THE DISTRIBUTIONAL ,F;-TRANSFORM
By
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1. Introduction

The conventional Laplace transform

(o]

(L) Fla) = | e ) dy

0

was studied in detail by Widder [8]. Some generalizations of (1.1)
have been given from time to time by several mathematicians. Er-
délyi [2] gave an important generalization of the Laplace transform
(1.1) as

o]

19 F@) =D [ m g,
0

at+B+n+1; —xy) f(y)dy

where {F; function is a confluent hypergeometric function and o, §
and % are complex parameters. For « = = 0, (1.2) reduces to (1.1).
Joshi [3] had studied several preperties of (1.2) including convergence
criteria and inversion formulas [4] with the restrictions Re g = 0,
Ren>0and Re a« +~ Ref+ Renn+1 #0, — 1, —2,... [6, p. 2]
and published recently several papers. Zemanian [9] has discussed
some classical properties of the Laplace transform (1.1) for ordinary
functions and then developed in detail the same for distributions.
We propose to discuss in this paper the generalized Laplace trans-
form (1.2) for ordinary functions and then extend the same for a
certain class of distributions.

* This paper is a part of author’s Ph. D. thesis. The paper was presented
at the I. M. S. Conference at Bombay en 1974.



120 G. L. N. Rao

2. Definitions and Notations

A function is said to be smooth if all its derivatives of all orders
are continuous at all points of its domain.

The space of testing functions denoted by D, consists of all com-
plex-valued functions ¢(f) that are smooth and zero outside some
finite interval [5] and [9].

Distributions whose supports are bounded on the left are called
right-sided distributions and are denoted by D’ [9].

A distribution is said to be left-sided if its support is bounded on
the right. D’; represents the space of such distributions.

S denotes the space of testing functions of rapid descent, and
S’ its dual space, is the space of distributions of slow-growth. S, is
the space S of testing functions that are defined over R;, where R,
is the one-dimensional Euclidean space containing all real values for .

In what follows let us set

a =f+n+1

b =a+pf+n+1

P = 1TI(a)/I'(b)

K(s, t) = P(st)f Fy (a; b; — st
@,=a@+1)(a+2)..(a+n—1).

The symbol 2 will be used to emphasize that a certain equality is a
definition. Throughout this paper it will be assumed that Re g > 0,
Ren>0 and Re a«+ Ref+ Ren+1 #0, —1, —2,... unless
otherwise stated.

3. The F-Transform of ordinary functions

Special conditions: Let f(¢) be a locally integrable function satis-
fying the following conditions.

1) f) =0 for — o<t < T.

(i) There exists a negative real number ¢ such that f(f)e= is
absolutely integrable over — o << ¢ << o0.

The generalized Laplace transformation is defined as an operation
L that assigns a function F(s) of the complex variable s to each
locally integrable function f(f) that satisfies conditions above.
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The operation L is defined by

HAaF JKst

F(s) is called the ;F-transform of f(f) and the operation L is
defined to be the ;F,-transformation. The right-sided |F;-transform
is defined by

(3.1) L2 Fe 2 | Ko a

LeMMA 3.1 The integral in (3.1) is absolutely convergent for all s in
the half-plane Re s > ¢ provided Re f > 0 and ¢ < 0.

Proor. (3.1) may be written as

F(s) = f K(s, ) f0) dt + J K(s, ) () dt = I) + I

where

K (s, ) f

II

and K (s

o
e[t

0
Let us first consider I;. The absolute convergence of | K (s, #) f(#) d¢
T

0
is related to that of | (st)f f(¢) dt since (F;(a;b; — st) = O (1) as
T

t - 0. Since f(f) is a locally integrable function and Re § > 0, I; is
absolutely convergent for all (finite) values of s.

