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INTRODUCTION

The notion of a V-manifold was introduced by Satake [10] in
1956. Reinhart [9] related this concept to foliations by proving that
the quotient space M [F of a manifold M by a closed metric foliation
F of codimension # is a V-manifold of dimension #. We actually
prove a stronger result (theorem 4.2 of Chap. 4). The main purpose
of this paper is to give a more or less self-contained development of
the theory of pseudo-differential operators on V-manifolds in order
to prove the existence of parametrices for differential operators on
such manifolds. This theory is new, and we would like to point out
that one of the difficulties we have had to overcome has been to
find a good definition of pseudo-differential operators on a V-manifold.

Baily [2] proved the existence of parametrices for strongly elliptic
differential operators (of order 2) on compact V-manifolds. We
should also mention the recent paper by Kitahara [7]. We actually
prove the existence of parametrices for elliptic differential operators
(of any order). (Theorem 3.5). By applying this result we get the
decomposition theorem 3.6. As an application of this result to com-
plex analytic foliations with bundle-like Hermitian metric, we re-
late the cohomology spaces of base-like forms to the spaces of base-
like harmonic forms. We obtain in this way Theorem 4.4 and its
corollary. This theorem is analogous to Reinhart’s one [8] for the
complex case and vector bundle valued forms. The first author of
the present paper will employ this result in a subsequent paper [5]
in order to prove some rigidity theorems for complex analytic folia-
tions.

Concerning Chapter 1, (an introduction to V-manifolds and
V-vector bundles) we would like to point out that our definition of
V-manifold requires fewer conditions than the usual ones (Satake
[11], Baily [2]). We do not require (as Baily does) that if 1 is an in-
jection of local uniformizing systems then, for any o € G there is
o' € G’ satisfying 2 0 0 = ¢’ 0 1. We prove this fact as a proposition
(corollary of prop. 1.2) in the same way that Satake does [11], but
without his supplementary assumption about the dimension of the
set of fixed points of G and G'. That is why our definition is more
useful to verify that a concrete example constitutes a V-manifold.
For instance, in Th. 4.2, to prove that the quotient space B = M[F
of M by a compact Hausdorff foliation is a V-manifold, (according
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to Baily's definition) we should show that the holonomy group of
any leaf in a small neighborhood of a leaf L is a subgroup of the holo-

nomy group of L. We do not need to verify this fact using our defi-
nition.

CHAPTER 1

INTRODUCTION TO V-MANIFOLDS AND V-VECTOR
BUNDLES

V-MANTFOLDS

Definition 1.1. Let B be a connected Hausdorff paracompact
space. Let U be an open set in B. A local uniformizing system (abbre-
viated in the following as /. 7. s) of dimension # corresponding to U

is a collection (U, G, ¢} of the following objets:

(a) U is a connected open set in R”.

(b) G is a finite group of C*° automorphisms of U.

(c) @ is a continuous map from U onto U such that ¢ 0 o = ¢ for
any o € G and that ¢ induces a homeomorphism from T/G onto U.

Example 1.1. Let D = {x €R?, |x| < 1}. Let G be the group of
rotations of D of angles 0, #/2, =, 3n/2. Let B = D|G with the quo-
tient topology. B can be thought as the set of points of D in the
first quadrant with the identification of each point (0, 4),0 < a < 1,
to (a, 0). B is then a cone. Let us denote by ¢ the canonical projection
D — B. Consider, for instance, the following two open sets in D:

1) An open disk U of radius < 1 centered at the origin.
2) A small open disk ¥ contained in the interior of the first quadrant.
Let U=o(0),V = <p(I7). (U, G, ¢y is a I u.s. corresponding to

U and {V, I3, @} is a [. u. s. corresponding to V' (we denote by I the
identity).

Definition 1.2. Let U, U’ be two open sets in B. Let us suppose
that (U, G, ¢} and {0, G, ¢’y are L u.s. corresponding to U and
U’. An injection A: U, G, @} — (U, ¢, @'} is a diffeomorphism from
T onto an open set in U’ such that p=¢ 0l
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Any ¢ e€G can be considered as an injection of {,G, @} into
itself.

Definition 1.3. A C* V-manifold of dimension » is a connected
paracompact Hausdorff topological space B with a family A of
l.u.s's of dimension # corresponding to open sets in B satisfying
the following conditions:

(a) If (U, G, ¢y and (U, G, ¢} € A and o(T)c ¢'(I’) there exists
an injection A {(7, G, ¢} — (b, ¢, @'}

(b) Let H be the family of open sets U in B for which there exists
al ou.s. {ﬁ, G, ¢} € A. H satisfies the two following conditions:

(i) For any pe B there exists UeH with peU.
(ii) For any p e U;nU,, Uy, U € H, there exists U, € H such that
p € U3 Cc Ul n Uz.

A family A satisfying (a) and (b) is called a defining family.

