. Let

k=04 9u 2k —r = gu,

with ¢ > 0 since r << 2Fk.
Equation (65) now gives

= — - b vy
W =) =Uae_y = ay_p = v, + ¥y (67)
—g—1 —g—1 — ‘ b+1
vi =Ay = Aop—y—p = Qy_py — —)"V-z‘Vl +v . (68)

If ¢ > 1, then we also have

—g—2 g9 _ o 2 b2
V1 =y = Ogp—yoy = Uy_piy = 3Vp¥] + V1 . (69)

Then (67), (68) and (69) give », 7, = 1. Hence (67) and (68) give
v{v, = 0, contradicling (66). This leaves ¢ = 1 so that

k=(@0-+1u
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Hence k —2u<<bu=r—k and if b +1 =4 then (65) gives
_t - _ bri—t
V1 = Qo = Qgp—t = Ao - 1-t)u = V1 > (t=12,3).

Thus #, = »; ' since », + 0 from (66), and hence »?7' = 1. Then
2v,v; = 0 from (68) since ¢ = 1; this is in contradiction to (66). Hence
b + 1 < 4. Moreover, bu=r — k> [>= u since ¢ < 3L Thus we are
left with b =2 and ¢ =1 so that k =3u.

Equations (67) and (68) are now

and hence
Thus »§ is real and
7, = Ro, (=1, RB—2R24+1=0).
Then (65) gives
a, = Row, ay, = Row? g, = 03 =1, k=3u.

If R =1, then »} =1 and 2y,», = 0 as above, in contradiction to
(66). Thus R* = R + 1 and we have (18).

5. (HCase 2, p<k—1,qg=k+1=r— p. The last conditions,
which prevent the use of (A) and (B) in the discussion of this case, are
of great help when we use (C) and (D). We note that in this case r << 2k.

From (7), p>1so that u=q — p <k and since r—p=k 41
in cases 2 and 3, we have

a, + 0. (70)

Otherwise (C) gives 1 =a, = 0. Since p<k —1 and ¢g=k + 1
in cases 2,3 and 4, we have
u=2. (71)

We consider the cases of r =2k and r< 2k in §§ 5.1-5.13 and
§§ 5.2-5.22 respectively. The sub-division depends on the position of s,
and we note that s > 2k from (7).

51. If r=2k, then p=k—1 and

u=2. (72)

() All these situations arise in favourable situation (ii) of [P].
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Relations (C) become
Qs.j = Uy, G=1, 2,.., k—2). (73)

2.1, If s >2k -2, columns k-2, h+3,...,2k—1, 2k + 1,
2k + 2 of (19) are retained in (20) and thus @, = 0 as in § 2.1; this is
in contradiction to (70) since u = 2 from (72).

5.12. If s =2k -1 and ¢, is the next non-small coefficient after
Cupss then s, > 2k 4 [ since we are in favourable situation (ii) of [P].
Hence, when k > 4, columns k + 2, k+3,...,2k—1, 2k +2, 2k + 2,
2k 4+ 3 of (19) are retained in (20). In the notation of 'P] L.emma 2,
=My =..=243=0, =42, =2. Hence §22§ =0, i.e. a3 — a;a;=0.
Then a2 = a} a, from (72) and (73), and a} = a, from (70). Then (73)
gives (16) with w = 1.

The case of k=2 was considered by MaciNTYRE and WiLsoN
(1940, §§ 1-5) for a variety of types of singularity, and the cases of
k =4, k= 6 for isolated essential points of finite exponential order
by PonriNg (1), 1953,

5.13. If s =2k <4 2. relations (D) contain a, a,—; = a;, and hence

4 f‘l2_1 = alz, a = a,
from (73), (72) and (70), and (16) follows.
5.2, If r< 2k, then s —r>1 since s > 2k from (7).
521, If s =2k + 1, then the conditions of § 2.42 hold since

k—s+q4+1=1<s—r—1

and r — p = k + 1. Thus we have (29) or (30).
If (29) holds, then

Uy == dy == . = Ay_y = 0. (74)

since 1<<s —r—1=2k—(p+k+1)=q—p-—-2=u—2.
IFrom (C),
k=gu or k=gu—1

for some ¢, since a;, + 0.

() See, in particular §§ 3.41, 4.52.
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If k = gu, then since a, = 0.
A1 = 0, y_q == (),

and (16) follows on using (74) and (C).
If k = gu — 1, then from (74), equation (12) becomes

F@) =1+ a1 (— Y1+ a(— 2"+ .. + a7 (— 28,

This is (12), (with (13)), and since u — 1 > 0 from (71), this situation
is impossible as shown in § 3. This leaves (30) which will be considered
below.