Again

I, = f K (s,8) e (f(f) e
0

Here [ =< f(¢) dt is absolutely convergent according to the second

of the ‘Special conditions’ in Section 3. Let us consider the function
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e? K (s, #). Let Re s < 0. Then from the asymptotic formula of the
confluent hypergeometric function [6, p. 60]

o
1Fi(a; b; %) = 17((‘1—; X " %721 + O (|»|~ ")}
(Rex > 0 and x - o0)

we find that ¢ K(s,#) >0 as ¢ - oo when ¢ < Res < 0. Again let
Res > 0. Then from [6, p. 60]

%_”_)—a; (= %) {1+ 0 (ju-1)

(Rex < 0 and x - o0)

1F1(a; 0, %) =

we see that ¢ K(s,f) again tends to zero as £ — oo when Res> 0
and ¢ < 0. The above function takes the value 1 when # = 0 be-
cause Re # > 0. Also we note that K(s, #) ¢ is bounded whent > T > 0
and integrable in any closed interval [7, 7] since Re B> 0 and

¢ < 0. Also je‘”‘ f¢) dt is absolutely convergent. Hence by [1, p.
0

120] I, is absolutely convergent for all s such that ¢ < Res < 0 or
¢ < 0 < Res. It therefore follows that (3.1) converges absolutely
for all s € I's where I's is the set of all s satisfying ¢ << Res < 0 or
c <0< Res.

The greatest lower bound o, on all values of ¢ for which the se-
cond of the ‘Special conditions’ holds, is called the abscissa of ab-
solute convergence and the open half-plane Re s > o, is called the
region of absolute convergence for the ; Fi-transform (3.1). It is easy
to show that ;F;-transformation is linear.

4. The analyticity

THEOREM 4.1. Let f(t) be a function satisfying the ‘Special conditions’
and o, be the abscissa of absolute comvergence for the |F -transform
(3.1). Let Re p > 0. Then, F(s) is an analytic function for Re s > o,
and

©o

Fo) — | & s,y 10 .

7
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ProOOF. (3.1) can be written as

(o<}

4.1) L f(f) = F(s) = [ K(s, f) e {f{t) e~ dt.

T

First let us suppose that 7 > 0. It has been proved already in Lemma
3.1 that the right-hand side of (4.1) is absolutely convergent for
Re s> o,. With Re > 0 and ¢ < 0, K(s, ) ¢* is bounded in ¢ >
> T > 0 for all s € I's where I's is as specified in Section 3. Also 1 F;
(a; b; — st) is continuous in [T, T"] for all s e Is. (st)# is also conti-
nuous in [T, T'] for all s e I's since Ref > 0.¢" is also continuous
in [T, T']. Hence K(s, #) ¢ is continuous in [T, T"] for all se .

Consequently it is integrable in [T, 7] for every sin I's. Also[f(t) e~ dt
T

is absolutely convergent. Hence by [1, p. 196] the right-hand side
integral of (4.1) converges uniformly for all s € I's. Also the integrand
of (4.1) is a continuous function of (s, #) for all s and all £ and an ana-
lytic function of s for every ¢. So by a result in [7, p. 99] F(s) is ana-
lytic for Re s > ¢ > o,. Hence we may differentiate the integral
in (3.1) under the integral sign. Then we have

oo

FO (s) = [Eds {K(s, t)} f(¢) dt.

T

By continuing the same argument, we get, after differentiating %
times under the integral sign

Fo ) = [ & w0y 10t

T

If T < 0, (4.1) may be broken up into a sum of two integrals I; and
I, where
0

JK (s, t) f(2) dt,

T

I

and

I, = JK(s, 1) f(t) dt.
0
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I, can be seen to be analytic by the same argument which proved
the analyticity of F(s) in (4.1).
Taking up I; next, we observe that

(st)f 1 Fq (a; b; st)

is finite at £ = T and ¢ = 0 (since Re > 0) and is continuous in
¢t and hence bounded in [T, 0]. Let M be its upper bound. Then, over
every bounded domain 2 of the s plane, since

|(s8)? 1Fy (a; b; — st)| = |(st)? 1Fy (a; b; st) e~
by a result [6, p. 6], we have
|K(s, ?)] < Me=* for T <t <0,

where ¢’ is any upper bound on Re s for all s in £. All this shows
that I; converges uniformly over 2. We then proceed as above to
establish the analyticity of F(s) and the subsequent result.

5. The F;-transform of right-sided distributions

We have already defined the ordinary ;F)-transform G(s) of a
locally integrable function g(f) satisfying the ‘Special consitions’ in
the form

GO 21508 | ) Ko

We can write this relation in the distributional sense as
(5.1) G(s) & Lg(?) 2 < g(2), K(s, 2) ).

We shall now define the |F;-transform of a right-sided pistribution
f(t) by extending (5.1) to get

(5.2) F(s) 2 Lft) 2 < ), K(s, #) .
We shall assume that there exists a negative real number ¢ for which

e~ flt)eS'.