Remark. We do not require that H is a basis of open sets in B as
Baily does. For example, if 7 : E — M 1is a vector bundle on a diffe-
rentiable manifold M and 4 is a basis of open sets in M, the family
B = {=~1(U), U € A} satisfies conditions (i) and (ii) but it is not a
basis of open sets in E. If we required that H were a basis of open
sets in B we could not define the notion of V-vector bundle as a
V-manifold, as we shall do in the next section.

Example 1.2. The cone B of example 1.1 is a V-manifold in a na-
tural way.

It can be proven that a quotient space M |G of a differentiable
manifold M by a properly discontinuous group G of C* automorphisms
of M (not necessarily finite) can be endowed with a ¥-manifold struc-
ture.

Example 1.3. We shall see in Chapter 4 that the quotient space
M |F of a manifold M by a compact Hausdorff foliation is a V-ma-
nifold in a natural way.

Example 14. Let M be a differentiable manifold and let B be
the maximal atlas. For any local chart (U, ¥) € B with connected U,

set U = Y(U),p ="P"1 and G = {I}. G, @} is a [.u.s. corres-
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ponding to U. Let A be the family of these /. #. s’ s. corresponding
to connected U € B. A defines a structure of V-manifold on M. We
can then see that the notion of V-manifold generalizes the concept
of differentiable manifold.

Definition 1.4. We shall say that two defining families 4 and A’
are directly equivalent if both of them are contained in another
defining family. We shall say that 4 and A’ are equivalent if there
exists a chain of defining families {4;},7 =1 ...7, such that 4; = A4
and 4, = A’ and that each 4; is directly equivalent to 4,,,. We
shall say that equivalent families define the same V-manifold struc-
ture.

Proposition 1.1. Let (U, G, ¢} € A. For each pe Uy let G7 be the
isotropy group of p. Let 5 = {p e U such that Gy+# {Iy}. Each p €5
has an open meighborhood V. VeU, such that VaS is a [fimite union

of submanifolds of dimension < n. Moreover, for each T € V one has
G7 = {o € GF such that o(q) =7} . In particular, G7 is a subgroup of G3.

Proor. Let 5 €S Let (u! ... u") be the coordinates in U. For
any o € Gy set

a;i(0) = (i(%:;i)

Let n(p) be the order of G3. Define the functions

~

P

1
i = ~. (g1 7
v ) 66};7%(0 )W o o
We shall have
[ o ) 1 . .
[ )y = WB) ooty 3 Y w0

The product of the two matrices (a;;(0~1)) and (a;;(0)) is the identity
since the first one is the Jacobian matrix of the map u — o~1 (%)

at ¢-1(p) = P and the second one is the Jacobian matrix of the
map # - o(u) at p. Therefore, there exists an open neighborhood

V, of p, V1c U, such that the functions (v! ... v") constitutes a coor-
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dinate system on V. Let ¥ be an open neighborhood of 3, Ve 171

such that o(7)c V; for any ¢ e Gy and that o(V)n ¥V = & for any
o € G such that o ¢ G3. We want to know the expression of any 7 € G

on ¥ in the coordinates (v1 ... v*). We shall have

1
vor=—=- Y a(ccVuwocor

Let us call ¢/ = 60 t. We shall have

1
— ¥ a-cr”lzvt-"ocr’)———Va,- ) vk .
n(p) a'??}’; k7( ) T k( )

Vo7 = g afk(r)<

We then see that 7 acts on ¥ as a linear map whose matrix with
respect to the coordinates v’ is a;(7). Hence, if 7 # I then the fixed
points of 7 on V will constitute a linear submanifold of dimension

< n. Let X be the union of such submanifolds corresponding to
any 1€Gy, 7 # 1. (Since § e 8, there exists re Gy, 7 #£1I). Let g
be any point of V. Let us prove that G7 = {oeGysuchthat «(g) =7} .
The inclusion 2 is obvious. Let us prove the inclusion c. Let « € G3.
We shall have oc(V) nv # z. But from the way that we have chosen
7 it follows that « € G3.

Let us prove X =5n7. Let qe SAV. Since G7 # {I} there
exists 7 I such that 7(§) =7. Hence e X. LetGe 7,7 ¢ S. Since
Gy = {I} there is not 7 € Gy, T # I, such that 7(§) = 7. Then G ¢ X.
Hence X =Sn V.

