CEROS DE LAS FUNCIONES DE UNA CLASE NO CUASI-ANALÍTICA EN Rⁿ

PROLONGACIÓN NO CUASI-ANALÍTICA

POR

BALTASAR R. SALINAS

Sea $\mathfrak{D}^n(G)$ la familia de todas las funciones indefinidamente diferenciables en un conjunto abierto G de R^n . Designamos por $\mathfrak{C}^n\{m_v; G\}$, $m_v > 0$, la clase de todas las funciones f de $\mathfrak{D}^n(G)$ tales que

$$\left| \frac{\partial^{p_1 + \dots + p_n}}{\partial x_1^{p_1} \dots \partial x_n^{p_n}} f(x) \right| \le m_p \qquad (p = p_1 + \dots + p_n; \qquad p_v = 0, 1, 2, \dots)$$

para todo x de G, y por $\overline{\mathbb{C}}^n$ $\{m_v; G\}$ la reunión de todas las clases \mathbb{C}^n $\{m_v'; G\}$ con $m_v' = ck^v m_v$, c > 0 y k > 0. Si $G = R^n$, con objeto de abreviar, escribiremos \mathfrak{D}^n , \mathfrak{C}^n $\{m_v\}$ y $\overline{\mathfrak{C}}^n$ $\{m_v\}$.

DEFINICIÓN 1. Se dice que una clase \mathfrak{C}^n es cuasi-analítica, en abreviatura c.a., cuando toda función f de \mathfrak{C}^n queda univocamente determinada por los valores de todas sus derivadas parciales en un punto x_0 . En caso contrario, se dirá que \mathfrak{C}^n es no cuasi-analítica, en abreviatura n. c. a.

En este trabajo, vamos a contestar a las siguientes preguntas:

- a) ¿Cuál es la condición necesaria y suficiente que debe cumplir la sucesión $\{m_v\}$, para que la clase \mathfrak{E}^n $\{m_v\}$ o $\overline{\mathfrak{E}}^n$ $\{m_v\}$ sea cuasi-analítica?
- b) Si $\mathbb{S}^n\{m_v\}$ es una clase no cuasi-analítica, ¿existe una función f de $\mathbb{S}^n\{m_v\}$ que toma, exactamente, el valor 0 en un conjunto cerrado F_0 , prefijado?
- c) Si $\overline{\mathbb{C}}^n\{m_v\}$ es una clase no cuasi-analítica, ¿existe una función f de $\overline{\mathbb{C}}^n\{m_v\}$ que toma, justamente, los valores 0 y 1 en dos conjuntos cerrados y disjuntos F_0 y F_1 de R^n ?
- d) Si $\overline{\mathbb{C}}^n\{m_v\}$ es una clase no cuasi-analítica y si f_0 es una función, definida en un conjunto compacto F de R^n , que admite una prolongación f_1 en un conjunto abierto $G \supset F$, contenida en la clase $\overline{\mathbb{C}}^n\{m_x; G\}$, ¿existe una prolongación f de f_0 , que pertenece a $\overline{\mathbb{C}}^n\{m_v\}$?

La prolongación de una función diferenciable, de clase r, en un conjunto cerrado a todo el espacio R^n , ha sido estudiada por Whitney [7] [8] y [9].

§ 1. Consideraciones generales

Sea E un espacio topológico y \mathfrak{F} un espacio lineal de funciones reales y continuas en E (1). Dada una sucesión $\{L_{\mu}\}$ de transformaciones lineales de \mathfrak{F} en sí, con $L_0 f = cf$ para una cierta constante c > 0, dotamos a \mathfrak{F} de una topología mediante el sistema fundamental \mathfrak{B} de entornos, definido por los conjuntos V (f; ε ; m). V (f; ε ; m) es el conjunto de todas las funciones g de \mathfrak{F} , tales que

(1.1)
$$\|g-f\|_{\mu} = \sup_{x \in E} |L_{\mu} g(x) - L_{\mu} f(x)| < \varepsilon$$

para $\mu=0,\,1,\,...,\,m$. Por consiguiente, $\{f_n\}$ converge hacia f, si y sólo si $\{L_\mu\,f_n(x)\}$ converge uniformemente en E hacia $L_\mu\,f(x)$ para cada $\mu\,(\mu=0,\,1,\,2,\,...)$.

HIPÓTESIS 1. \mathfrak{F} es un espacio completo, es decir, la condición $\lim_{\substack{p\to\infty\\ g\to\infty}} \|f_p-f_q\|_{\mu}=0$ para cada μ $(f_n\,\varepsilon\,\mathfrak{F})$, implica la convergencia de $\{f_n\}$

hacia una función f de F.

Designamos por $\mathfrak{F}_{0,1}$ el conjunto de todas las funciones $f \geq \theta$ de \mathfrak{F} , tales que $||L_{\mu}f(x)|| \leq 1$ para cada x de E y todo μ . Evidentemente, $\mathfrak{F}_{0,1}$ es un conjunto convexo, cerrado y no vacío, pues $\theta \in \mathfrak{F}_{0,1}$.