5.22. s=2k + 2. In this case relations (D) contain (30), namely

yrj = Gy G=1,2,...,k—v).

If v=>0u, then k=((b+1)u—1 since u+v=r—p=~k+1,
and using (C),
F@O=0—aqz+ a2 — + ... + ap_y (—2* 1)
(1 - ay(— 2)* + oo + a)(— 2)™),
as in (12) and (13), and thus an impossible situation arises as in § 5.21.
O If bu>v> (b — 1)u, we define
v— (b —NDu=uw;, (b =0">)
u— (b — 1w, = w,,
Wy — (bm+1 - 1) W, = Wy.4,
w,, - ([)W-H’- - 1) Wytr1 = 0’

where o > w; > wy > ... > Wy = 1.
We set

Wyt = W.

Now from (C) and (30), for j =1, 2,...,k — p,

by —1 by 1 -
" == My = M@ = A U (1. (75)

« L

(U

() Since q=k+1=7r—p and p=1-4 1 from (7), then =37 | 2
and v > 1= u, so that == 2. Cf. P} §4.22 whereyu =3 andw =w, = 1
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Since a, #+ 0 from (70) and k — v = u — 1, then (7)) gives

Uy, 1] = U, @ G=1, 2 .,u—1). (76)
If
g+DHu=t>qgu

and if { — gu > w;, then u + w; — 1 =1 — gu and (76) gives with (C),
4 g
Ay = Uy Qg = Wy Aj— gy —zo, Wy = Qg Wy
If t—gu<w, the my<u<t—(¢g—Nu<u+w —1, and

g—1 g—1
G = O Q_(g—1)yy = Ay ~ Ar—(g—1)

Wy oy = e, Ay
Hence (706) is extended to
Upj = U, U, G=1,2 .., k—w).
We repeat this process, ending with
Urj = Ay @, G=1, 2,... k — w). 77

We note that w is the greatest common divisor of u and v.
Let )
k4+1=u-+v=(b+ 1) w.

The from (77), (12) becomes
F@=0—az+az®— 4 .. - du_y(— 2
(1 + @y (— 2% + oo + ag (— 2)%%),
From § 3 (in particular § 3.3) this is only possible when
w—1=0,
that is when u and v are prime to one another. In this case we have (16).

6. (HCase 3., p<k—1, r—p=k+1, not both r—p and q
equal to k -+ 1. We deal first with

u==%k, or n=1, or v=FL

(1) All the distributions of § 6 arc included in the favourable situations
(ii) (iii) or (iv) of [P].
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In § 6.2 we consider the sub-cases of u >> [ and of u dividing v when
u<l.When s —q > k we have case 3« and deal with this in § 6.3 making
use of the argument of § 5.22; to do this we need a, a;_, = a; from rela-
tions (D) and this is possible when s —q > k. Case 3b, s—q <k is
considered in § 6.4 and its sub-seclions. We deal first with the special
sub-cases @, =0 and a,_; = @, _,. In § 6.42 we deduce certain ine-
qualities concerning u and v when neither of these relations hold. The
inequalities are used in dealing with the remaining portion of case 3.

6.11, u = k. () Since p > [ from (7), then ¢ > k -+ 1, ithe relations
(A) exist and contain

Then (16) follows on using (6).

6.12. The case of v=1 is only possible when u==k since
r—p=k--1.

6.13. If » =k, then

r>2k, r—p>k+1.
Also
=0 =..=a_13 =0

from (B), and with (C) gives (16) as in § 4.31.
Thus, from (8) we take

6.2. 2<u<k, 2<v <k

We define b by
k=bti>Fk—nu. (78)

If p=v=r—g¢q, then q=r — p so that ¢ > k41 from the con-
ditions of case 3, and then relations (A) exist. Similarly, when » = p,
then r — p > k + 1 and we have (B). Hence from (78), bu = max (p, v),
otherwise a,, = 0 from (A) or (B) so that a, =0 from (C) in contradic-
tion to (70).

If b=1 in (78), then u>1 and ¢ > k -+ 1 since p >1 from (7).
In this case the relations (A) overlap so that (}) u= p and relations

(A) become
Oy ig = Q12 = oo = Qp—p11 = Ap—_pag = .. = Ap_1 = oo = My—q = 0.