Proposition 1.2. Let U, G, ¢, (U, G, ¢y e A with o(U)c ¢'(T").
Let A and p be two injections {(7, G, g} > {(7’, G', ¢'}. There exists a
unique o1 € G’ such that p = o{ o A

In order to prove this proposition we need the following

Lemma. Let G be a finite group of linear automorphisms of R*,
G #~ {I3. We suppose that theve exists a (n — 1)-dimensional vector
subspace V of R such that each point of V is fixed by G. Then G con-
sists of two elements, the identity and a symmetry with respect to V.
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Proor OF LEMMA. Take a basis ¢; ... ¢, of R* such that ¢; ...¢,_,
constitutes a basis of V. The matrices of the elements of G in this
basis have the following expression:

10..... 0 al
01..... 0 a2
00..... a1
. 00 ..... 0 a”

We shall abbreviate this matrix as g(a! ... a*). We shall have the
following composition law:

glal ...a®) og(bl...0") = g(bl + al b", ..., 0" 1 + a*~ 10", a* b")

Observe that a@” must be 4+ 1. Otherwise, since for any positive in-
teger » we have g(al...a" = g(..., (")), G would not be finite.
Observe that g(al ... a*) with a” = | must be the identity. Otherwise,
suppose that ' £ 0forsomes, 1 <7 < # — 1.Sinceg(al ... a1, 1) =
= g(ral, ...,7va"~1, 1), G is not finite. Observe that G only have a
unique element g(al ... a1, — 1). Otherwise, let g(bt...0" 1, — 1)
be another element of this form. We have g(a! ... a*~1, — 1) o g(b! ...
0L — 1) = g(b! — al, ..., 0"l — g*~1, 1). But we have seen that
an element of this form had to be the identity. Hence a’ = b'. This
concludes the proof of lemma.

PROOF OF PROPOSITION. Since l(ﬁ ) is an open set, by virtue of
proposition 1.1 we can pick .31 e U such that G; &y = {y. We shall
have ¢'(u($1)) = @(p1) = ¢’ (A(py)). Hence there exists of € G’ such
that u(py) = of (A($1)). Let S = {p € U such that G}z # {I}}. Let
C={pelU — S such that u(p) = o1 (A(p));.

It is clear that $, € C. Hence C # 2.

StEP 1. C is open and closed in U — S.
Given § € C we wish to show that $ is interior. For each ¢’ € G’
pick an open neighborhood V. of ¢’(A(p)) in U’ such that

(@) VenV, = o if ¢ #17' (since G = {1}, o' A(p) +# T'A(Z) if
o #1T).

(b) o'(Vi)c Vg for any ¢’ €G'.



254 Joan Girbau and Marcel Nicolau

Let V% be a neighborhood of % in U — S such that A(V3)c V7 and
that u(V3)cVy;. We wish to show that V3 cC. Let g e V3. Since

~

@' (7)) = ¢(4) = ¢'(A(F)) there exists o5€G’ such that wu(7) =
= 02A(7). If ¢ = o3 then § e C. Let us suppose that o} # o03.
We shall have u(§) = 024(9) € 62(A(V3)) € 02(V1) € V5, But on the
other hand u(7) e u(V3) € Vy;. Hence u(q) € Vo n V. Butif o} # o3
then VinV,, = 2 (condition (a)). This is a contradiction. Hence

V% cC. Hence C is an open subset in U — S. On the other hand,
from the identity u(§) = 614(§) one deduces by continuity that C
is closed.

Step 2. C = U — S.

If U — S is a connected set this equality is then obvious. Let us
suppose that U — S is not connected. Since C is open and closed
in U — S, C will be a union of connected components of U — S.
Denote by A; the connected component of U — S that contains
$1. A1c C, hence u(§) = 07A(7) for any § € 4;. Since U is connected,
the connected components of U—S are separated by S. Since we
have supposed that U — S is not connected, 4; % U — S.

Let A, be another connected component of I — S such that

the intersection of closures(in l~]) A1 n Ayisnotempty. Letpy € A n 4.
We know that S is a union of submanifolds of dimension < # in a

small neighborhood of pg. Observe that 7 has to belong to one of
these submaniflods of dimension #n — 1, say S,_;, and that S, ;

can be chosen in such a way that S, ;n 4, contains, itself, a subma-
nifold of dimension # — 1. (In fact, the submanifolds of dimension
< # — 2 do not locally separate two distinct connected components).

In this situation we can choose a point 5 €S,_1n4; such that there
exists a neighborhood W7 of p with WynS = W5nS,_;. (Notice
that $ might be s pg). Then W5 — A, is clearly contained in a con-
nected component of I/ — S (possibly 7 Ag), namely 4,. Let p"} €4,
with Gigy = {I}. Since ¢'(u(p) = @(P2) = ¢'(A(p2)), there exists
o3 € G’ such that u(p,) = o (A(p2)). By applying the preceding
reasoning to p, and ¢ instead of $; and of we would arrive to the
equality u(§) = 02(A(7)) for any § € A,. Let us show that ¢y = o3
necessarily. By continuity, u(p) = o} (A(B)) and u(p) = o5 (A(3)).
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Hence ¢1~! 0 63 € G33. We can choose a neighborhood Ve W3 of
% in U such that, on Vigy = A(V3), there exists a coordinate system

~

centered at A(p) such that S,_; = A(S,_1n V%) is a linear submani-
fold (in these coordinates). Set Vg = u(V3). By the choice of 7
and V7 we can assert that the subset of V3 consisting of the fixed
points by Gz is, exactly, S, ;. Hence, since o171 o 02 € Gi,
either 01~1 0 03 = I or (by lemma) there exists a symmetry s with
respect to S, _; (with respect to the coordinates taken on V;z)
such that o5 = o7 0 s.