(5.2) can be written as

(5.3) F(s) 2 Lft) & e~ ), M) K(s, 1) e
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where A(f) is a smooth function with support bounded on theleft
and equals 1 over a neighbourhood of the support of f(z).
We will now prove that

) K(s, t) e
is a testing function in S,. This can be done by showing that
(5.4) 1 (s, )] < C,y —wo<t<®

where C,, are constants with respect to ¢, depending upon p and %;
P, k being any nonnegative integers [9, p. 100] and

w(s, 8) = A) K(s, 1) e
o (s, 1)

k
== 2 {l(t) (St)ﬁ} (m) {lFl(a; b; - St) ed} (B—m)*

m=0

Now

A typical term containing ¢ in the above summation is
(5.5) AR) tB=™ et \Fq (a; b; — st).

Let Re s << 0 and ¢ (> 0) - co. Then the above expression (5.5)
is asymptotic to
ME) th—m et et (— st)—@

which tends to 0 provided Re s > ¢ (i.e.c < Res < 0).
Again if Res > 0 and ¢ (> 0) - oo the expression (5.5) is asymp-
totic to
A(p) tB—m et (st)=b—n—1

which again tends to 0 provided ¢ << 0 (i.e. ¢ < 0 < Res). Similarly
the cases when Re s > Oand ¢ (< 0) > oo and Res < 0and ¢ (< 0) —
— oo can be discussed when ¢ << 0 << Re s and ¢ << Re s << 0 respec-
tively. This proves (5.4).

The right-hand side of (5.3) possesses a sense, as the aplication
of a distribution in S,’ to a testing function in-S,. Hence if f(f) € D'},
and if f(#) is such that e~ f(f) € S’ for some negative real number
¢, then the right hand side of (5.3) provides the definition of |F;-
transform of f(f) and the distribution f(#) is said to be Fi-transfor-
mable. It may be noted that F(s) is independent of A since 1 is a
fixed smooth function with support bounded on the left and equals 1
over a neighbourhood of the support of f(f).



126 G. I. N. Rao

REMARK. The generalization of Laplace transform of distributions
reduces to the Laplace transform of distributions [9, p. 223] for
a=pf=0.

The greatest lower bound o¢; of all real constants ¢ for which
e~ f(t) € S’ is called the abscissa of convergence. The region of con-
vergence for L f(t) is the half-plane Re s > 0.

We observe that the |Fi-transform F(s) is independent of all
choices of ¢ in the definition (5.3) provided ¢; < ¢ and this fact can
be proved easily.

6. The linearity of distributional right-sided ;F,-transformation

The distributional right-sided |F;-transformation is linear as the
ordinary right-sided ;F-transformation is.

THEOREM 6.1 Let f and g be | F-transformable distributions in D'y,
having as their abscissas of comvergence o; and o, respectively.

Let
Lf = F(s) when Re s > o;
and
Lg = G(s) when Re s > o,.
If 6, and &, be two constants, then

L(61f+ 028) = 61 Lf + 8, Lg
= 51 F(S) + 626(8)

where Re s > sup (o;, o,).
Proof is quite similar to [9, p. 224] and hence omitted.

7. The analyticity

THEOREM 7.1 Let f(t) be a | F-transformable distribution belonging
to D'g. Let o, be the abscissa of comvergence for Lf(3).

Then,
F(s) 2 Lf(t) &2 (e~ f(8), A¢) e K(s.2) )

s an analytic function in its region of convergence Re s > oy and
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ar o B taFia+ 1,0+ 1; —st)
73-—<e S, 2(e) e K(s, t){§-3 llFl(a; b; — st) }>

=) fl), 2K (s, ) )

where Re s > ¢ > oy.
To prove this theorem we require the following Lemma.

LEMMA 7.1 Let A(t) be the function specified in defimition of |F -
transform of f(t). Let s be fixed with Res <0, and let |As| < Re s
— P> 0,p being a real negative number. Also let p — c > 0 and

@a5(t) 2 A(2) Pe {(s + As)Bt# 1 F(a; b; — i(s + As)) —

(st)p 1Fi(a; b; — st)y — As
where As # 0.