Lema 1. Si $\{f_n\}$ es una sucesión de funciones de $\mathfrak{F}_{0,1}$ y si F_n es el conjunto (cerrado) de ceros de f_n , existe una función f de $\mathfrak{F}_{0,1}$ que se anula, exac-

tamente, en
$$F = \bigcap_{1}^{\infty} F_n$$
.

Demostración. Como $|L_{\mu}f_{n}(x)| \leq 1$ en E, la sucesión

(1.2)
$$g_n = \sum_{1}^{n} 2^{-v} f_x$$
 $(n = 1, 2, ...)$

converge hacia una función f de \mathcal{F} que pertenece a $\mathcal{F}_{0,1}$, por ser $\mathcal{F}_{0,1}$, un conjunto cerrado, y se anula, exactamente, en F.

Hipótesis 2. En E vale el segundo axioma de numerabilidad, es decir E posee una base numerable U de entornos.

⁽¹⁾ Designaremos siempre por θ la función cero de \mathfrak{F} .

TEOREMA 1. A cada conjunto A de E, se le puede asociar un conjunto cerrado $F = \varphi(A)$ de E, tal que existe una función f de $\mathfrak{F}_{0,1}$ cuya totalidad de ceros es F y cada f de $\mathfrak{F}_{0,1}$ que se anula en A, se anula también en F.

Demostración. Sea $\{f_{\lambda}; \lambda \varepsilon \Lambda\}$ la familia de todas las funciones f_{λ} de $\mathfrak{F}_{0,1}$ que se anulan en A, y F_{λ} el conjunto de ceros de f_{λ} . Evidentemente, $\{f_{\lambda}; \lambda \varepsilon \Lambda\}$ no es vacía y cada f_{λ} se anula en $F = \bigcap_{\lambda \in \Lambda} F_{\lambda}$. Por otra parte, por la hipótesis 2, se puede extraer de $\{F_{\lambda}; \lambda \varepsilon \Lambda\}$ una sucesión $\{F_{\theta}\}$ con intersección $\bigcap_{1}^{\infty} F_{\theta} = F$. La función $f = \sum_{1}^{\infty} 2^{-\theta} f_{\theta}$, construída en el lema 1, tiene precisamente F por conjunto de ceros y pertenece a $\mathfrak{F}_{0,1}$.

Definición 2. Diremos que $\mathfrak{F}^* \subset \mathfrak{F}$ es una clase libre (2), si para cada punto x de E y todo entorno U_x de x, existe una función f de \mathfrak{F}^* que toma el valor 0 en el complementario de U_x , sin anularse en x.

Teorema 2. Si $\mathfrak{F}_{0,1}$ es una clase libre, para cada conjunto cerrado F_0 de E existe una función $f(x)=f(x\,;\,F_0)$ de $\mathfrak{F}_{0,1}$ que se anula, justamente, en F_0 .

Demostración. Por el teorema 1, es suficiente demostrar que $\varphi(F_0) = F_0$. Si fuese $F = \varphi(F_0) \neq F_0$, existiría un $x \in F - F_0$ y un entorno U_x de x tal que $U_x \cap F_0 = \emptyset$. Ahora bien, como $\mathfrak{F}_{0,1}$ es una clase libre, existe una función g de $\mathfrak{F}_{0,1}$ que toma el valor 0 en $E - U_x$ con $g(x) \neq 0$. Por consiguiente, $\psi = (f+g)/2$ es una función de $\mathfrak{F}_{0,1}$ que se anula en F_0 pero no en F, pues $\psi(x) = g(x)/2$. Esto es contradictorio con $F = \varphi(F_0)$, luego $\varphi(F_0) = F_0$.

TEOREMA 3. Si $\mathfrak{F}_{0,1}$ es una clase libre y para cada par de funciones f_1 y f_2 de F se tiene f_2/f_1 e F cuando f_1 carece de ceros. Dado un par de conjuntos cerrados y disjuntos F_0 y F_1 de E, existe una función f de \mathfrak{F} que toma el valor 0 en F_0 y el valor 1 en F_1 , con 0 < f(x) < 1 en el complementario de $F_0 \cup F_1$.

Demostración. Si $f(x; F_k)$ es la función obtenida en el teorema 2 para $F_k(k=0, 1)$, la función

(1.3)
$$f(x) = \frac{f(x; F_0)}{f(x; f_0) + f(x; F_1)}$$

satisface las condiciones requeridas.

TEOREMA 4. Si $\mathfrak{F}_{0,1}$ es una clase libre y existe una función $g \leq 1$ de $\mathfrak{F}_{0,1}$ que toma los valores 0 y 1 en los conjuntos cerrados F_0 y F_1 , respectivamente, se puede determinar una constante $a=a(F_0,F_1), 0< a\leq 1$, y una función $f\leq a$ de $\mathfrak{F}_{0,1}$ que toma exactamente los valores 0 y a en F_0 y F_1 .

⁽²⁾ Este concepto es análogo al de clase no cuasi-analítica.