We know that u(g) = 01A(7) for any § € A, and that u(7) = 05A(7)
for any G € A,. This means that o} is equal to x 0 A-1 on A(4,) and
that o3 is equal to u 0 A=1 on A(4,). Hence o2 maps A(4,) into u(4,)
and A(4,;)n Vg into u(4;)nV,s. But, on the other hand, the
symmetry s maps A(4;) n Vg into A(4;) n Vig and o7 maps
A(41) n Vg into u(4,)n V,z. From this we deduce that o¢; =
=0} 0 s maps A(4;) n Vg into u(4;) n V3. This is a contradiction.
Hence ¢5 = ¢}. Hence A,cC. If Ajud, = U — S we shall have
C =T — S as we want. Otherwise, there will exist another connec-
ted component 4, such that 4,n S contains a submanifold of dimen-
sion # — 1 in common with 4,nS (or 4,nS). By applying the
preceding reasoning to A, instead of 4, and, perhaps, to 4, instead
of 4,, we would prove 4,c C. Hence we would arrive, by recurrence,
to C=0U —5.

StEP 3. End of the proof.
We shall have u(7) = 6{A(§) for any Fe U — S. We obtain, by
continuity, 4 = o} 0o 1 on U. This proves the existence of o}. The

uniqueness is obvious since it suffices to choose § such that G;g = {1}
and observe that for this 7 there exists a unique ¢} such that u(g) =

= a1 (7).

Corollary. Let A be an injection (U, G, ¢y —~ {U’, G, ¢'y. There exist
a unique monomorphism v :G — G’ such that . o o =n(o) o A for
any o €G.

Proor. Given o €G, A o ¢ is an injection. Hence, there exists a
unique ¢’ € G' such that 2 0 ¢ = ¢’ 0o A. The correspondence ¢ — ¢’
is our homomorphism.
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Proposition 1.3. Let (U, G, g} and {U', G, ¢'y € A with U = p(U) c
C¢’((7’) = U'. Let A be an injection U, G, P — o, G,o"Y. If
o (MD)) n AT # o for some o’ € G’ then o' (MT)) = MT). Moreover
o’ en(G).

PrOOF. Assume that o’ (A(U)) n A(U) # o. Then there exist §, 7 € U
such that o'A(p) = A(§). Heuce ¢(p) = ¢’ (A(P)) = ¢’ (d'A(P) =
= ¢'(A(7)) = @(J). Then, there exists 7 € G such that 7(p) = 7. Let
7" = n(z) € G’. By virtue of proposition 1.1, since o' (A(T)) n A(T) is
open, we can choose § such that A(3) e o' (A(0)) n A(T) and that
Gig = {I}. Hence we shall necessarily have ¢ = 7’ = (7). Since
7(0) = (0), we shall have o' (D)) = v/(AD)) = 2=(D)) = X(T).

Remark. From proposition 1.3 it follows that any injection
(U, G, ¢r - (U, G, ¢y with ¢(U) = ¢'(T") gives rise to a diffeo-
morphism between U and U’ and that the homomorphism % : G - G’
induced by 4 is an isomorphism. Then 21! is also an injection. In
fact, if «p(U) ¢’ (") one has U’ = U o'(A(0))). But, by virtue of

o’ €G"
proposition 1.3, ¢'(A(T)) = A(U) for any o', since U’ would not be
connected if this equality did not hold. Hence, U’ = U a’(l(U)) =

= A(U). This proves that A is onto. Proposition 1. 3 also implies
that # is an epimorphism.

~

For the general case ¢(U)c¢'(0’) we have the following

Pfoposztzon 14. Let X be an injection (U, G, @} — - (0, G, '}
Given o', t" € G', one of the two following assertions holds

(a) o ' (A(0)) = z. Then there is no o €y (G) such that
o =10 0‘1

@) o' (A(T)) = Z(A(D)). Then -1 0 o' ey(G).
The proof is immediate from proposition 1.3.

Remark. From proposition 1.4 one follows that there exists a
one-to-one correspondence between G'/n(G) = {o'n(G) for any

¢’ €G'}y and the connected components of V, = | o' (A0)). If
d €G

u: {U’, G, g} — (O, ¢, ¢’} is another injection and ¢’ €G’ is the
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unique element such that 4 = ¢’ 0 2 (prop. 1.2) then, either ¢’ € %(G)
and u(0) = A0) or o' ¢ 5(G) and u(U) is a connected component of
V, distinct from A(D). In particular V, is independent of the choice
of the injection A and it depends only on {T, G, ¢} and @, ¢, o'}
We define V\U, U') = V,.

Proposition 1.5. Let (B, A) be a V-manifold and let p € B. Let
(U,G, o, ({U,G, ¢y €A such that theve exist e U and p' T’
with ¢(p) = ¢'(p') = p. Then Gy = Gy.

