FINITELY GENERATED PROJECTIVE MODULES AND FITTING IDEALS

by

A. CAMPILLO and T. SÁNCHEZ GIRALDA

Through all this paper, A will be denote a commutative ring with identity and M a finitely generated A-module.

The main result gives a characterization of finitely generated projective modules in terms of its Fitting ideals. Namely we shall prove the following:

THEOREM. — A finitely generated A-module M is projective if and only if the Fitting ideals $\mathcal{F}_{\nu}(M)$, $\nu \geq 0$, are of the form Ae_{ν} where e_{ν} is an idempotent element of A.

In [4, \S 4.4, Theorem 18, Corollary and Theorem 19], D. G. North-cott proves this result under the assumption of finite presentation for M and also proves the part «only if» in the theorem. We shall give here a complete and autonomous proof of it.

1. Preliminary results

PROPOSITION 1.1. — Let A and M as above and $q \ge 0$ an integer. The following conditions are equivalent:

- (1) M is free of rank q.
- (2) q is the minimum number of generators of M and $\mathcal{F}_{\nu}(M) = (0)$, $0 \leq \nu < q$, $\mathcal{F}_{\nu}(M) = A$, $\nu \geq q$.

Proof. This follows from [4, § 3.1., Theorem 2 and exercice 1].

DEFINITION 1.2. — We shall say that M satisfies condition (FT) if and only if there is an integer $r \ge 0$ such that

7 - Collectanea Mathematica

$$\mathcal{F}_{\nu}(M) = \left\{ \begin{array}{ll} (0) \ \ \text{for} \ \ 0 \leqslant \nu < r \\ A \ \ \text{for} \ \ \nu \geqslant r. \end{array} \right.$$

(When r = 0 this means $\mathcal{F}_{\nu}(M) = A$, for all $\nu \geq 0$).

Remark 1.3. — If M is free of finite rank r, then M satisfies condition (FT). The converse is not true because, as we shall see below, weaker assumptions on M imply (FT).

Proposition 1.4. — Let us assume that A is a local ring with maximal ideal m and M is a above. Then, the following conditions are equivalent:

- (1) M is free.
- (2) M satisfies condition (FT).

Proof. That (1) implies (2) is trivial. Conversely, assume that

$$\mathcal{F}_{\nu}(M) = \begin{cases} (0) & \text{for } 0 \leq \nu < r \\ A & \text{for } \nu \geq r, \end{cases}$$

and let h be the minimum number of generators for M. We have $h \ge r$ and therefore, by Proposition 1.1., it is enough to show that h = r. Since A is local, if h > r and $\mathbf{m} = \{m_1, \ldots, m_h\}$ is a minimal set of generators for M, the condition $\mathcal{F}_{h-1}(M) = A$ implies that there is a relation

$$\sum_{1\leq i\leq h}a_i \ m_i=0,$$

such that some a_i does not belong to m, and so it is a unit in A. Then $\mathbf{m} - \{m_i\}$ is a set of generators for M, which contradicts the minimality of m.

2. Proof of the theorem and consequences

THEOREM 2.1. — A finitely generated A-module M is projective if and only if the Fitting ideals $\mathcal{F}_{\nu}(M)$, $\nu \geq 0$, are of the form $A e_{\nu}$ where e_{ν} is an idempotent of A.

Proof. We shall use the following criterion for a module to be projective: A finitely generated A-module M is projective if and

only if, for every $p \in \operatorname{Spec}(A)$, the A_p -module M_p is free and, if r_p is its rank, the function

$$\varphi \colon X = \operatorname{Spec}(A) \longrightarrow \mathbf{Z} \ (p \longmapsto r_p)$$

is continuous (see [2, II, § 5.2., Theorem 1]).

Assume that M is projective and let ν be a fixed integer, $\nu \geqslant 0$. Let $\mathcal{F} = \mathcal{F}_{\nu}(M)$ be the corresponding Fitting ideal of M. For every $p \in X$, one has that \mathcal{F}_p is the $\nu - th$ Fitting ideal of M_p as a A_p -module (see [4, § 3.1, Theorem 3]). Since M_p is free of rank r_p , then $\mathcal{F}_p = (0)$ (resp. $\mathcal{F}_p = A_p$) if $r_p > \nu$ (resp. $r_p \leqslant \nu$). By the continuity of φ the (disjoint) sets

$$\begin{split} X^{\mathbf{r}}_1 &= \{ \not p \in X \mid r_{\not p} > \mathbf{v} \} \ , \\ X^{\mathbf{r}}_2 &= \{ \not p \in X \mid r_{\not p} \leqslant \mathbf{v} \} \ , \end{split}$$

form an open covering of X. We must consider several cases:

Case 1. $X^{r}_{1} = \varnothing$. Then $\mathcal{F}_{p} = A_{p}$, for all $p \in X$, and, therefore, $\mathcal{F} = A$, since, if otherwise, it would be contained in some maximal ideal m of A, and so we would have $\mathcal{F}_{m} \neq A_{m}$.