Demostración. Sea $\{f_{\lambda}; \lambda \in \Lambda\}$ la familia de todas las funciones $f_{\lambda} \leq \alpha_{\lambda}$ $(0 < \alpha_{\lambda} \leq 1)$ de $\mathfrak{F}_{0,1}$ que toman los valores 0 y α_{λ} en F_0 y F_1 . Esta familia no es vacía, puesto que g pertenece a ella. Procediendo ahora de igual forma que en el teorema 1 se construyen dos conjuntos cerrados $F_0^* \supset F_0$ y $F_1^* \supset F_1$ con las siguientes propiedades : 1.ª Cada función f_{λ} toma los valores 0 y α_{λ} en F_0^* y F_1^* . 2.ª Existe una función $f = f_{\lambda_0}$ que toma justamente los valores 0 y $a = \alpha_{\lambda_0}$ en $a \in F_0^*$ y $a \in F_0^*$ y $a \in F_0^*$

Vamos a ver que $F_0^*=F_0$ y $F_1^*=F_1$. En efecto, si fuese $F_0^*+F_0$, se podría determinar un punto x de $F_0^*-F_0$ y un entorno U_x de x, disjunto con F_0 y tal que f(x') < a/2 para cada x' de U_x . Por otra parte, como $\mathfrak{F}_{0,1}$ es libre, existe una función φ de $\mathfrak{F}_{0,1}$ que se anula en el complementario de U_x pero no en x. Elijamos el número positivo $\varepsilon \le 1$ de manera que sea $\varepsilon \varphi(x') < a/2$ para todo x' de E, cosa posible por ser $|L_0 \varphi(x')| \le 1$. Entonces, la función

$$\psi=rac{f+arepsilon\,arphi}{2}$$

pertenece a la familia $\{f_{\lambda}; \lambda \varepsilon \Lambda\}$, puesto que es una función de $\mathfrak{F}_{0,1}$, con $\theta \leq \psi \leq a/2$ que toma los valores 0 y $\frac{a}{2}$ en F_0 y F_1 , pero no se anula en $x\varepsilon F_0^*$. Esto es contradictorio con la propiedad $1.^a$ de F_0^* , luego $F_0^* = F_0$. De forma análoga resulta $F_1^* = F_1$, con lo cual queda demostrado el teorema.

$\S~2$. Clases no cuasi-analiticas en R^n

En esta parte tomamos $E=R^n$, $\mathfrak{F}=\mathfrak{D}^n$ y

(2.1)
$$L_{\mu} = L_{p_{1}, \dots, p_{n}} = \frac{1}{m_{p}} \frac{\partial^{p_{1} + \dots + p_{n}}}{\partial x_{1}^{p_{1}} \dots \partial x_{n}^{p_{n}}} \qquad (p = p_{1} + \dots + p_{n})$$

$$\begin{pmatrix} \mu = \mu(p_{1}, \dots, p_{n}) & \text{y} & p_{v} = p_{v}(\mu) \\ \mu & \text{y} & p_{v} = 0, 1, 2, \dots \end{pmatrix}$$

para una sucesión positiva prefijada $\{m_v\}$. Desde luego, en este caso se cumplen las hipótesis 1 y 2. Para que $\mathfrak{F}_{0,1}$ sea libre, es preciso que $\{m_v\}$ verifique alguna condición. En efecto, si $m_v = v!$ (v = 0, 1, 2, ...), $\mathfrak{F}_{0,1}$ es una clase analítica en \mathbb{R}^n , y, por consiguiente, no libre.

TEOREMA 5. Para que la clase $\mathfrak{E}^n\{m_v\}$ o $\mathfrak{E}^n\{m_v\}$ sea cuasi-analítica, es condición necesaria y suficiente que $\{m_v\}$ cumpla la condición de Denjoy-Carleman.

Demostración. La afirmación es, desde luego, cierta, como se sabe, para n=1.

Es condición necesaria. En efecto, si $\{m_v\}$ no verifica la condición de Denjoy-Carleman, se puede construir una función $\psi + \theta$ de $\mathbb{S}^1\{m_v\}$ con todas sus derivadas nulas en t = 0. Por tanto, $f(x_1, ..., x_n) = \psi(x_1 + ... + x_n)$ es una función $f + \theta$ de $\mathbb{S}^n\{m_v\}$ con todas sus derivadas parciales nulas en x = 0.

Es condición suficiente. Si f_1 y f_2 es un par de funciones de $\overline{\mathfrak{E}}^n\{m_v\}$ con las mismas derivadas parciales en x=0, la función $\psi(t)=f_2(tx)-f_1(tx)$ pertenece a $\overline{\mathfrak{E}}^1\{m_v\}$ y tiene todas sus derivadas nulas en t=0. Por consiguiente, si $\{m_v\}$ satisface la condición de Denjoy-Carleman, resulta $\psi(t)\equiv 0$ y en particular f(x)=0, luego $f=\theta$.

Observación 1. El teorema 5 es cierto para las clases $\mathfrak{C}^n\{m_v; G\}$ y $\bar{\mathfrak{C}}^n\{m_v; G\}$, si G es un conjunto abierto y conexo, esto es, un recinto.

LEMA 2. Si $\mathbb{C}\{m_v\}$ es una clase n.c.a. en la recta, existe una función f de $\mathbb{C}\{m_v\}$, $f + \theta$ y $f \geq \theta$, que toma el valor 0 en el complementario del intervalo (0,1).

