ON THE EXISTENCE AND CLASSIFICATION OF Co-H-STRUCTURES

por

José-Luis Navarro

ABSTRACT.

This work has been motivated by [B], where it is shown that $S^3 \bigcup_f e^{2^{p+1}}$ does not admit any homotopy associative comultiplication, when $p \neq 2$ is a prime and f representes a generator of $Z_p \subset \pi_{2p}(S^3)$.

If X is a 1-connected Co-H-space every comultiplication on X induces a loop structure in the set of homotopy classes [X, Y], for all Y.

There is (see, e.g. [G]) an one-to-one correspondence between homotopy classes of comultiplications on X and homotopy classes of coretractions for the evaluation map.

The main result of this paper is the following theorem *Theorem* (4.1). If X is a 1-connected co-H-space then there is an one-to-one correspondence betwen the set of co-H-structures on X and [X, X # X].

Here X * X denotes the homotopy fiber of the inclusion map $i = X \vee X \subset X \times X$.

In the third section, an obstruction $\omega \in [X_1, X_2 * X_2]$ to the primitivity of a map from X_1 into X_2 with respect to two fixed comultiplications is determined. In the same section, equivalent conditions for X_1 or X_2 to admit different comultiplications making a fixed map primitive, are given.

All spaces are assumed to have the homotopy type of connected CW-complexes with base-point.

I wish to thank Prof. M. Castellet for pointing out this problem to me.

1. — Introduction.

A comultiplication on a space X is a map

$$\mu: X \to X \vee X$$

such that $i\mu \simeq \Delta$, where Δ is the diagonal map.

If $\mu \simeq \mu'$, it is clear that μ' is also a comultiplication. The homotopy class of a comultiplication is called a *co-H-structure*.

A homotopy theory on X is a system of binary operations defined in [X, Y], for all Y, accomplishing the following conditions.

- a) For each Y, the homotopy class of the constant map is a two-sided identity element.
- b) For all Y_1 and Y_2 and for each map

$$f: Y_1 \rightarrow Y_2$$

the induced function

$$f_*: [X, Y_1] \to [X, Y_2]$$

is a homomorphism of binary systems.

If B is the category of binary systems and homomorphisms, it is known (see, e.g. [C]) that a space X admite a comultiplication if and only if the functor [X, -] take values in B. In particular if $[X, X \vee X]$ is a binary system, $[i_1] + [i_2]$ is a co-H-structure on X.

A loop M is a binary system such that the equations a + x = b, y + a = b, have unique solutions $x, y \in M$, for all a, b in M.

The functor [X, -] take values in the category of loops if and only if there are maps

$$l, r: X \to X$$

such that ∇ $(l \vee 1) \mu \simeq 0 \simeq \nabla (1 \vee r) \mu$.

Let ϕ , ψ : $X \vee X \to X \vee X$ be maps defined by $\phi i_1 = i_1$, $\psi i_1 = \mu$ and $\psi i_1 = \mu$, $\psi i_2 = i_2$. Then ϕ and ψ are homology equivalences.

A comultiplication μ induces loop structure in [X, Y], for all Y, if and only if ϕ and ψ are homotopy equivalences. If X is 1-con-

nected, then every comultiplication on X induces a loop structure in [X, Y], for all Y (see, e.g. [G]).

In what follows we will not distinguish between maps and homotopy classes:

If X is a 1-connected co-H-space, the unique solution in [X, Y] of the equation x + g = f (resp. g + y = f) will be denoted by D(f, g) (resp. D'(f, g)).

Let ϕ be a map from Y_1 into Y_2 , then $\phi D(f, g) = D(\phi f, \phi g)$ and $\phi D'(f, g) = D'(\phi f, \phi g)$.

Furthemore, $D(f_1, f_2) = \nabla(f_1 \vee f_2) D(i_1, i_2)$ and, in this sense, we can think of $D(i_1, i_2)$ as an universal difference.

2. - An exact sequence of loops.

Let ε be the evaluation map

$$\varepsilon: S \Omega X \to X$$

(i.e. $\varepsilon[t, \omega] = \omega(t)$). We can characterize co-*H*-spaces in terms of ε , as follows: A space *X* has a comultiplication if and only if there is a coretraction for ε .