() Cf._[P] §§ 3.4
(3 1In order to avoid a, = 0 which contradicts (70).
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This, with (C), gives (12) and (13) (}) with w = u, d = 1.
Thus we consider

b= 2, k=bu=max (p,v) >k — 1. 79)

Hence using (7),
u<l, q<<3l (80)

6.21. If bu = v then a,+ 0 from (C) and (70). ITence v = p and
relations (B) exist, otherwise relations (1) exist as in § 6.2 and then
a, =0 since v >k — 1 + 1. Relations (B) become

a; =0, G=u—1,u—2,...,k — bu--1).

Then from (C) we have (12) and (13) with w = u, d = b. Hence we
are left to consider

bu>v>k--u=0mB- NDHu, b=2. 81)

6.3. Case 3a, s —q > k.
In this case (D) includes a, = a;_. a, and thus

a,+0 (82)
and as in § 6.21, » = p and relations (B) exist. Then (B) and (C) give
a; = 0, G=bu—1,bu—-2, .., k—v+((h—Tu+1).

Since bu > v from (81) and a,+ 0 from (82), then from the ahove
relations

k—v+0G—-VDu=n ie k—wz=v,
with the notation of § 5.22. Arguing as in (75),

Ut = O @y (=1, 2, s k — D). (83)

Also (B) gives, with (C),

=0, j=k—v+4+ 1L k—-v+2.,u—-1)
a].=0, G=k—0G—-—1NDu+1L,k—(G—-—Tu-+-2,..,0—(b—2u-—-1).

Hence & = u and (16) follows. This step will be omitted in future.
4

)
Cf. [P] § 4.11, where «# = p = 5, v = 2 and we have an impossible situation.
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This last set is oblained by using (C) with the complex conjugatles

of the preceding set. Hence, since w; = v — (b — 1) 114
U, j =0 = au, a; G=k—v+1, k—0v+2 .,u—1).

These relations combine with (83) to give (70).

We argue as in § 5.22 and with the same definitions, to reach (77).
This gives (12) and hence (16) follows.

6.4. Case 3b, s —q< k.

Since p<k — 1 from (7) and ¢ — p = u<<! from (80), then

s<51— 1. (84)

Since | < p<21<q-<< 31 from (7) and (80), we are in favourable
situation (ii) of TP}. Now s < 51 from (81) and thus, if r<2k, then

$; > Hl, (85)

where c,.;, is the next non-small coefficient after ¢,.,. If r > 2k then
in the notation of [P] § 2 we have

0110

The fifth block contains at least two non-small coefficients since
41 < v < s< 5l By arguments similar Lo those of Lemma 1 of [P]
we {ind that there will be a modified favourable situalion of the form

0110211..10 or 011020.

Thus (85) still holds.
6.111. When a, = 0, relations (B) and (D) give

Ay gy = Qg2 = oo = Uy = Ay = e. = Us—gq—1 = 0. (86)

Relations (B) do not hold when r — p ==k + 1 but in this case
k—u+1l=k—q+p+1=r—gq=v; relations (D) do not hold
when s —r=1, but then v =r —qg=s — q — 1 so that (86) holds
in both these cases.

Moreover, when a, = 0, relations (F) become

a;a_g = As_q: j, G=1,2,..,85 —s—1). 87)
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If s —q = k, then (86) and (6) give
U =0y = . = Qg1 =0
and hence (16) follow as in § 1.31. When s — ¢ << k we argue in a si-
milar manner to § 6.3 with v (B) and (D) replaced by s — ¢q, (86) and (87)
respectively. We note that s;, —q > 51 — ¢ > k from (85) and (80).
6.412. Tf a,_, == a,a,_,, then (D) and (F) combine to give
A oj = A, qj, G=1,2,...,8 —r—1).
As in § 6.411, s, - qg> Lk so that the above relations contain
a, a,_, = . We then argue as in § 6.3.
6.-12, Thus we consider
a, 40, (Uy_q F Uy (88)
As in § 63, since a, + 0, we have
V=P, r—p>k-+1, v<k—v-(-1Hu 89

But k = bu from (78), and hence from (89)

r—q=v<2k-~u-—-v=2k—q-—-@0—p<2k--q, (90

r<2k. 91)
Also s > 2k from (7), and hence from (90),
s—q>2k—q=k—v+0-1u (92)
We now have from (89), (88) and the hypothesis of case 3b that,

r—p>k+1, Us_q 7+ QO _yy s —q<k,

and also

s§—r>dl—r=l=u,

from (835), (91) and (80). The conditions of § 2.11 are satisfied, and
hence (34) holds, so that

As—g—1 = Us—g—9 = oo = Mgy 5741 = 0.