Demostración. Véase Mandelbrojt [5], pág. 65 (3).

Lema 3. Si $\mathfrak{C}^n \{m_v\}$ es una clase n.c.a, existe una función g de

$$\mathfrak{C}^n \{m_v\}, g + \theta \ y \ g \geq \theta, \text{ que toma el valor } 0 \text{ en } \|x\| = \sqrt{\sum_{1}^{n} x_k^2} \geq 1.$$

Demostración. Sea f(t) la función construída en el lema 2 para $\mathfrak{C}\{8^{-v} m_v\}$, entonces $g(x) = f(r^2)$, r = ||x||, satisface las condiciones exigidas. En efecto, como

$$\frac{\partial}{\partial x_i} g(x) = f'(r^2) 2x$$

$$\frac{\partial^2}{\partial x_i \partial x_j} g(x) = f''(r^2) 2x_i 2x_j + f'(r^2) 2\delta_{ij} \qquad (\delta_{ii} = 1, \delta_{ij} = 0 \text{ para } i \neq j)$$
....

para obtener una cota de

$$\frac{\partial^{p_1}+...+p_n}{\partial x_1^{p_1}...\partial x_n^{p_n}}g(x), \qquad (p=p_1+...+p_n)$$

es suficiente calcular el coeficiente c_p de $a^p/p!$ en el desarrollo

$$\sum_{\mu=0}^{\infty} \frac{M_{\mu}}{\mu!} (2+h)^{\mu} h^{\mu}, \qquad M_{\mu} = \sup |f^{(\mu)}(t)| \leq 8^{-\mu} m_{\mu}.$$

⁽³⁾ Para las clases $\overline{\mathbb{G}}\{m_v\}$ se puede aplicar otro teorema, Mandelbrojt [6], pág. 102.

Ahora bien, $M_{\mu}=M_{p}/(p-\mu)!$ para $p\geq \mu$, luego

$$c_p \leq M_p \sum_{\substack{b \mid 2 \leq \mu \leq p}} 2^{2\mu - p} \binom{p}{\mu} \binom{\mu}{p - \mu} \leq 4^p \ M_p \sum_{\mu = 0}^p \binom{p}{\mu} \leq m_p.$$

Las demás condiciones son obvias.

Lema 4. Si $\mathbb{S}^n\{m_v\}$ es una clase n. a. c., para cada r>0 se puede determinar un punto $a_r=(a_1,...,a_n)$ de $\|a\|< r$, tal que para toda esfera $\|x-x_0-a_r\|< r$ de R^n , existe una función $f\geq \theta$ de $\mathbb{S}^n\{m_v\}$ que toma el valor 0 en $\|x-x_0-a_r\|\geq r$, pero no en x_0 .

Demostración. Si g(x) es la función construída en el lema 3 para la clase no cuasi-analítica $\mathfrak{C}^n\{r^vm_v\}$, existe un punto $b_r=-r^{-1}$ a_r de $\|b\|<1$ que no es un cero de g, pues $g+\theta$ en $\|x\|<1$. Por tanto,

$$f(x) = g(r^{-1}(x - x_0 - a_r))$$

cumple las condiciones exigidas.

Como consecuencia del teorema 5 y del lema 4, se obtiene:

Teorema 6. Para que $\mathfrak{F}_{0,1}$ sea libre, es condición necesaria y suficiente que $\{m_v\}$ no cumpla la condición de cuasi-analiticidad de Denjoy-Carleman. Igualmente de los teoremas 2 y 6, resulta :

TEOREMA 7. Si $\mathbb{C}^n\{m_x\}$ es una clase n.c.a. y F_0 es un conjunto cerrado de R^n , existe una función de $f \geq \theta$ de $\mathbb{C}^n\{m_v\}$ que se anula, exactamente, en F_0 .

§ 3. Prolongación de las funciones de una clase no cuasi-analitica

Lema 5. Dada una clase n. c. a. $\mathfrak{S}^n\{m_v\}$ y dos esferas S_{r_0} y S_{r_1} con centro en el origen y de radios $r_0 < r_1$, existe una función $f(x) = f_n(x; r_0, r_1)$ $(\theta \le f \le 1)$ perteneciente a $\mathfrak{S}^n\{\alpha m_v\}$, para una cierta constante $\alpha > 0$, que toma el valor 0 en $\overline{S}_{r_0}(4)$ y el valor 1 en el complementario de $S_{r_0}(5)$.

Demostración. Sea f la función construída en el lema 2 para la clase n. c. a. $\mathfrak{C}^n\{m_{v'}\}$, $m_{v'}=\left(\frac{r_1^2-r_0^2}{8\,r_1^2}\right)^{v+1}m_{v+1}$ entonces la función ψ , definida mediante

$$\psi(r_0^2 + (r_1^2 - r_0^2)t) = \int_0^t f(t) dt / \int_0^1 f(t) dt,$$

⁽⁴⁾ Designamos por \overline{A} la clausura de un conjunto A de R^n . (5) Aplicando un teorema de Bang [1], § 9, se deduce:

Sea $\{\overline{m}_v\}$ la regularizada logarítmica convexa de $\{m_v\}$, $\sigma = \sum\limits_{1}^{\infty} \frac{\overline{m}_{v-1}}{\overline{m}_v}$ y $r_1^2 - r_0^2 \ge 16\sigma$. Si \mathfrak{C}^n $\{m_v\}$ es una clase n. c. a. $(\sigma < +\infty)$, existe una función $f \ge \theta$ de \mathfrak{C}^n $\{m_v\}$ que toma exactamente los valores 0 y m_0 en S_{r_0} y en el complementario de S_{r_1} .

es no negativa, nula para $t \le 0$ e igual a 1 para $t \ge 1$ y pertenece a \mathfrak{E}^n $\{\alpha\,(8r_1^2)^{-v}\,m_v\}$ si se elige α de modo que

$$\alpha \int_0^1 f(t) dt \ge \text{Máx.} \left(1, \frac{r_1^2 - r_0^2}{8 r_1^2} \frac{m_1}{m_0}\right)$$

Basta proceder ahora de igual forma que en el lema 3, para ver que la función

$$f(x) = \psi(r^2)$$

pertenece a $\mathbb{S}^n \{\alpha m_v\}$ y satisface las demás condiciones pedidas.

Lema 6. Si $P_n(t)$ es un polinomio de grado n, tal que $|P_n(t)| \le 1$ para $|t| \le 1$, se tiene

$$|P_n^{(k)}(t)| \le T_n^{(k)}(1), \quad (|t| \le 1, \quad 0 \le k \le n)$$

con

$$\frac{1}{k!} T_{n^{(k)}}(1) = 2^{k} \frac{n^{2} [n^{2} - 1] \dots [n^{2} - (2k - 1)^{2}]}{(2k)!} < 2^{k} \frac{n^{2k}}{(2k)!} < (2e)^{n},$$

donde $T_n(x)$ es el polinomio de Tchebycheff de grado n.

Demostración. Véase Mandelbrojt [6], págs. 217 y 206.

TEOREMA 8. Si f es una función de \mathfrak{D}^n , y

(3.1)
$$M_p = \operatorname{Sup.} \left| \frac{\partial^{p_1 + \dots + p_n}}{\partial x_1^{p_1} \dots \partial x_n^{p_n}} f(x) \right|, \quad (x \in \mathbb{R}^n, \ p_1 + \dots + p_n = p)$$

se tiene

(3.2)
$$M_{p} \leq k_{n}^{p} M_{0}^{1-\frac{p}{q}} M_{q}^{\frac{p}{q}}$$

para $p \le q \text{ con } k_n \le 8 e k_{n-1} \le 2 (4 e)^{n-1}$.

Demostración. Procederemos por inducción. Para n=1 la desigualdad es cierta según los trabajos de Gorny y de Kolmogoroff (6). Suponiendo que sea válida para n-1, pondremos

$$g(x') = g(x_1', x_2, ..., x_{n-1}) = f(x_1 + x_1', x_2, ..., x_{n-1}, x_n + tx_1')$$

entonces

$$\left| \frac{\partial^{r} + p_{1} + \dots + p_{n-1}}{\partial x_{1}^{r} \partial x_{2}^{p_{2}} \dots \partial x_{n-1}^{p_{n-1}}} g(x') \right|_{x_{1}'=0} \leq$$

$$\leq k^{p}_{n-1} M_{0}^{1-\frac{p}{q}} \operatorname{Sup} \left| \frac{\partial^{q_{1} + \dots + q_{n-1}}}{\partial x_{1}'^{q_{1}} \dots \partial x_{n-1}^{q_{n-1}}} g(x') \right|^{\frac{n}{q}} \quad (x \in \mathbb{R}^{n}, \sum_{1}^{n-1} q_{i} = q)$$

⁽⁶⁾ Mandelbrojt [6], págs. 210-222.

para $r + p_2 + ... + p_n = p \le q$, luego

$$\left| \sum_{r=0}^{s} {r \choose s} \frac{\partial^{p} f(x)}{\partial x_{1}^{r-s} \partial x_{2}^{n_{2}} \dots \partial x_{n}^{s}} t^{s} \right| \le k^{p}_{n-1} (1 + |t|)^{p} M_{0}^{1 - \frac{n}{q}} M_{q}^{\frac{p}{q}} \le$$

$$\le (2 k_{n-1})^{p} M_{0}^{1 - \frac{p}{q}} M_{q}^{\frac{p}{q}}$$

para $|t| \leq 1$. Por consiguiente, según el lema 6, tendremos

$$\left|\frac{\partial^{p} f(x)}{\partial x_{1}^{p_{1}}...\partial x_{n}^{p_{n}}}\right| \leq \frac{T_{p_{1}+p_{1}}^{(p_{n})}(1)}{p_{n}!} (2 k_{n-1})^{p} M_{0}^{1-\frac{p}{q}} M_{q}^{\frac{p}{q}}, (p=p_{1}+...+p_{n})$$

y $M_p \le k_n^p M_0^{1-\frac{p}{q}} M_q^{\frac{p}{q}} \text{ con } k_n \le 4 \ e \ k_{n-1}.$

Lema 7. Si f_1 y f_2 pertenecen a la clase $\overline{\mathbb{S}}^n$ $\{m_v\}$, entonces $f(x) = f_1(x) f_2(x)$ es también una función de la clase $\overline{\mathbb{S}}^n$ $\{m_v\}$.