Lemma (2.1). The induced homomorphism

$$f_*: [X, Y_1] \to [X, Y_2]$$

is surjective for all co-H-space X if and only if Ωf admites a coretraction.

Proof: If f_* is surjective for all co-H-space X, in particular for $X==S\ \Omega\ Y_2$ let $\gamma\in[S\ \Omega\ Y_2,\ Y_1]$ be such that $f\gamma=\varepsilon_2$. Then if $\xi==$ adj (γ) , it is clear that $(\Omega f)\ \xi=1_{\Omega Y_2}$. Conversely, if $(\Omega f)\ \xi=1_{\Omega Y_2}$ and X is a co-H-space there is γ such that $\varepsilon\gamma=1$. Then, if $\phi\in[X,\ Y_2]$ and $\lambda=$ adj $(\phi\ \varepsilon)$, $\psi=$ adj $(\varepsilon\ \lambda)$, it is easy to see that $f_*(\psi\gamma)=f\psi\gamma=\phi$. Hence f_* is surjective.

Lemma (2.2). A space X admites comultiplication if and only if the induced map

$$i_*: [X, Y_1 \lor Y_2] \rightarrow [X, Y_1 \times Y_2]$$

is surjective, for all Y_1 and Y_2 .

Proof: If $\phi \in [X, Y_1 \times Y_2]$ it is clear that

$$i_*[(p_1\phi \lor p_2\phi)\mu] = \phi$$

Conversely, if $Y_1 = Y_2 = X$ and i_* is surjective, then $i_*^{-1}(\Delta) \neq \emptyset$. Every element in $i_*^{-1}(\Delta)$ is a comultiplication.

Let $Y_1 \# Y_2$ be the homotopy fiber of $i: Y_1 \lor Y_2 \subset Y_1 \times Y_2$. We apply the functor [X, -] to the Eckmann-Hilton fiber sequence,

$$\begin{split} \dots &\longrightarrow [X, \Omega(Y_1 \vee Y_2)] \stackrel{(\Omega^i)_*}{\longrightarrow} [X, \Omega(Y_1 \times Y_2)] \stackrel{\partial}{\longrightarrow} \\ &\stackrel{\partial}{\longrightarrow} [X, Y_1 * Y_2] \stackrel{i_*}{\longrightarrow} [X, Y_1 \vee Y_2] \stackrel{i_*}{\longrightarrow} [X, Y_1 \times Y_2] \end{split}$$

If X is a co-H-space, i_* is sujective and Ωi admites a coretraction, then $(\Omega i)_*$ is surjective. Hence $k_*^{-1}(0) = 0$. If X is 1-connected, $[X, Y_1 * Y_2]$ is a loop and then $k_*^{-1}(0) = 0$ is equivalent to the injectivity of k_* . Furthemore, if ig = if, then

$$0 = D(if, ig) = iD(f, g)$$

Thus $D(f,g) \in \text{im } k_*$ and we have proved the following.

Proposition (2.3). If X is a 1-connected co-H-space

$$0 \longrightarrow [X, Y_1 * Y_2] \xrightarrow{k_*} [X, Y_1 \lor Y_2] \xrightarrow{i_*} [X, Y_1 \times Y_2] \longrightarrow 0$$

is a exact sequence of loops.

In what follows all co-H-spaces will be considered 1-connected.

3. Primitive maps and obstruction.

Let (X_i, μ_i) be co-H-spaces i = 1, 2. A map

$$f: X_1 \to X_2$$

is called *primitive* (co-H-map or homomorphism) with respect to μ_1 and μ_2 if $\mu_2 f = (f \vee f) \mu_1$.

A map f is (μ_1, μ_2) -primitive if and only if the induced function

$$f^*: [X_2, Y] \to [X_1, Y]$$

is homomorphism for all Y.

If f is primitive we have

$$D(\phi f, \psi f) = D(\phi, \psi) f$$

for all ϕ , $\psi \in [X_2, Y]$.