11 — Collectanea Mathematica.
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Since a, + 0, then a;_,;(,—1)» + 0 from (6), (81), (C) and (70). Hence
from (92) and (34) we have

k—r+p+s—q+1=

=k—ut+ts—r+1>k—v+0—-—1NYu=k—r-+p-+ by,

and so
s —q=bu.

6.421. When s — ¢ > bu, then k —u+s—r 41> bu, ie.
k+s—r=(0-+1u (93)
Otherwise a,, = 0 from (34), and hence a, = 0 from (C) in contira-
diction to (70).
Now from (89) and (7),

k+ut+rv—bu<2k—v<s—v<s—p.

Hence u+v—s+q<bu—k—p+qg=0G+NHu—-k<s-—r
from (93), and thus from (89),

k+1—s+qg<<u-d-v—s4qg<s—r
since u4-v=r—p>k+1. Thus s—r—1>k+4+1-—-s4+q¢g=1
since s — ¢ < k in case 3b, and since r — p >k 4+ 1 from (89), the

conditions of § 2.42 are satisfied. We therefore have (29) or (30).
If (29) holds, so that

Us—g—1 = Qg9 = oo = Q5911 = 0,

then since s — q > bu in this sub-scclion and to avoid the contradie-
tion a,, = 0, we must have

k—s-+r+1>bny r>bu+k (94)

since s > 2k. From (89),

g=p+u<v-4u, vV—q=— 1.

Hence
20>k -+ (b—1u,
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from (94). This contradicts (89) and thus leaves (30), i.e.
aya; = Uy, G=1,2, ...,k —0).

We then argue as for case 3a.

6.422. s —q = bu.

If s; — s > u, relations (F) contain

(¢ (“bu - a, as—r) =0 — Ay As—p1 gy
since (b 4 1)u > k from (78). Now
s—rd+u=bu—v+u<vdu—1,

since » > (b — 1) u from (81). Ilence, from (), a;_, a, = @;—,., and
we have the contradiction a,a,, = 0.

When s, —s<Cu then s <s—q+2u--p=(b-+2)u-p and also

s —q = bu, 2p<2v<k +(h—Nu (95)

from (89). Hence, from (85),

Sk <28 <k--3(-41u (96)

and therefore 3(b + 1)u > 4k = 4 bu from (78), so that b < 3. Thus
from (79) we have only to consider b = 2, i.e.

§ - q -2, 97)
We now have from (79), (81) and (89),
k=s—-q=2u>v=p>*Lk--u; 20<k + u (98)
Hence 2v 4+ 1<k+4+u-t+1<v+2u since u--v=r—p>~rk-1
from (89), and thus v <2u — 1 so that s — r=2u--v > 1. Then
since r—p—1>k>=2u and v > u [rom (98),
Uy j = Quyj = QU = Gy Gy A, (] =1, 2 .,2u—»— ])'

on using (C) and (D). Then from (70),

gy = Uyyy @, G=1,2,..,2u—v»—1). (99)
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From (95), 2s < k 4 7u since b = 2; hence from (96)
28 —2s>5k—k—T7u=k—u=2v—2u

sincec k= 2u and k 4+ u>=2v» from (98).
Thus $; — s> v — u and so relations (F) contain

@ (g — @y Q5_y) = Aaypj — (U Us_prjs G=12,.,0—u—1).
Using (C), it follows that
Aoy —zj = oy o @, G=1,2,.,v—u—1) (100)

since $ — r=2u — v from (97) and a,+ 0 from (88).
From (89), u+v=r—p>k so that k — v << u, and

v—-u<k—u, 2u—v<k—v
from (98), and thus it follows from (99) and (100) that
y—y + 0, Aoy F 0 (101)

since @, = a, + 0 from (88).
We define

1w
as Lhe greatest common divisor of u and », and hence of » — u and
2u — v. A similar argument to that of § 5.22, using (99), (100)
and (101), gives
Aerj = Ay @, G=12,.,u—w-—1).
If v—u=¢qw 2u—v=g,w, then
a,_, = a’, Ay, = a.
Since s; — q > k from (80) and (85), relations (F) contain
M —oy (Ao — My A9y —3) = 1 — @, a5 _,,

and ax_g, ty, = 1 from (C), a, + 0 from (88), and hence

Ap—9y Aoy —y = Ag—y, Ap—y Aoy—y = Ap_y1y



The location of singularities on the circle of convergence of gap series, II 173

from (C), i.e.