Demostración. Para obtener una cota de

$$\frac{\partial^{p_1+\cdots+p_n}}{\partial x_1^{p_1}\cdots\partial x_n^{p_n}}f(x), \qquad (p=p_1+\cdots+p_n)$$

calcularemos el coeficiente $C_{p_1\,p_2\,\ldots\,p_n}$ de $\frac{x_1^{p_1}\,x_2^{p_2}\ldots\,x_n^{p_n}}{p_1\,!\,p_2\,!\,\ldots\,p_n\,!}$ en el polinomio

$$\sum_{v=0}^{p} \frac{M_{v}^{(1)}}{v!} (x_1 + ... + x_n)^{v} \cdot \sum_{v=0}^{p} \frac{M_{v}^{(2)}}{v!} (x_1 + ... + x_n)^{v},$$

donde $M_v^{(k)}$ es la cota M_v de f_k .

Así resulta, según el teorema 8, que

$$\begin{split} C_{p_1,\,p_2,\,\dots,\,p_n} & \frac{x_1{}^{n_1}\,x_2{}^{p_2}\,\dots\,x_n{}^{p_n}}{p_1\,!\,\,p_2\,!\,\dots\,p_n\,!} < < \\ < & < \left[\sum_{v=0}^p \frac{k_n{}^v\,m_0^{-1-\frac{v}{p}}\,m_p{}^{\frac{v}{p}}}{v\,!}\,(x_1+x_2+\dots+x_n)^v \right]^2 < < \\ < & < m_0^2\,\exp\bigg\{ 2\,k_n\,\Big(\!\frac{m_p}{m_0}\!\Big)^{\!\frac{1}{p}}\,(x_1+\dots+x_n) \bigg\}, \end{split}$$

luego $C_{p_1 p_2 \dots p_n} \le m_0 (2 k_n)^p m_p$.

Corolario 1. La clase $\mathbb{S}^n \{m_x\}$ es un anillo.

Teorema 9. Sean F_0 y F_1 dos conjuntos cerrados y disjuntos de R^n , uno de ellos además compacto. Si $\overline{\mathbb{C}}^n\{m_v\}$ es una clase n. c. a., existe una

función f de $\mathbb{E}^n\{m_v\}$, con $\theta \leq f \leq 1$, que toma justamente los valores 0 y 1 en F_0 y F_1 , respectivamente.

Demostración. Por el teorema 4, es suficiente construir una función g de $\overline{\mathbb{C}}^n\{m_v\}$, con $\theta \leq g \leq 1$, que tome el valor 0 en F_0 y el valor 1 en F_1 .

Supongamos, por ejemplo, que F_0 es compacto, entonces se puede cubrir F_0 por un número finito de esferas $\|x-x_1\| < r_1$, ..., $\|x-x_p\| < r_p$, de manera que cada esfera $\|x-x_v\| < 2 \, r_v$ no tenga ningún punto común con F_1 . Sea $f_1(x; r', r'')$ la función considerada en el lema 5, si ponemos $g_v(x) = f_n(x-x_v; r_v, 2 \, r_v)$, la función

$$g(x) = g_1(x) g_2(x) \dots g_n(x), \quad (0 \le g \le 1)$$

satisface las condiciones requeridas en virtud del lema 7.

Hacemos notar que 1-g, $\theta \le 1-g \le 1$, pertenece a $\overline{\mathbb{C}}^n\{m_v\}$ y toma los valores 0 y 1 en F_1 y F_0 .

TEOREMA 10. Sea f_0 una función definida en un conjunto compacto F de R^n , que admita una prolongación indefinidamente diferenciable f_1 en un conjunto abierto G ($G \supset F$) de R^n , y

$$(3.3) M_p^{(1)} = \operatorname{Sup} \left| \frac{\partial^{p_1 + \dots + p_n}}{\partial x_1^{p_1} \dots \partial x_n^{p_n}} f_1(x) \right|, (x \in G, p_1 + \dots + p_n = p)$$

Si la sucesión positiva $\{m_n\}$ verifica la desigualdad

$$(3.4) M_p^{(1)} \le k^{p+1} m_0^{1-\frac{p}{q}} m_q^{\frac{p}{q}} (f_1 \varepsilon \overline{\mathbb{G}}^n \{ m_v ; G \})$$

para $p \leq q$, con k > 0 independiente de p y q, y si $\overline{\mathbb{S}}^n\{m_v\}$ es una clase n. c. a., existe una función f de $\overline{\mathbb{S}}^n\{m_v\}$ que es prolongación de f_0 en R^n y que toma el valor 0 en el complementario de G y en los puntos en que se anula f_1 .

Demostración. Si φ es la función construída en el teorema 9 para los conjuntos cerrados F y R^n-G , la función f, definida mediante

$$f(x)=f_1\left(x
ight)arphi\left(x
ight) \qquad ext{para } x \, arepsilon \, G$$
 y $f(x)=0$ para $x \, arepsilon \, I \, G$

cumple las condiciones pedidas, puesto que es aplicable la demostración del lema 7, por verificarse (3.4) para $p \leq q$.