Proor. Since we can always find (U, G”, ¢’y € 4 with p €
e (0" cp(T) ng'(T') it suffices to prove the proposition in the case
(0) c¢'(T"). We know that there exists an injection 2: {U, G, ¢} —
{0, G', ¢y such that A(p) = 7'. Let 5 be the homomorphism
G — G’ associate to A. Let us prove that the restriction of % to G
induces an isomorphism between Gz and G%- Let 0 € Gy. We have
n(o) (") = (o) (M(P)) = 20(p) = A(p) = #'. Hence n(G3)cGj. Re-
ciprocally, if o’ € GP~', then 7' = ¢'(p") = o' (A(p)), hence o' (A(T))n
nA0) # o.

Therefore there exists o € G such that 5(c) = o’. Let us finally
prove that o¢eGy. By construction Ac(p) = n(o) (A(P)) = 7.

Hence A(o(p)) = l(;) Since 2 is injective we shall necessarily
have o(p) = p.

Definition 1.5. By virtue of proposition 1.5 we can define the
isotropy group of each p € B to be G, where 7 is a point belonging

to some {U, G, g € A4 such that ¢(p) = p. A point p € B is called
singular if its isotropy goup is non-trivial.

C® MAPS BETWEEN V-MANIFOLDS. V-VECIOR BUNDLES.

Definition 1.6. Let (B, A1) and (Bj, A;) be two V-manifolds.
We mean by a C*° map from B; into B, a system of mappings {47}

for each {U;, G|, ¢} € A; satisfying the following conditions:

(i) There exists a correspondence (T, G, o3 — (0,, Gy, @3} from
Ay into A, such that for any {ﬁl, Gy, @1} € Ay, 7y, is a C* map from
U, into U,.
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(11) Let {rjl’ Gl: ¢}, {Ui, G’l, ¢;} € Jql and {ﬁZJ GZ: (PZ}’ {E"Z, Gi:
@2} € A, be corresponding l.u.s’s. (in the sense of (i)). Then, given
an injection A;: 1 1, Gi, 91} ~ (T, Gy, @1} there exists an injection
Jg: (T, Ga, @) - (U5, Gy @5} such that 4, o hy, = hw, o Ay

One can easily prove the following

Proposition 1.6. Given a C>= map, (hvy, from (By, A1) into (B, As)
there exists a unique continuous map h: By — By such that for any

{0, Gy, @1} € Ay and ts corresponding (0,, Gy, @2} € Ay ome has
P2 0 hg, =h o ¢;.

Remark. We shall identify in the following a C* map {h7,} to
its associate 4: By — B,.

Definition 1.7. Consider R (resp. C) endowed with the V-manifold
structure defined by the single l.u.s. {R, {Igr}, Ir} (resp. {C, {I¢}, I¢}).
A real (resp. complex) C* map on a V-manifold (B, 4) is a C°>® map
from B into R (resp. C).

Definition 1.8. Let B and E be two V-manifolds and n: E -~ B a C®
map. We say that n: E - B is a C* V-vector bundle with fibre
R™ (resp. C”) if we can find defining families 4 and A* of B and E
respectively, satisfying the following conditions:

(i) There exists a one-to-one correspondence 0, G, ¢} ~—
«— (0%, G*, ¢*} between 4 and A* such that U* = J x R™ (resp.
U x €”) and that @ 0 ¢* = ¢ 0 ap» where ap. denotes the canonical
projection zgn: U* — U.

(i) To each injection 4: (7, G, ¢y > {U', G', ¢'} it corresponds an
injection A* : ({U*, G*, p*} — (O"*, G'*, ¢'*} such that for any (‘5, q) e
eU* =0T x R* (tesp. U x C”) one has A*(§, q) = (A(B), &(B)q)
where g,(3) € GL (m, R) (resp. GL (m, C)) and that the map g,: U -
—GL(m,R or C) is C.

It 2:{U,G g~ (U,6 ¢} and u: (0,6, ¢y ~ (07,6, ¢"
are two injections, one has g,04(?) = g,(A(p)) o g(p) for any e U.
In fact, p* #* (3,q) = w*(A(3). &) @) = (Wi(B), &F) o &)

Remark. The terminology used in Definition 1.8 is perhaps abu-
sive. As we are going to see, if # : E — B is a V-vector bundle with
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fibre R™, it is not true that for each p € B the fibre 71 (p) is isomor-
phic to R™.

Let pe B and (U, G, ¢} € A such that there exists 7 e U satis-
fying ¢(p) = p. Consider px R*cTU*. If (p,q) belongs to px R”
then ¢*(3, ) e 1(p). Tt (B, q1) and (B qo) satisty ¢*(F q1) =
= @*(p, g») there exists o* € G* such that ¢*(p, ¢;) = (P, ¢5). Using
the correspondence ¢ «<— o* established above we have (§, g;) =
= o*(p, q1) = (6(P), &(P)q1)- Hence a(p) = p (in other words, oeG)
and ¢, = g,(p) g;. Then, the correspondence

R"/{g,(p) with ¢ €G3z} - 1(p)
class of ¢ - @*(P.q)

is a well defined one-to-one correspondence. Hence z~! (p) ~ R
only if p is non-singular.