a,d = . (102)
If |a,| =1, then
a, = (15,‘+g’

and hence

2 8 B2 __ 8
g = Q@ = a, aw' aw2 = Ay Ay—y aw2 = Ay As—y,s

in contradiction to (88). Then since |a,| =1 from (C), (102) is only
possible when ¢, = ¢, = 1. Hence 2u —v=v—u, s—r = % u=uw,
20=3u, bw=u-+v>k=2u=4w. It follows from (99), (B)
and (C) that (9), (10) and (11) are true, and thus Lemma 1 may be used.
Now columns

p + 3w, pt+4w
of (19) are retained in (20). Hence from Lemma 1,
Ny + Apny =0, Mg -+ Aenz = 0. (103)
From (7), (80), (91), (84) and (85) we have

r<2l<g<<3l<r<4l<s< bl sy
. . " . 1 1
and are thus in situation (ii) of [P]. Since w = 3 u< 5
1
and p<v<lIl+ ju from (98) then p + a, <!+ 10u<6I Thus one

of columns

l from (80)

p+8w, p+9w

of (19) is retained in (20), for s=s—r+r—p-+p=p -+ 6w and
if s; = p + 8w then column p 4+ 9w is kept.
If the first is retained, then since u = 2w, lemma 1, (38) and (C)
give
Mg + awn, =0, Oy (Mg + w75 + g 7y) = 0.

Then 7 + ayns + dgemy = 0 since ay, = a, + 0 {from (70), and
from (38) and (103),

QMg + gz = 0, Ny (Agw — @y A3) = 0.

From (88), a,y = a5, + a,a,_, = a, a5, and thus 5, = 0.
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Relations (103) give 53 = 0 = 5,, and from (38), the contradiction
Qg My + Ay = 0, Ay = Uy Uz

arises. Hence colum p -- 8 w cannot be retained. Similarly (1), column
p -+ ¢ w cannot be relained and thus this situation is impossible.

7. ®MCase 4, p<k—1 r—p<k.
IFor this to be possible, we must have

u<<k, r<2k and s—r=2,
since s > 2k {from (7).
We first consider the [ollowing special cases,

a, =0, or d,_p=a,a,.

We Lhen use the conditions «,, = 0, a,;,, =+ a,a, in Lhe discussion of
the remainder of case 1. There is a certain similarily between cases 30
and 4a, as in the former we showed that the assumptions a, + 0,
dy—yg T @,a;—, lead in § 6.421 to 1<k -+1—s-+g<s—r —1. These
compare with the condilions 1<k +1—r-Fp<r—q— 1. Case 1D
is discussed in § 7.4 and ils sub-sections; we consider the case of u
dividing r — p and show that when this does not happen then
a, = 0 = a,_,, which gives a contradiction.

7.1. If a, =0, (A) and (C) give

a=0, =k—p-+1L,k—p+2,..,u—1u..,r-—-p-—-1). (104)

This is true when ¢ = k +- 1 and relations (A) do not hold, or when
v = 1 and relalions (C) do not hold ; when v =1, ¢ = 31 since r > 31
from (7) so that relations (A) hold. (3) Relations (E) become

Ay_p Uy = Gy_p i, G=1,2,..,s—r—1). (105)

Now s — p — 1 > k from (7), and thus a,_, #+ 0 from (103). Hence
from (104) and (6), we must have r —p>=psincep>landr—p —1>=1
from (7). Now k — p + 1<{[ and (12), with w =r — p, d = 1, follows
from (104), (6) and (105). As in § 3 this is only possible when r — p =k,
and we have (16).

(1) We also use a' 4= 0, from (101).
(3) Favourable situation (ii) of [P], or (iv) when ¢ =317 + 1.
() Compare [P], §§ 4.51, 4.7, see also § 4.6.
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Ience we assume
a, + 0.

7.2. If a,_p = a,a, then (C) and (E) together give
a; @, = Ay j, G=12,..,s—q—1). (106)

This is still true when v =1 or s —r=1. Wenotethats —p —1>= k
from (7), so that (106) includes a, a;_, = a;.
Since a, + 0 it follows from (106) and (21) that

a; =0, G=s—q—1,8s—q—2,..,k—u+1). (107)

Hence
s—q<k

otherwise (107) includes a, = 0.
7.21. If ¢q=k+ 1, then since s —¢<k and s> 2k from (7),
we must have s =2k + 1; (107) and (6) give

a; =0, G=1, 2,...,u—1).