Observación 2. Evidentemente, si existe tal prolongación f de f_0 se puede tomar $f_1=f$. Además si f+0 y $\overline{G}+R^n$ la clase $\overline{\mathbb{G}}^n\{m_v\}$ es necesariamente n.c.a.

Teorema 11. Si $\overline{\mathbb{S}}^n\{m_v\}$ es una clase n.c.a. y si f_0 es una función analítica en un conjunto compacto F de \mathbb{R}^n , existe una prolongación f de f_0 perteneciente a $\overline{\mathbb{S}}^n\{m_v\}$ que se anula en $\|x\| \geq r$ para r suficientemente grande.

Demostración. Siendo f_0 analítica en F, admite una prolongación analítica f_1 en la clausura \overline{G} de un cierto conjunto abierto $G \supset F$, que se puede suponer acotado por ser F compacto. Por tanto, es posible determinar una constante k > 0 de manera que

$$\left| \frac{\partial^{p_1 + \dots + p_n}}{\partial x_1^{p_1} \dots \partial x_n^{p_n}} f_1(x) \right| \le M_p^{(1)} \le k^{p+1} p!, \ (p_1 + \dots + p_n = p, p = 0, 1, 2...).$$

Por otra parte, como $\lim_{v\to\infty} \sqrt[v]{\frac{m_v}{v!}}>0$, existe una constante h<0 tal que

$$q! \le h^{q+1} m_q$$
, $(q = 0, 1, 2, ...)$

De todo esto resulta

$$\begin{split} M_{p}^{(1)} \leq k^{p+1} \, p \, ! \, \leq k^{p+1} \, (q \, !)^{\frac{p}{q}} \leq \\ \leq (hk)^{p+1} \, m_{0}^{1 - \frac{p}{q}} \, m_{q}^{\frac{p}{q}} \end{split}$$

para $p \le q$. Por consiguiente, basta aplicar el teorema 9 para llegar a la conclusión enunciada arriba.

Definición 3. La sucesión $\{a_{p_1,...,p_n}\}$ de los valores de las derivadas

$$\frac{\partial^{p_1} + \dots + p_n}{\partial x_1^{p_1} \dots \partial x_n^{p_n}} f(x)$$

de una función f de \mathfrak{D}^n , en un punto x_0 , se llama elemento de f en x_0 . Lema 8. Si $\mathfrak{S}^n\{m_v\}$ es una clase n.c.a., y si

$$r = \sum_{p}^{\infty} \frac{\overline{m}_{v-1}}{\overline{m}_{v}}$$
 y $\alpha_{p} = \frac{1}{r_{1} r_{2} \dots r_{p}},$

donde $\{\overline{m}_v\}$ es la regularizada logaritmica convexa de $\{m_v\}$, se puede construir una función $\psi_{p_1, \ldots, p_n}(x)$ de \mathbb{S}^n $\{\overline{m}_v^{n-2}\ \overline{m}_v\} \subset \mathbb{S}^n$ $\{m_0^{n-1}\ m_v\}$ para n>1 con el elemento

$$\{\alpha_{q_1}\alpha_{q_2}...\alpha_{q_n}\ \delta_{q_1p_1}...\delta_{q_np_n}\}$$
 $(\delta_{ii}=1,\ \delta_{ij}=0\ \text{para}\ i\neq j)\ en\ x_0.$

Demostración. El lema es cierto para n = 1 (7). Si $\{\psi_p\}$ es una sucesión construída para este caso, la función

$$\psi_{p_1, ..., p_n}(x_1, x_2, ..., x_n) = \psi_{p_1}(x_1) \psi_{p_2}(x_2) ... \psi_{p_n}(x_n)$$

nos permite comprobar la afirmación hecha. En efecto, todas sus derivadas en x_0 son nulas, salvo la del orden $(p_1, p_2, ..., p_n)$ que es igual a $\alpha_{p_1}\,\alpha_{p_2}\dots\alpha_{p_n}$ y además pertenece, por la convexidad logarítmica de $\{\overline{m}_q\}$, a la clase $\mathfrak{C}^n \{\overline{m}_0^{n-1} \overline{m}_v\}$.

Esto nos sirve para generalizar un teorema de Bang, así:

TEOREMA 12. Si $\mathbb{C}^n \{m_n\}$ es una clase n.c.a, y si

(3.5)
$$r_p = \sum_{p}^{\infty} \frac{\overline{m}_{v-1}}{\overline{m}_v} \qquad y \qquad \alpha_p = \frac{1}{r_1 r_2 \dots r_p},$$

donde $\{\overline{m}_v\}$ es la regularizada logarítmica convexa de $\{m_v\}$, cada sucesión $\{a_{p_1 p_2 \dots p_n}\}$ que satisface

$$(3.6) |a_{p_1 p_2 \dots p_n}| \le C k^p \alpha_{p_1} \alpha_{p_2} \dots \alpha_{p_n} (p = p_1 + \dots + p_n)$$

es un elemento de una función f de $\overline{\mathbb{S}}^n\{m_v\}$.