Case 2. $X_2 = \emptyset$. In this case, $\mathcal{F}_p = (0)$ for all $p \in X$, whence Supp $(\mathcal{F}) = \emptyset$ and, therefore, $\mathcal{F} = (0)$.

It is obvious that in the above cases $\mathcal{F}_{\nu}(M)$ is of the form $A e_{\nu}$ with e_{ν} an idempotent.

Case 3. $X^{\nu_1} \neq \emptyset$ and $X^{\nu_2} \neq \emptyset$. In this case, there are two non-zero idempotents e and f, in A, such that e + f = 1 and $X^{\nu_1} = V(Ae)$, $X^{\nu_2} = V(Af)$, (see [2, II, § 4.3, Proposition 15]). We have relations

$$\begin{split} X^{\nu}{}_2 &= \{ \not p \in X \mid r_{p} \leqslant \nu \} = \{ \not p \in X \mid \mathcal{F}_{p} = A_{p} \} = \{ \not p \in X \mid \mathcal{F} \not\subseteq p \} = V(A f) \text{ ,} \\ X^{\nu}{}_1 &= \{ \not p \in X \mid r_{p} > \nu \} = \{ \not p \in X \mid \mathcal{F}_{p} = (0) \} = X - X^{\nu}{}_2 = V(\mathcal{F}) = V(A e) \text{ .} \end{split}$$

From this last equality, we have that $\sqrt{\mathcal{F}} = \sqrt{A e}$. But actually, we can show $\mathcal{F} = A e$.

In fact, for every $p \in X^{\nu}_{1}$, one has $\mathcal{F}_{p} = (0)$ and also $(A e)_{p} = (0)$ since $f \notin p$ and $e \cdot f = 0$. Therefore, for every $\tilde{p} \in \operatorname{Spec}(A/A e)$ the (A/A e)-module $N = (\mathcal{F} + A e)/A e$ is such that $N_{\tilde{p}} = (0)$, whence N = (0) and so $\mathcal{F} \subseteq A e$. Similarly, for every $\tilde{q} \in \operatorname{Spec}(A/\mathcal{F})$ the

 (A/\mathcal{F}) -module $N' = (\mathcal{F} + A e)/\mathcal{F}$ is such that $N'_{\tilde{q}} = (0)$, so N' = (0) and $A e \subseteq \mathcal{F}$. We then have $\mathcal{F} = A e$, so the condition in the theorem is necessary.

Conversely, let $\mathcal{F}_{\nu}(M) = A e_{\nu}$, $\nu \geq 0$, where e_{ν} is an idempotent in A. If h is the minimum number of generators of M, we may assume that $e_{\nu} = 1$, $\nu \geq h$.

For each integer $\nu \geqslant 0$, we have an open covering of X,

$$X = X^{\nu_1} \cup X^{\nu_2}$$

where

$$X^{\nu}_{1} = \{ p \in X \mid e_{\nu} \in p \} ,$$

$$X^{\nu}_{2} = \{ p \in X \mid e_{\nu} \notin p \} .$$

On the other hand, if $p \in X$, we have $(A e_{\nu})_{p} = (0)$ or $(A e_{\nu}) = A_{p}$ according as $p \in X^{\nu}_{1}$ or $p \in X^{\nu}_{2}$, respectively. Therefore, for each $p \in X$, we have $\mathcal{F}_{\nu}(M_{p}) = (0)$ or $\mathcal{F}_{\nu}(M_{p}) = A_{p}$. Since A_{p} is local, then, by Proposition 1.4, M_{p} is free and its rank r_{p} is given by

$$r_{p} = \min \{ v \mid \mathcal{F}_{v}(M_{p}) = A_{p} \} = \min \{ v \mid e_{v} \notin p \} \leqslant h.$$

Furthermore, the function $\varphi: X \longrightarrow \mathbf{Z}$, $\varphi(p) = r_p$ is continuous, because

$$\mathcal{F}^{-1}(\{v\})=\{
otag\ e_{v}\notin
otag\ e_{v-1}\in
otag\}=X^{v}_{2}\cap X^{v-1}_{1},\ v\geqslant 1,$$
 $\mathcal{F}^{-1}(\{0\})=X^{0}_{2}.$

Then by the criterion stated above, M is projective. This completes the proof.