Hence (16) follows from (106) as in § 4.31. (%)
7.22, When ¢ > k + 1 we have (A), and as in (78) we deline b by

k=blu>k—u.

Since a, + 0, and in order to avoid ay, = 0 and a, = 0 = a, from
(106), we have
bu = p, bu=s—q

from (A) and (107) respectively. (A) and (106) give
=0, G=bu—1,bu—2,..,k—p-+ (b —1)u+1). (108)
Now bu <k from (78) and s > 2k, and thus
k—p+(b—-—1Du<2k—qg<s—gq,

so that (108) and (107) overlap, (or continue when k = bu, s =2k 4 1)
and hence

a; =0, G=k—u+1, k—u+2,..,bu—1).

(1) Cf [P], § 4.52.
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This, with (106) gives (12), (13) and hence (16) follows.
We thus assume

ay, + 0; (l,_[, ='F ay, aw (109)
7.3. Case 4aq,
k—r+tp+1<v-—1. (110)

Since r — p<k, then 1<k —r+ p+1 and the conditions of
§ 2.41 are satisfied. If (26) holds then (28) follows but this contains

QG_p = Ay Ay,
contradicting (109). Hence

Ay U—y + 1 (111)
and (25) holds.

If p>1{then k —v - 1<l Now, if (¢ + Du=r—p> gu for
some ¢, then gu= v >k —v 4 1 and a,, = 0 from (25). Then relations
(C) give a, = 0, contradicting (109). Hence we take

v <l (112)

Taking conjugates of (E), we obtain

Ay —j (ak—r»; p ak—vak—u) = Ap—yip—j — Qp—y Qp—v—j,
G=0,1,.,s—r1—1) (113)

Since k —r 4+ p < v — 1, relations (C) give. ()
Ay g —pp—j = Ap—y—j» (] = 0, 1, ceey k—r —- p)
Hence, multiplying (113) by a,, we obtain.

ar, —; (ak—v — Uy Up—y ak—-v) = Og—y—j — Ay AQp—y Ap—y—j>

(Gi=0,1,..k—r+ p),
since k —r +p<s—r —1 from (7). Then (111) gives, with (0),
Ay —j Ap—y = Qp—yjy Ay 0, = Qs G=0,1,...,k—r—+p). (114

() The subsequent argument holds when » — p = &.
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Relations (£) then give
Uy_p U = Ay_pjy G=0,1,..,k—r-+p). (115)
Since a,_p + a, ¢, from (109), then from (114),
k—r+4p<u, r—p>k—u (116)

Thus
r=2p, 117

for when ¢ = k +- 1, (116) becomes (117); and when ¢ > k - 1, (117)
follows from (A) and (116) since a,_, + 0 from (115).

If a, =0, then (114) gives 0 = a,a4—,.., = a;_, = @, conlradic-
ting (109). Ilence a;_, = a, +0 and either

k—v=p or k—v<k—u

These inequalities follow from (A) when ¢ >k + 1; and when
q=1Fk -1, then K — u = p — 1. We consider the above allernatives in
§§ 31-7-312 and § 7.32. '

731. Whenk —r+gq=k—v=p,thenr—Lk<q-—-p=u, and
hence from (7) and (112),

u>Il=no. (118)

Then q > 1+ p > k -- 1 from (7), and the relations (4) exist. Since
u>1land p — 1> [ these relations overlap and contain

a; = 0, G=k—u+1, k—u+2.,u—1). (119)
Since k — v = p and r — p<k from § 7.31 and § 7,

r+o<k—r+p<2k<s
from (7). Hence
v<s—r—1 (120)
and (E), (25) and (110) give

0=a;(t-p —a,0,) =0 — a, .
j=k—r+p+1, k—r+p+2,.,0—1).
Since a, + 0 from (109), we must have u > 2 v, otherwise the above

relations include a% = 0. We consider u > 2» and u=2v in § 7.311
and § 7.312.
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7311, If u>2v then ¢, =0 from (119) since 20 >k — u + 1

from (110), and also r — p 4+ v > k so that «,_,., = 0. Hence from (E)
and (120),

Ay (ty—p — a, ;) =0 — @, g, = 0.
This contradicts (109), since a, = 0 implies a, = 0 as in the last para-
graph of § 7.3.
7.312. Hence (!) u=2v, r — p=23v and 4v = 2u > k {rom (118).
Now |a,_p| =1, from (115). We therefore set
A, = e~i%, a, = Re'8, (R, «, B real).
Now (114) contains a;_y, ¢, = a;_q,, and hence
s, = Re—ixh),