Demostración. Sea

$$f(x) = \sum_{p_1, \dots, p_n} \frac{a_{p_1, p_2, \dots, p_n}}{\alpha_{p_1} \alpha_{p_2} \dots \alpha_{p_n}} A^{-p} \psi_{p_1, p_2, \dots, p_n} (Ax), \qquad (A = 2kn, p = \sum_{1}^{n} p_v)$$

entonces

$$\left| \frac{\partial^{q_1 + \dots + q_n}}{\partial x_1^{q_1} \dots \partial x_n^{q_n}} f(x) \right| \le C m_0^{n-1} A^q m_q \sum_{p=0}^{\infty} (kn/A)^p =$$

$$= 2 C m_0^{n-1} A^q m_q \quad (q = q_1 + \dots + q_n)$$

por consiguiente, $f \in \overline{\mathbb{C}}^n \{m_v\}$. Las demás condiciones son inmediatas.

Corolario 2. Cada sucesión $\{a_{p_1,p_2,...p_n}\}$ perteneciente a la clase $\overline{\mathbb{S}}^n \{ \mu_p \}, \text{ o sea } |a_{p_1, p_2, \dots, p_n}| \leq C k^p \mu_p \text{ } (p = p_1 + \dots + p_n), \text{ es elemento}$ de una función de la clase n.c.a. $\overline{\mathbb{C}}^n \{m_v\}$, en uno cualquiera de los siquientes casos:

1.0
$$\mu_1 = p!^{\alpha-1}$$
 v $m_2 = p!^{\alpha}$

$$\begin{array}{llll} 1.^{\rm o} & \mu_{p} = p \, |^{\alpha - 1} & {\rm y} & m_{p} = p \, |^{\alpha} \\ \\ 2.^{\rm o} & \mu_{p} = e^{ap^{\alpha / n}} & {\rm y} & m_{p} = e^{ap^{\alpha / n}}, \ a > 0 \end{array}$$

3.º
$$\mu_p = p!$$
 y m_p cualquiera.

⁽⁷⁾ Véase BANG [1], § 14.

Demostración. Los dos primeros casos se obtienen fácilmente del teorema 12, teniendo presente que

$$p! \le n^p p_1! p_2! \dots p_n!$$
 $y p^2/n \le p_1^2 + p_2^2 + \dots + p_n^2$

El tercero resulta del teorema 11. Debemos señalar que este notable resultado también es nuevo para n=1, antes solamente se sabía que toda sucesión $\{a_p\}$ de $\overline{\mathfrak{C}}\{1\}$ es elemento de una función de cualquier clase n. c. a., $\overline{\mathfrak{C}}\{m_p\}$.

Más todavía, como la intersección de todas las clases no cuasi-analíticas, $\overline{\mathbb{C}}\{m_v\}$ es precisamente la clase analítica $\overline{\mathbb{C}}\{v!\}$, se sigue que esta conclusión no se puede mejorar.

Combinando los teoremas 11 y 12, resulta

TEOREMA 13. Toda función f_0 , analítica en un conjunto compacto F de R^n , admite una prolongación f perteneciente a una clase n.c. a. prefijada $\overline{\mathfrak{S}^n}$ $\{m_v\}$ con los elementos $\{a_{p_1,p_2,\ldots,p_n}^{(\underline{\omega})}\}$ en N puntos x_1,\ldots,x_N distintos y no pertenecientes a F, si

$$|a_{p_1, p_2, ..., p_n}^{(\varrho)}| < C k^p \alpha_{p_1} \alpha_{p_2} ... \alpha_{p_n}$$
 $(p = p_1 + p_2 + ... + p_n)$
 $para \ \varrho = 1, 2, ..., N \ y \ p = 0, 1, 2, ...$

BIBLIOGRAFIA

- [1] BANG, T. On quasi analytiske Funktionen. Tesis, Copenhague, 1946.
- [2] Cartan, II. Sur les classes de fonctions définies par des inégalilés portant sur leurs dérivées successives. Actualités scientifiques et industrielles, n.° 867, 1940.
- [3] GORNY, A. Contribution a l'étude des fonctions dérivables d'une variable réelle. Acta Math. t. 71, 1939, pág. 317.
- [4] Kolmogoroff, A. Une généralization de l'inégalilé de J. Hadamard entre les bornes supérieures des dérivées successives d'une fonction. C. R. Acad., Sc., 207, 1938, pág. 764.
- [5] Mandelbrojt, S. Séries de Fourier et classes quasi analytiques de fonctions. Gauthier-Villars. París, 1935.
- [6] Mandelbrojt, S. Séries adhérentes. Régularisation des suites. Aplications.— Gauthiers-Villars. París, 1952.
- [7] WHITNEY, H. Analytic extensions of differentiable functions defined in closed sets. — Trans. Amer. Math. Soc. 36, 1934, págs. 63-89.
- [8] WHITNEY, H. Differentiable functions defined in closed sets. Trans. Amer. Math. Soc. I, 36, 1934, págs. 369-387. Ann. of Math. II, 35, 1934 págs. 482-485.
- [9] WHITNEY, H. Differentiable functions defined in arbitriary subsets of Euclidean space. — Trans. Amer. Math. Soc., 40, 1936, págs. 309-317.

Universidad de Zaragoza