Then, as As — 0, @u(t) converges in S to

) e"’{ _chlFl(a + 1,6+ 1; — st)

p
b 1Fiab;; — st 5 K60

which is equal to

At) e";% {K(s,t)y. If Re s> 0, then |4ds| < Re s —p > 0, p being

any veal number and p —c — Re s > 0.

PROOF. Let us put

1Fi(n) = 1Fila+n, b+ n, —st) mn=0,1,2,..)
and

1Fi(a; 6, x 4+ y) = ;0(1‘1)”3’" 1Fila + n;, b + n; x)

we have

{(s + ds)ty# | F1(a; b; — (s 4 4s)) — (st)? 1F(a; b; — st)
As ‘
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= (st)f [—t{(4)11F1(1) — (A)2 1 F1(2) (4st) + ..} +/§ {4+
B A5 ) B0 = () Gst),Fy (1) + )],

We now use an asymptotic property of ;F; function [6, p. 60] and
see that the right-hand side of the above equation is asymptotic to

p [Ast Ast|?
(7.1) (st)ﬂ -1 5—s£( st)—a Htl {1 ! 23' ’ ’ ;'l
—1(4 Ast|2
+ ..} -I—é(l i ﬂzg ISS|+_.,) {1+ |4st| - | ;I 0.
Now

| expression (7.1)] << (st)f=2 P-1e=s [lf] + Bs—1 x eBldsis™] gidstl
Hence, for any nonnegative integer m,

" @as (O] < [ A(2)e” (st)f= X
X emstHst 14 4 Bs—1 X
X eﬁ[dsis-1]|

which is less than
[t’”l(t) (st)ﬁ-u e~ Hp—e) {|t| + ﬂs“ 3,9143|5-1} l

The above expression is bounded uniformly for all £ and for all 4's
under the given conditions. By using a similar argument as above
and using the differential and asymptotic properties of | F (a; b; — st)
[6, p. 15, 66] and proceeding as in Section 5, we can prove that, for
each nonnegative integer %, | ¢p§f§ (#)] is also bounded uniformly fo:
all £ and for all 4 s under the given conditions. Hence for each %,
qy(ﬁ () tends uniformly to a limit.

Further, we shall prove that as 4 s — 0, @(f) converges in S to

2(t) e { — (A)yf 1228 + E;} K(s, 1).

For

B
@as(t) = PA(t) e (st)? (4s)~ [(1 + Z-]; {1F1(0) — (4), 4s. t 1Fy(1) +
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(4)2 (4s)282 1 F1(2) + ...} — 1F1(0)].
= P A0 e* (st)f [— (A)1 £ 1 F1(1) + (A)pds -2\ Fy (2) + .

B —14s

B
+§(l+ 2l s

+...) 1F1(0) — (A)1ds -1 F1 (1) +

+ (A)2(495)2821F; (2) + ...}
= Mt) e* K(s, 8) [— (A)1 8- 1F1 (1) (F1(0) ~1 + Bs™1]
as4s— 0.
Similarly the case when Re s > 0, can be proved.

PROOF OF THEOREM 7.1 Since f(f) is a | F,-transformable dis-
tribution in D',

E(s) = e~ f(t), At) e K(s, 1)).

Therefore
Pot 49 = PO . (omaf19, 209 Pe
(s + As) 8 \Fra; b; — t(s + As))
(0P 1 Fr(a; b — sty + As)
= e ) )y
for As| # 0.

As As -0, we have from Lemma 7.1

A e 10, 200 e K(s, 0[5 —

(A)it- 1 Fi(1) (F10) 1]

= (fl) o, Kl 0>,

REMARK. For « = 8 =0, this theorem is reduced to Theorem
8.3 -2 [9]

The linearity of the distributional ;F;-transformation was al-
ready established and we now prove its continuity in the following
theorem.
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8. The continuity

THEOREM 8.1. Let{f};21 be a sequence of distributions with the
properties:

(i) The supports of all f; are contained in a fixed interval T < t < oo.

(i) There exists a mnegative number ¢ such that the sequence
{e=% f; (t)}g=1 comverges in S’ to e=*f(t).
Then, the sequence {F,(s)}72y = {Lf}721 converges to F(s) = L f(t)

for Re s > c.
The proof is similar to [9].

REMARK: For a = f =0, this theorem is reduced to Theorem
8.3-3 in [9].

The theory of [Fi-transform of left - sided distributions can be
similarly developed.
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