Then from (L) and (120),
@y (@go — Uy Uyy) = 0 — dy,
(R — R¥) e ix+3f) = — R2
Hence, changing the sign of R if necessary,
at+3=0, R*= R+ 1,
since «, + 0 from § 7.3. Sel w = ¢f and then
4, = Rw, ay, = Re? ap =03 (R*=R-+1, |o|=1),

so that (15) arises. Relalions (9), (10) and (11) with w = v, d = 3 follow
from (114), (C), (115), (25) and (119). Hence (18) holds and this distri-
bution is only possible when k =3v =r — p.

732, fk—v<k-—-uthenv=u>k—r- pirom (116). Hence
from (25), v = u, otherwise a, = 0 in contradiction to (109). Hence
r— p=2u and from (116),

3u>k=r—p=2u

This is (11) with d = 2 ; (9) and (10) follow from (C), (115) and (25) ;
(14) now follows from lemma 2 since a, + 0 and a,, = a,_, + a,a, = a

(") Compare [P] § 4.31.
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from (109). As in § 3, this distribution is only possible when
k=2u=r— p and then we have (17). (})
7.4. Case 40,
L—r1--p-+1>0v-—1, g >k + 1. (121)

The second inequality was deduced in § 2.13. The conditions of § 2.43
are satisfied and hence (32) follows. If r — p > (9 — 1)uz=r — kfor
some ¢ > 2, then from (32) and (C), ¢4~' =0, contradicting (109).
Hence we take

gu=r—p>r—k>(y— hHu,

and consider yu =r — p, gu>r — p in §§ 7.41-7.412 and § 7.42.

741, qgu=r—p. I k—r+p=v—1 then a_,4p ==ty =
= Ugy—y—1 == 0, from (1) and (C), and thus a,_, = g, a0, =0
from (C). Hence d,_p =0=aqa, from (6), in contradiction to (109).
Thus we take k —r--p>v—1 from (121), and since r—p > 1
from (7),

2gqu>k>r—p-+v—1=Q2g—1u—1. - (122)
Hence k — gu < gu = r — p, so that (C) and (6) give
‘uk_g“_m d, = Up—gus  Ugutiu Ay = Ugo (=0, 1,..,9—1). (123)
7411. If ¢ > 2, then since p<k — 1 {rom § 7, we have
s—p—1>k+1>QRQqyg—1u=(@y-+2)u
from (7) and (122). Hence relations () contain
a{‘ (g — Uy dgu—v) = Qguiju — Ou gyt ju—us G=1,2), @124)

and we have

gy on — 2 Uy Ugy sy - a g = 0.
Then from (123), since a;_,, = a, + 0 from (109),
gy ou (1 — 2 gy a‘f, a‘ﬁ_u) = 0.
This contradicts (109). For if a, a;_, = 1, then (124) and (123) give
A Uy—p — Aytty) = @y (Agyy — Uy Ugy—y) = Qg — Ay Ay = 0. (125)

() Compare [P} § 3.42.
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If Agy o = 0, then
Ugy = Ugyp.y = 0

from (123), since az—, = a, & 0 from (109). Hence (125) again holds.
7.412. When g = 2, i.e. v — p = 2, then from (122),

du>k>3u—1, v=u<lLl (126)
Thus 3u<k<s—p -1l:=5—r-142u from (7), and rela-
tions (I7) contain
a; (ag,, — a,?,) = gy — Uy Uy o G=0,1,...,u—1).

Hence from (C)
Ay, @; = Qgy 4. js G=0,1,2,..,u—1). (127)

From (E), a,(ay, — a?,) = U3, — d, Uy, Since s —r > u as above.
Then from (C) and (E),

\ 2 2
@ (agy — U, Qyy) = @ t, (Upy — W) = Uy (Apy — @)

= Agy;j — Uy Aoy -i-§5 (] = 0, l, 2, veey k—3 ll),

since k —3u < u==v from (126) and k<s — p — 1 from (7). lence
from (127) and (126),

gy U = U3y j, G=0,1, 2,...,k — 3u). (128)
From (126), r— p 4+ u<k and 3u>=k — u -+ 1. Hence
r—k<p-—u, 3uz=p. (129)

The latter inequality follows from (A) since g, + O from (128). From
(:1), (€) and (6),

a; =0, G=p—u—-1,p—u—2.,k—2u+1). (130)
Then from (126) and (129), (32) overlaps (*) with (130) to give
a;=0, (j=2u—-1,2u—-2,..,p—u—1,.,r—k., k—2u++1), (131)

() Or continues, when » — k= p — u.
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As in § 7.312 we set
a, = Re'8, g, = €72, (R, o, B real).