If in the exact sequence of Proposition (2.3) we make $Y_1 = Y_2 = X_2$ we obtain

$$0 \longrightarrow [X_1, X_2 * X_2] \stackrel{k_*}{\longrightarrow} [X_1, X_2 \vee X_2] \stackrel{i_*}{\longrightarrow} [X_1, X_2 \times X_2] \longrightarrow 0.$$

Let $D(\mu_2 f, (f \vee f) \mu_1)$ be the unique solution in $[X_1, X_2 \vee X_2]$ of the equation $X + (f \vee f) \mu_1 = \mu_2 f$.

We have $i\mu_2 f = \Delta f = (f \times f) \Delta = (f \times f) i\mu_1 = i(f \vee f)\mu_1$ then $iD(\mu_2 f, (f \vee f) \mu_1) = 0$. Hence $D(\mu_2 f, (f \vee f) \mu_1) \in imk_*$.

Since k_* is injective there is an unique element

$$\omega = \omega(f; \mu_1, \mu_2) \in [X_1, X_2 \# X_2]$$

such that $k\omega = D(\mu_2 f, (f \vee f) \mu_1)$. If f is (μ_1, μ_2) -primitive, then $D(\mu_2 f, (f \vee f) \mu_1) = 0$. Hence $\omega = 0$. Conversely, if $\omega = 0$ then f is (μ_1, μ_2) -primitive.

Hence ω is an obstruction for f to be (μ_1, μ_2) -primitive and it is called *co-H-deviation* of f with respect μ_1 and μ_2 .

If (X_i, μ_i) , i = 1, 2, 3 are co-H-spaces and

$$X_1 \xrightarrow{f} X_2 \xrightarrow{g} X_3$$

a sequence of maps, then it is easy to prove the following:

Proposition (3.1). a) If f is (μ_1, μ_2) -primitive, then $\omega(gf; \mu_1, \mu_2) = \omega(g; \mu_2, \mu_1) f$

b) If
$$g$$
 is (μ_2, μ_1) -primitive, then $\omega(gf; \mu_1, \mu_1) = (g * g) \omega(f; \mu_1, \mu_2)$.

If f is a homotopy equivalence and g its homotopy inverse, we have

$$0 = \omega(1; \mu_1, \mu_1) = \omega(gf; \mu_1, \mu_1) = \omega(g; \mu_2, \mu_1) f$$

then $\omega(g; \mu_2, \mu_1) = 0$. Thus we have proved.

Corollary (3.2). The homotopy inverse of a (μ_1, μ_2) -primitive homotopy equivalence is also (μ_2, μ_1) -primitive.

Let (X_i, μ_i) be, i = 1, 2 two co-H-spaces and

$$f: X_1 \to X_2$$

a map not necessarily (μ_1, μ_2) -primitive, then

Proposition (3.3). There is a comultiplication $\hat{\mu}_1$ on X_1 such that f is $(\hat{\mu}_1, \mu_2)$ -primitive if and only if $\omega(f; \mu_1, \mu_2) \in im(f \# f)_*$

Proof: Let $\hat{\mu}_1 \in i_*^{-1}(\Delta)$ be such that $\omega(f; \hat{\mu}_1, \mu_2) = 0$, then $D(\mu_2 f, (f \vee f) \mu_1) = D((f \vee f) \hat{\mu}_1, (f \vee f) \mu_1) = (f \vee f) D(\hat{\mu}_1, \mu_1)$. But $iD(\hat{\mu}_1, \mu_1) = 0$, then there is $\theta \in [X_1, X_1 \# X_1]$ such that $D(\hat{\mu}_1, \mu_1) = k\theta$. Hence $k\omega(f; \mu_1, \mu_2) = (f \vee f) k\theta = k(f \# f) \theta$. Since k_* is injective, we conclude that $\omega(f; \mu_1, \mu_2) = (f \# f) \theta$.