Definition 1.9. Let n:E -~ B be a V-vector bundle. We shall
say that a C*° V-map s: B — E is a cross section of E if, with respect
to the defining families 4 and A* of Definition 1.8, s is given by a
system {s7} satisfying the conditions of Definition 1.6 in such a way
that the correspondence A — A* of (i) Definition 1.6 is given by the
correspondence A <«—> A* of (i) of Definition 1.8 and that for any

{(7, G, ¢} € A one has ap+ 0 sy = I (Clearly, this implies that w 0 s =
= I).

Each sy will be a cross section of U* - U in the usual sense in
such a way that for each iujection A: (U, G, ¢} — (U, G, ¢’} one
has sz 0 A = A* o sy. In particular, each sy is G-invariant. That
is, s 0 ¢ = ¢* o sy for any o eG.

Definition 1.10. Let n: E — B be a V-vector bundle with fibre €.
A Hermitian metric % in this V-vector bundle is an assignment of

a C° Hermitian metric »% in the vector bundle mg : U* - U to
each (U, G, ¢y € 4 in such a way that for any injection
10,6, ¢y > (U, G ¢ ({U,G, ¢y € A and ¢'(U") c9(T)) one has

(%) (51(%), 52(%)) = ho(2(%)) (A* (s1(%)), 2* (52(%)))

for any cross sections s;, s, of U'* - U’ and ¥ € U'.
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In an analogous way we can define the concept of a Riemannian
metric on a V-manifold by the following

Definition 1.11. A Riemannian metric g on B is an assignment
of a C*° Riemannian metric gz on ¥ to each (U, G, ¢} € A in such
a way that for any injection 4: (", G, ¢y - {U, G, ¢ ({U", G,¢'{eA
and ¢'(U") c¢(0)) one has gz(X, ¥) = gw(A(X), A(Y)) for any vector
fields X, Y on U, where A(X) and A(Y) mean the corresponding
vector fields on A(J") by means of the diffeomorphism U’ — AT e U.

CHAPTER 2

C° PARTITIONS OF UNITY ON V-MANIFOLDS

EXISTENCE OF (C° PARTITIONS OF UNITY ON V-MANIFOLDS

Defimition 2.1. Let (B, A) be a V-manifold. Let {U, G, ¢} € A.
A function hy : U - R (or C) is called allowable if it is a C> function
and it satisfies Ay = hy o o for any o €G.

Proposition 2.1. Let (B, A) be a V-manifold. Let 1: {f/', G, ¢} ~
(U, G, @'y be an injection ({U, G, ¢}, O, &, @'y € A). Let hyp
be an allowable function on U'. Define the function hy on U by hy =

== hg# 0 A. Then, hy does not depend on the injection A and it is an
allowable function.

Proor. Let us prove that it is allowable. We have Ay 0 ¢ =
=hi o 2 0 a=hp on(s) o A=hy o A=h7. Let us prove that it does
not depend on A. Let u be another injection u: {0, G, @} —> {(7’, G, ¢'}).
By virtue of proposition 1.2, there exists ¢’ € G’ such that y = ¢’ 0 4.
Hence, iy oy = hg» 0 6’ 0 A = hy. o A

Definition 2.2. In the situation of proposition above we shall say
that Ay is the restriction of Ay to {(7, G, ¢}.
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Proposition 2.2. Let (B, A) be a V-manifold. Let (U, G, @} and
{0, G, ¢'y € A such that o(0)c¢'(0"). Let hiy be an allowable function
on U with compact support Kc U. Given an ingection X (U, G, gy —
(U, G, ¢} (call p:G — G the associate homomorphism) and given
representatives oy, ..., oi of the classes of G'|n(G) with oy = I, define
the function hy. on U’ by

_ | =0 if p' ¢ V(U, U") (Recall that V( U') has been defined
her (P') in the Remark following Prop. 1.4)

= hy (Ao~ (P) if P’ e oi(A(D))

Then, one has:

(@) hor is independent of the choice of the represemtatives o, ..., ox
of the classes of G'[n(G).

(b) hv. is independent of the injection A.