Then @,—3, a, = a9, from (C) since k —2u<2n—1=r-—-p-1
from (126), so that

Ay, = Re—i(x+A),
Now relations (E) contain

2
A —2u (a‘.’.u —q)=1-— My Qg .y

Thus
Reitat38) —9R2 1 1=0, «a+-3=0, (R—1DH@R2-R—-1)=0.

If R=1 then a,_; = Gy, = 671 *HA = 2 = a: = a, a, in contra-
diction to (109), and hence (15) holds. Relations (9) with u = w and
d = 3 follow from (C), (127) and (128); (10) follows from (131) and (C);
and (126) is (11) with d = 3. Hence (18) holds.

7.42. When gu>r — p we show that «, =0 and then deduce
certain inequalities involving r — p and p which must be satisfied in
order that @,_, +0. Next we show that @, ,_ep—p =0 and then
use (E) to obtain a contradiction.

When gu > r — p, then from § 7.4,

gu>r—p>r—k>(@—-1uy, (132)

and hence

k—p+@—NDu+1<r—p, k—p+@—2Du+1<v. (133)
From (A4) and (C),

4,=0, (j=(g—Du—1, (g—Du—2..k—p+(g—2u+1), (1349

since (g —1)u—1<r—p—1 from (132). Then from (6),

=0, j=p—(9—2u—1,p—(9—2)u—2,....k—(9g—Du+1). (135)
From (132) and (133), (0 — Du-—-1=v=k—p -+ (g —2)u--1,

and thus
a, = 0. (136)
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from (134). Then since a,;, - a,a, + 0 from (109),
Aperip=Q_p T 0. (137)
Ifr—p=p—(9—2)u, then (C) and (135) give
=0, (j=p—(@—Du—1, p—(@g—DHu-—-2,.,Lk—gu--1);

but p—(@—1Vu—1=k—r+p>~k—gu from (133) and (132),
and hence «,_,., = 0 in contradiction to (137). Thus

r—p<p—(g-—2u (138)
Since a,_, # 0 from (137), it follows from (135) and (138) that
r—p<hk—(g—"Nu (139)
We now show that
r—p=p—(@-—-1u (140)
Fom (7), r—=p>Il>k—r-+p, andif r—p=k—p+(g—Du+1
then (140) follows. Thus we consider r —p>k—p+ (¢ — DHu + 1
from (133). Then (134) and (C) give
=0, j=r—p—1,r—p—2,.,k—p-+(@—DHu-+i1) (L)

]

sincc gu —1>r—p—1 {from (132). Then (110) follows since
r-—-p>k—r+4p and @_,.p =0 from (137).
From (132) (140) and (139),
CRCy—hu>r—p-l-(g—-Du=p=r--Lk-i-(g--DHu>C2g—2u. (112)
Using (140), we apply (6) and (C) to (141) to obtain

a; =0, (Gj=p-—-QLy—2)u--1,
p—QCg-—2u -2, .,k—r--p—(y-—Du-1). (113)

We note that k — r -4~ p= (9 — 1) u from (139).
IFrom (139) and (7),

2k -L2p—2(—Du=2r>3k
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and thus
k—p<p—(Eg—2u<uy

since p < (2¢9 — 1) u from (142). Hence (143) and (A) overlap (or con-
tinue when p — 2g —2u=k—p <+ 1), to give
G = 0, G=u—-1,u—-2,..,

p—QCqg—2u,..,.k—p+1,.,k—r+p—(—1Du+1.

Then
At y—2(r—p) = 0 (141)

since u>k—2(r—p)-+tu>k—r--p—(9—1u from (7) and (132).
From (7),

s—r—1=22k—r>k-4-u—2(—p)

since 2(r — p)>r —k--q—p, also from (7). Thus relations (F)
contain

Ay —2(r—p) (ar—-p — av) = Qp—prprtu — Ay Qp—yipe
However, k — r + p 4+ u =k — v, and from (144), (136) and (6)
Ay Qpeprp = 0.

This result is in contradiction to (109) and (137). Thus the situation
of § 7.42 is impossible.

This completes the proof of the theorem.

I have to thank Dr. A. J. MacinryrE for suggesting Lhis problem
and for his advice and encouragement in the preparation of this paper.
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