Conversely, if $\omega(f; \mu_1, \mu_2) = (f * f) \theta$, then

$$k\omega = k(f * f) \theta = (f \lor f) k\theta$$

Hence $(f \vee f)$ $(k\theta + \mu_1) = (f \vee f)k\theta + (f \vee f)\mu_1 = \mu_2 f$. If we define $\hat{\mu}_1 = k\theta + \mu_1$, then $i\hat{\mu}_1 = ik\theta + i\mu_1 = \Delta$ and $\hat{\mu}_1$ is a comultiplication on X_1 such that $\omega(f; \hat{\mu}_1, \mu_2) = 0$.

Proposition (3.4). If there is $\hat{\mu}_2 \in i_*^{-1}(\Delta)$ on X_2 such that f is $(\mu_1, \hat{\mu}_2)$ -primitive, then

$$\omega(f; \mu_1, \mu_2) \in iu f^*$$

Proof: Let $\hat{\mu}_2$ be on X_2 such that $\omega(f, \mu_1, \hat{\mu}_2) = 0$, then $k\omega(f; \mu_1, \mu_2) = D(\mu_2 f, \hat{\mu}_2 f) = D(\mu_2, \hat{\mu}_2) f$. On the other hand $iD(\mu_2, \hat{\mu}_2) = 0$, then there is $\theta \in [X_2, X_2 \# X_2]$ such that $D(\mu_2, \hat{\mu}_2) = k\theta$. Hence $k\omega = k\theta f$. Since k_* is injective, $\omega = \theta f$.

In the next proposition, $\dim X$ will denote the infimum of the dimensions of all CW-complexes having the homotopy type of the space X.

Proposition (3.5). Let μ_1 be homotopy associative and dim $X_2 < \infty$. If $-\omega(f; \mu_1, \mu_2) \in imf^*$, then there is a comultiplication $\hat{\mu}_2$ on X_2 such that $\omega(f; \mu_1, \hat{\mu}_2) = 0$.

Proof: If $-\omega(f; \mu_1, \mu_2) \in imf^*$, then there is $\theta \in [X_2, X_2 \# X_2]$ such that $-\omega = \theta f$. Let $\mu'_2 = k\theta + \mu_2$ be —with the binary operation

induced by μ_2 – . It is clear that μ'_2 is a comultiplication on X_2 . Then

$$\mu'_2 f = \nabla (k\theta \vee \mu_2) \mu_2 f = \nabla (k\theta \vee \mu_2) k\omega + (f \vee f) \mu_1.$$

If $\omega_1 = \omega(f; \mu_1, \mu'_2)$, we have $k\omega_1 = \nabla (k\theta \vee \mu_2) k\omega = k(k # 1)$ $(\theta # \mu_2) \omega$. Since $i \nabla k(k # 1) = 0$, there is a map

$$\alpha: (X_2 \# X_2) \# (X_2 \lor X_2) \to X_2 \# X_2$$

Such that $k\alpha = \nabla k(k + 1)$. Then $k\omega_1 = k\alpha (\theta + \mu_2) \omega$ and because k_* is injective we have $\omega_1 = \alpha(\theta + \mu_2) \omega$. If $\theta_1 = \alpha(\theta + \mu_2) \theta = \alpha(1 + \mu_2) (\theta + 1) \theta$ then $\theta_1 f = -\omega_1$ and $-\omega_1 \in imf^*$. Assume we have construded ω_n , θ_n and $\mu_2^{n+1} = k\theta_n + \mu_2^n$. Then

$$\mu_{n+1} = \alpha(\theta_n + \mu_2^n) \omega_n = -\alpha(\theta_n + \mu_2^n) \theta_n f$$

$$\theta_{n+1} = \alpha(\theta_n + \mu_2^n) \ \theta_n = \alpha(1 + \mu^n) \ (\theta_n + 1) \ \theta_n = \hat{\alpha}_{n+1} \ \hat{\theta}_{n+1}$$

where $\hat{\alpha}_{n+1} = \alpha(1 + \mu_2^n) (\hat{\alpha}_n + 1)$ and

$$\hat{\theta}_{n+1} = (\hat{\theta}_n * 1) \theta_n$$
 , $\hat{\theta}_n : X_2 \to \underset{n+2}{\#} X_2$

Because $\# X_2$ is (2n+2)-connected, if dim $X_2 < 2n+2$ we have $[X_2, \# X_2] = 0$. Hence $\theta_{n+1} = 0$ and $-\omega(f; \mu_1, \mu_2^{n+1}) = -\omega_{n+1} = \theta_{n+1}$ f = 0. Therefore, if $\hat{\mu}_2 = \mu_2^{n+1}$, f is $(\mu_1, \hat{\mu}_2)$ -primitive.