Remark 2.2. — If M is projective (and always finitely generated), then the map φ is completely determined by the Fitting ideals $\mathcal{F}_{\nu}(M)$. In fact, if $\mathcal{F}_{\nu}(M) = A e_{\nu}$, $\nu \geq 0$, then φ is defined by

$$\varphi^{-1}(\{\nu\}) = \{ p \in X \mid e_{\nu} \notin p, e_{\nu-1} \in p \} ,$$

for $v \ge 1$, and

$$\varphi^{-1}(\{0\}) = \{ \not p \in X \mid e_0 \notin \not p \} .$$

COROLLARY 2.3. — If M satisfies condition (FT), then M is projective.

COROLLARY 2.4. — If $X = \operatorname{Spec}(A)$ is connected, then, for every finitely generated A-module M, the following conditions are equivalent:

- (1) M is projective.
- (2) M satisfies condition (FT).

PROPOSITION 2.5. — Let M as above. Then M is projective of constant rank if and only if M satisfies condition (FT). In this case, if

$$r = \min \{ v \mid \mathcal{F}_v(M) = A \}$$
,

then r is the arnk of M.

Proof. If M is projective of rank r, then, for every Fitting ideal $\mathcal{F} = \mathcal{F}_{\nu}(M)$ we have $\mathcal{F}_{\rho} = (0)$ (resp. $\mathcal{F}_{\rho} = A_{\rho}$) for all $\rho \in \operatorname{Spec}(A)$, if $0 \leq \nu < r$ (resp. $\nu \geq r$). In the first case, $X^{\nu}_{2} = \emptyset$ and then $\mathcal{F}_{\nu}(M) = (0)$. In the other case, we have $X^{\nu}_{1} = \emptyset$ and therefore, $\mathcal{F}_{\nu}(M) = A$. Conversely, if M satisfies condition (FT), by the Theorem 2.1 M

Conversely, if M satisfies condition (FT), by the Theorem 2.1. M is projective and, moreover, for every $p \in X$, the A_p -module M_p satisfies condition (FT) for the same r.

Corollary 2.6.
$$-M = (0)$$
 if and only if $\mathcal{F}_0(M) = A$.

COROLLARY 2.7. — Let A be a semilocal ring and M a finitely generated A-module. Then, the following conditions are equivalent:

- (1) M is free.
- (2) M satisfies condition (FT).

Proof. We get our result from Proposition 2.5 above plus Proposition 5 of [2, II, § 5.3].

Remark 2.8. — In Proposition 1.1, we actually gave a characterization of the free A-modules of finite rank by means of the condition (FT) and the minimum number of generators h for M. If M satisfies condition (FT) and

$$\mathcal{F}_{\nu}(M) = \left\{ egin{array}{ll} (0) & ext{for } 0 \leqslant
u < q \ A & ext{for }
u \geqslant q \end{array}
ight. ,$$

then $h \ge q$. Note that, if h > q then M is not free. We give an example to show that this situation can occur.

Example 2.9. — (See [4, Appendix A. Theorem 1]). Let $A = \mathbf{R}[X, Y, Z]/(X^2 + Y^2 + Z^2 - 1) = \mathbf{R}[x, y, z]$ and $M = A^3/(x, y, z) A$. By the exactness of the sequence

$$0 \longrightarrow (x, y, z) A \longrightarrow A^3 \longrightarrow M \longrightarrow 0$$

the Fitting ideals of M are

$$\mathcal{F}_{\nu}(M) = \left\{ egin{array}{ll} (0) & ext{for }
u=0,1 \ . \\ A & ext{for }
u\geqslant 2 \ . \end{array}
ight.$$

Therefore M satisfies condition (FT), h=3, q=2, and M is not free, A being a noetherian domain.

REFERENCES

- 1. BASS, H., Big projective modules are free. Ill. J. Math. 7 (1963), 24-31.
- 2. BOURBAKI, N., «Commutative Algebra». Hermann. Paris. 1972.
- 3. LAM, D.G., Serre's Conjecture. Lect. Notes in Math. Springer-Verlag n.º 635 (1978).
- 4. NORTHCOTT, D.G., «Finite Free Resolutions» Cambridge University Press (1976).

A. Campillo and T. Sánchez Giralda Departamento de Algebra Universidad de Valladolid