(¢) hoe is allowable and its support is contarned in K = U o(UK)).

a'€G’

Proor. (a). Let 7} be another representative of the class of 7.
There exists ¢’ € 9(G) such that ;= 0! 0 o’. Let o €G such that

n(0) = o’. We have 7(A(0)) = oi(o’ (A(D))) = o3(A(T)). Fix §’' in
7(A(T)). Let 71 = ;"1 (P) e A(U) and Py = 7-1(p") € A(U). Let
Pr=2"1(p)) and B, = -1 (Fy). Since o ($3) = oi ! (w(FR) =
= o;"1(p') = pi, we have o(p,) = p;. From this fact we deduce
hﬁ(l"l(rfl(z?’) —ho (A~ 1(F2)) = hr(Ba) = her(o™1(P1)) = her(B1) =
= hyr(4 1(;51 Gt—l(]b)))

(b ) and (c) are proven in an analogous way with the help of Pro-
position 1.2.

Definition 2.3. In the situation of proposition above we shall say
that hg is the extension of hy to {U’, &, @'}

Proposition 2.3. Let (B, A) be a V-manifold. Let {U’, G', 9"y and
(U,G, ¢y € 4. Set U = ¢(0) and U’ = ¢'(U"). Suppose that Un U’ #
#*2,U g U,U CU. Let hy be an allowable Sfunction on U with
compact support K' < U'. Then, there exists a unique allowable function
hy on U such that:

17 — Collectanea Mathematica
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(@) hy =0 on =1 (U — U').

(6) Given a l.u.s. (T4, Gy, p1} € A corvesponding to am open set
U,cU'nU and an injection A {(71, Gy, 91} —~ (0, G, @}, then, if we
denote by hiy, the restriction of hy. to {f]l, Gy, p1}, we have hy, = hy o A.

Proor. Fix a Lus. {U;, G, ¢} € A corresponding to an open
set U;cU'nU. Fix an injection A: {T, Gy, p;} — (U, G, ¢}. Denote
by 7 : G; - G the morphism associate to A. Fix g ... 0, € G represen-
tatives of the elements of G/y(G;). Define a function #(T}, U) on

v, T ucr(mU ) by (T, O)B) =he, (A-or1(B)) if

pea(A(U 1)), where Ay, denotes the restriction of Ay to {T}, Gy, ¢1}.
By the same reasoning that in proposition above this definition
depends neither on the choice of the representatives o, ... g, nor on
the injection 4. Let (T, G,, ¢y € A4 such that ¢,(0,) = U,ecU;c
cU'nU. We shall have, in the same way, the function A(T,, U)
on V(U,, U)c V(U,, U). We want to show that 4(T,, U) = u(T,, 0)
on V(T,, U). Let u be an injection {U,, Gy, g2} — (U, Gy, 1} Let
7, G, — Gy be its associate homomorphism. Let 7;..7,€Gy re-
presentatives of the elements of G;/7,(G,). Then, the products g; 0
n(t;), +=1..k j=1..7 are representatives of the elements of

G [nmy(G,). Since the definition of (T, U) does not depend on the
choice of the injection we can take the injection 1 o u. We shall have

~, ~ ~

WO, ) (§) = hou(u= (A" n(z) ~ Mo LB)))) if € oi(n(z;) (A(u(T))))-

Observe that the restriction of kg to {U,, G5, @y} is precisely the res-
triction of Ay, to {75, G,, @33. In other words, Ay, = hh o K. Hence

~.

w(T, O) () = W21 (5) " Lo 1(B)) = k(2 o 7)1 (o7 4(P))

p e o,(n(7) (Mu(T2))) € 6;(A(w(T5))) since 5(z 7;) € (Gy). Since the deﬁ-
nition of A(U;, U) is independent of the injection, we can take the
injection 2 o 7; and we shall have:

RO\, 0) (B) = hoi((2 0 7))~ Yo (7)) if B € o(MT).

~

Then, we can see that 4(T,, U) = (U, U) on o;(n(7;) (A(w(T5))))
c o,(2u(02)) € o, (A(T ).
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Let us define the function hi whose existence the proposition
asserts. Define Ay on ¢~ (UnU") as follows. If peg-1 (UnU’),
choose a Lus. {Uy, Gy, ¢} € A corresponding to U;cUnU’ such
that ¢(3) € U,. Define hr(p) = A(T,, U) (). This definition does not
depend on the choice of (U}, Gy, 1) € A. In fact, if {5, G,, ¢} € 4
is a Lu.s. corresponding to U,c Un U’ such that ¢(p) € U, we take
{(73, G,, ¢} € A a lus. corresponding to U,cU;nU, We shall
have iU, O) (3) = W(T,, U) (p) = W(T,, U) (p). Define hx to be
zero on ¢~ Y (U — U").

Let us show that Az is allowable. Iet 0 € G and p e U. If P ¢
¢~ (UNU’) then o(p) ¢ =1 (U — U’) for any o € G and (o (p)) =
= 0= h(p). Suppose thatp e =1 (U n U’). Take a Lu.s. {U;, Gy, g1} €
€ A corresponding to an open set U; such that ¢(p) € Uy. Let i
{ﬁl, Gy, o1} — 0, G, ¢} be an injection. Since p e A(U;) then
o(p) € oA(T)), hence hy(a(p)) = hes (A1 (671 ($))). On the other hand
h(P) = he((o o A)~1 (P)) since P € A(T). (We have taken here the
injection ¢ o A instead of 1). We have then Ag o ¢ = A7. In order to
see that Ay is C°° it suffices to observe:

(a) On =1 (UnU’) Ay is C*= by construction.

