REMARK ON PAPER OF M. VON RENTELN «FINITELY GENERATED IDEALS IN B-ALGEBRA H^{∞} »

by

ROMAN SZNAJDER

Abstract: The characterisation of all ring automorphisms of H^{∞} is given.

1. Introduction

In the paper [1] is given characterisation of all normed (i.e. $\Phi(i)=i$) ring automorphisms Φ of H^{∞} , namely they are generated by the conformal mapping of D (Theorem 5.1). Important step in the proof of above result is the following fact (Theorem 4.5, [1]): If $M \in \mathcal{M}(H^{\infty}) - D$ then M is not finitely generated. We elementarise it's proof avoiding the Corona Theorem. We complete Theorem 5.1 of [1] by the following

Theorem: If Φ is ring automorphism of H^{∞} then Φ has one of the following form: $\Phi(f)(z) = f(\varphi(z))$ or $\Phi(f)(z) = \overline{f(\overline{\varphi(z)})}$, where $f \in H^{\infty}$ and φ is conformal mapping of D.

Let us recall notation. D-denotes here open unit disc in the complex plane \mathbf{C} , i.e. $D = \{z \in \mathbf{C} : |z| < 1\}$; H^{∞} is Banach algebra of all bounded analytic functions in D. $\mathcal{M}(H^{\infty})$ denotes the maximal ideal space of H^{∞} equipped with Gelfand topology, Z is the identity function in D, $\mathcal{M}_{\alpha} = \{\phi \in \mathcal{M}(H^{\infty}) : \phi(Z) = \alpha\}$, $|\alpha| = 1$.

function in D, $\mathcal{M}_{\alpha} = \{\phi \in \mathcal{M}(H^{\infty}) : \phi(Z) = \alpha\}$, $|\alpha| = 1$. Recall that $\mathcal{M}(H^{\infty}) = \bigcup_{|\alpha| = 1} \mathcal{M}_{\alpha} \cup \bigcup_{\lambda \in D} M_{\lambda}$, where $M_{\lambda} = \{f \in H^{\infty} : f(\lambda) = 0\}$. There exists homeomorphic embedding $\tau : D \to \bigcup_{\lambda \in D} M_{\lambda} \subset \mathcal{M}(H^{\infty})$, so we briefly write $\mathcal{M}(H^{\infty}) = \bigcup_{|\alpha| = 1} M_{\alpha} \cup D$.

2. Proof of the Theorem

Firstly we give another proof of Theorem 4.5 of [1] which doesn't involve the Corona Theorem.

Proposition: If $M \in \mathcal{M}(H^{\infty}) - D$ then M is not finitely generated.

Proof: Assume that $M = (f_1, f_2, ..., f_n)$ for some $f_1, ..., f_n \in H^{\infty}$. Using Theorem 3.2 of [1] M need to be principal, i.e. there exists $h \in H^{\infty}$ such that M = (h).

By [2] (p. 161) there exists $\alpha \in \partial D$ and sequence $(\lambda_n) \subset D$ such that $\lambda_n \to \alpha$ and $h(\lambda_n) \to 0$. Thus we choose ([2] p. 213) interpolation subsequence (λ_{n_k}) and function $f \in H^{\infty}$ such that $f(\lambda_{n_{2k}}) = 0$ and $f(\lambda_{n_{2k-1}}) = 1$. If $f \in (h)$ then there exists $g \in H^{\infty}$ such that f = gh, but $f(\lambda_{n_{2k-1}}) = 1$ and $h(\lambda_{n_{2k-1}}) \to 0$ so $f \notin (h)$.

As well $(f,h) \subseteq H^{\infty}$. Indeed, if $(f,h) = H^{\infty}$ then $1 = fg_1 + hg_2$ for some $g_1, g_2 \in H^{\infty}$; $f(\lambda_{n_{2k}}), h(\lambda_{n_{2k}}) \to 0$ so we have contradiction. Thus M is not maximal.

Proof of the Theorem. Since Φ is ring automorphism we have $\Phi^2(i) = \Phi(-1) = -1$. Thus $\Phi(i)(z) = \pm i$, what means that analytic function $\Phi(i)(z)$ need to be constant.

If $\Phi(i) = i$, we use Theorem 5.1 of [1].

If $\Phi(i) = -i$, we slightly modify proof of above theorem. In what follows we show that $\Phi(\lambda) = \overline{\lambda}$ for all $\lambda \in \mathbb{C}$. For $g \in H^{\infty}$, $\lambda \in \mathbb{C}$ $g - \lambda$ is not invertible in H^{∞} iff $\lambda \in R(g)^{cl}$. Since Φ is ring automorphism we have $\lambda \in R(g)^{cl}$ iff $\Phi(\lambda) \in R(\Phi(g))^{cl}$.

When $\lambda \in Q(i)$, $\lambda \in R(g)^{cl}$ iff $\overline{\lambda} \in R(\Phi(g))^{cl}$. Q(i) is dense subset of \mathbb{C} so $R(g)^{cl} = \overline{R(\Phi(g))^{cl}}$. If there exists $\lambda_0 \in \mathbb{C}$ such that $|\Phi(\lambda_0) - \overline{\lambda_0}| > 2\delta > 0$, then for $g(z) = \lambda_0 + \delta z$ we get: $\lambda_0 \in R(g)^{cl}$ so $\Phi(\lambda_0) \in (R(\Phi(g))^{cl} = \overline{R(g)^{cl}} = \{\overline{\lambda_0} + z : |z| \leq \delta\}$. Thus $|\Phi(\lambda_0) - \overline{\lambda_0}| \leq \delta$, contradiction.

By the *Proposition* $\Phi(M_{\lambda}) = M_{\mu}$. If we denote $\tau: D \to \bigcup_{\lambda \in D} M_{\lambda}$, $\tau(\lambda) = M_{\lambda}$ and $\psi = \tau^{-1} \circ \Phi \circ \tau$ then $\Phi(M_{\lambda}) = M_{\psi(\lambda)}$. Since correspondence $\lambda \to \mu$ is bijective, so is ψ .

Next we show $\overline{\psi(z)}$ is analytic. If $\lambda \in D$, $f \in H^{\infty}$ then $f - f(\lambda) \in M_{\lambda}$ and $\Phi(f - f(\lambda)) \in M_{\psi(\lambda)}$, so $\Phi(f)(\psi(\lambda)) = \overline{f(\lambda)}$. Taking $f_{Id} = \Phi^{-1}(Z)$ we get $\psi(\lambda) = \overline{f_{Id}}(\lambda)$. Thus $\varphi(z) = \overline{\psi^{-1}}(z)$ is conformal and $\Phi(f)(z) = \overline{f(\overline{\varphi(z)})}$ for all $f \in H^{\infty}$. \square

$$\Phi(f)(z) = \sum_{n=0}^{\infty} a_n(\varphi(z))^n \text{ or } \Phi(f)(z) = \sum_{n=0}^{\infty} a_n(\overline{\varphi(z)})^n.$$

Theorem is valid for the disc algebra A(D) also.

REFERENCES

- [1] M. VON RENTELN, Finitely generated ideals in B-algebra H∞, Collect. Math. 26 /1975/, no 2, 115-126.
- [2] K. Hoffman, Banach spaces of analytic functions, Prentice Hall, Englewood Cliffs, N.Y; 1962.

Department of Mathematics, Warsaw University, Poland