4. A THEOREM OF CLASSIFICATION.

We have the exact sequence of loops

$$0 \longrightarrow [X, X * X] \xrightarrow{k_*} [X, X \lor X] \xrightarrow{i_*} [X, X \times X] \longrightarrow 0$$

and let μ be a fixed comultiplication on X. If $i_*^{-1}(A)$ denotes the set of co-H-structures then we define two maps

$$\alpha = \alpha_n : i^{-1}(\Delta) \to [X, X * X]$$

such that $\alpha(\hat{\mu}_{,}) = \omega(1; \hat{\mu}_{,}, \mu)$, and

$$\beta = \beta_u : \lceil X, X * X \rceil \rightarrow i_*^{-1} (\Delta)$$

such that $\beta(\theta) = D'(\mu, k\theta)$. Note that β is well defined. In fact, $iD'(\mu, k\theta) = D'(i\mu, ik\theta) = D'(\Lambda, 0) = \Lambda$. Hence $D'(\mu, k\theta) \in i_*^{-1}(\Lambda)$.

It is easy to see taht α and β are mutually inverses. Thus we have proved:

Theorem (4.1). If X is a 1-connected co-H-space then there is an one-to-one correspondence between the set of co-H-structures on X and [X, X # X].

Note that if μ and $\hat{\mu}$ are two comultiplications on X, then there is an unique $\theta \in [X, X * X]$ such that $\hat{\mu} = \mu + k\theta$. In fact, it is sufficient to fix μ .

Examples. It is well known that if X is a (n-1)-connected space, $n \ge 1$, and dim $X \le 2n-1$ then X has a (uniques if dim $X \le 2n-2$) co-H-structure. The Moore spaces M(G, n), where G is an abelian group and $n \ge 2$, are (n-1)-connected. Moreover dim $M \le n \le n+1$ and dim M=n is G is free, because then $M \simeq \bigvee_{n \ge n} S^n$. Hence

if $n \ge 3$, or $n \ge 2$ and G free, then M(G, n) has an unique co-H-structure. In particular, if $G = \mathbb{Z}$ then $M(Z, n) = S^n$ has an unique co-H-structure for all $n \ge 2$. For n = 1, [S', S' # S'] being a subgroup of $\mathbb{Z} * \mathbb{Z}$ is not finite.

Let X_1 and X_2 be two co-H-spaces such that X_1 is 1-connected and X_2 is (n-1)-connected. If dim $X_1 \leq 2n-2$ then every map from X_1 into X_2 is primitive with respect to any comultiplication. In fact, the inclusion $i: X \vee X \subset X \times X$ is an (2n-1)-equivalence. Since dim $X_1 \leq 2n-2$ the induced map i_* is a bijection. Hence $[X_1, X_2 * X_2] = 0$.

If $X_1 = M(G_1, m)$, $m \ge 2$, and $X_2 = M(G_2, n)$, $2 \le m \le 2n - 3$, then every map

$$f: M(G_1, m) \rightarrow M(G_2, n)$$

is a primitive map. In particular if $G_1 = G_2 = \mathbf{Z}$ every map

$$f: S^m \to S^n$$

is primitive for $2 \le m \le 2n - 3$.

REFERENCES

- [B] I. BERSTEIN: A note on spaces with non-associative comultiplication. Proc. Camb. Phil. Soc. 60 (1964).
- [BH] I. BERSTEIN, P. HILTON: Category and generalized Hopf invariant Illinois J. Math. 4 (1960).
- [C] A. COPELAND: Binary operations on sets of mapping classes. Mich. Math. J. 6 (1959).
- [G] T. GANEA: Cogroups and suspensions. Inv. Math. 9 (1970).

José L. Navarro Departamento de Geometria y Topología Universidad de Zaragoza Zaragoza (Spain)