(b) K = ¢~ 1 (¢/(K’)) is contained in ¢~1 (Un U’) and it is closed
in T.

(c) On U — K one has hy = 0.

(d) The open sets U — K and ¢~1 (I'nU’) cover U.

The uniqueness is immediate.

Definition 2.4. In the situation of proposition above we shall say
that the function Az is the prolongation of Ag, to U, G, P}

Proposition 2.4. Let (B, A) be a V-manifold. Let (T, Go, qoy € A.
Given an allowable function fr,: Uy ~ R (or C) with compact support,
there exists a unique C*° function f on B, f = {fp}, with compact support
contained in Uy = go(Ty) such that f o ¢y = fo,

Proor. If ¢(U)c Uy we define fz to be the restriction of fg,. If
Upcp(U) we define fi by extension of fa,. If UoS o(U), q)(~U)§ Uy
and ¢(U)n Uy# =, we define fy to be the prolongation of fg;. If
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p(T)n Uy = # we define fir = 0. The function f = {f7} satisfies the
required conditions.

Proposition 2.5. Let (B, A) a V-manifold. Given p e B and an
open meighborhood U’ of p, there exists a C™ real function f= {fg}
with 0 < fy < 1 such that the support of f is a compact contained in U’
and that there exists a compact neighborhood K of p such that fIK = 1.

ProoF. Let {Uy, Gy, ¢o} be a luws. of A corresponding to U, such
that p € Uy. Let p € Uy such that po(p) = p. Let {py = P, Pa, oo P} =
= {o(p) with oeGp}. Let 0,€Gy, i = 1... 7, such that P, = a;(P).
Let ¥V be an open neighborhood of % such that ¢o(V)c U’ and
that the sets V# = 0;(V%) are mutually disjoint. Consider Vg =

= N o(V3). Let Ky be a compact neighborhood of $ contained

o€ (Go)p
in V3. Let f: Uy — R be a C* function with f(Ty) [0, 1] such that
fIKy =1 and that sup fc V3. Define

[

foo,=—=- % foo,
#(P) €6,

.

where %(p) is the order of (Go)3. It is clear that fy, is an allowable
function with fg;(Tp) [0, 1]. Let K’ = n )O‘(Ko). K’ is a compact
o€ (Go)p

neighborhood of 5. Moreover fz;,|V3 has compact support contained
in V# and onc has fg,|K’ = 1. Take K = go(K’) as the compact
whose existence the proposition assetrs. Since ¢q is continuous and
open, K is a compact neighborhood of p. Take as f= {fz} whose
existence the proposition asserts the function f given by proposition
2.4. It is clear that all the required conditions are fulfilled.

From proposition 2.5 a standard well known reasoning gives
the following

Theovem 2.1. Let B be a V-manifold. Let (U} be an open cover of
B. There exits a countable partition of wumity {h;, + €N}y subordinate
to {Uy such that each h; is a C* function with compact support.

Corollary. Let K be a compact in B. Let U be an open set such that
KcU. There exists a C® function f: B~ R such that fIK = 1 and

f(x) = 0 for any x ¢ U.
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Proor. For each pe K let U, be an open neighborhood of p
such that U,cU. If p¢ K let U, be an open neighborhood of $
such that U,n K = . Let {U,},. 4 be a locally finite open refinement
of the cover {U,},, 5. Let {A}ien be a C* partition of unity subordi-
nate to {U,}. Let C = {i € N such that sup ,nK # . C is a finite

set. The function f = ¥ %, satisfies all the required conditions.
ieC

INTEGRATION OVER V-MANIFOLDS

We shall say that a V-manifold B is oriented if we have chosen
a defining family 4 such that if (U, G, ¢}, (U, G, ¢’} € 4 with
¢(0) c ¢ ("), any injection A: {U, G, ¢y - {U’, G', ¢'} preserves
orientations (we consider in U and U’ the orientations induced by
the canonical orientation in R*).

An r-differential form on B is an assignment of a C*° r-form
oy on U to each {U, G, ¢} € A in such a way that, if 1: {U. G, @} —
-> {U’, G', ¢'y is an injection, one has oy = A* (0%).

Let (B, A) be an oriented V-manifold of dimension 7. Let w be
an n-form on B with compact support. Let us go to define the inte-
gral |'p w. If the support of w is contained in U = ¢( ﬁ) with (T, G, Q) e
€ A we define

1
o= n(G) Jo o

where #(G) is the order of G. In the general case, let {f} be a C*
partition- of unity subordinate to a locally finite covering {U;} of
B. We define

./‘sz ;[B fio.

This sum has only a finite number of non-vanishing terms. It can
be proven that this definition does not depend on the particular
partition of unity.






