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ABsTrRACT: See Title and Introduction. Consider, specifically, for
brevity, the boundary value problems with «truly mixed» boundary
conditions. A casual reader, misled into a false security by the par-
ticular nature of the domain in question, a rectangle (about this
circumstance, see under (v) in § 4 of the Concluding Remarks), might,
at first blush, get the impression that everything said in this paper
has been known for a long time. However, nothing could be farther
from the truth than this superficial view. As for uniqueness (that
is, the proof that there is at most one ‘‘solution”, a subject which is
dealt with accurately in this paper), it is systematically ignored in
the literature, and, where it is not ignored, then the crucial ‘‘growth
condition at the corners” is generally overlooked. As for existence
(that is, the proof that there is at least one true ‘“solution”, a subject
which is not dealt with in this paper), all that one finds in the litera-
ture are, largely, formal trigonometric, or other, expansions, without
any precise proof that a true «solution» has been obtained.
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1. INTRODUCTION.

It is the purpose of the present paper to consider sixteen diffe-
rent boundary value problems for a plane rectangle, and to prove
a uniqueness theorem which is stronger than those generally known
(to appreciate the nature of the additional conditions, which are
usually required in uniqueness theorems for these boundary value
problems, attention is called, for example, to the treatment of the
Neumann problem, as given in Petrovskii’s book [1, pp. 275-277]).

In the uniqueness proof, to be given here, use will be made of
the geometry of the particular domain considered, whose boundary
is piece-wise rectilinear. The three main tools employed are:

(a) a precise reflection principle for solutions of Laplace’s equation,
which satisfy Dirichlet or Neumann homogeneous boundary con-
ditions, in a plane domain bounded partially by a straight line (this
principle is generally associated with the name of Schwarz);

(b) a theorem on the nature of an allowable isolated singularity
for a bounded solution of Laplace’s equation (this theorem is usually
associated with the name of Riemann);

(c) a theorem to the effect that a solution of Laplace’s equation,
for all x,y in the plane, which is bounded in absolute value, must
be a constant function (this theorem is often referred to as Liouville’s
theorem for harmonic functions).

The guiding idea behind the uniqueness proof, using these three
tools, may be described briefly as follows. First, item (a) is used
to extend the definition of a certain harmonic function, from the
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initial interior of a rectangle, to the entire x, y plane, with the pos-
sible exception of a set of ‘lattice points” (this set of “excepted”
lattice points arises from the four vertices of the original rectangle).
Secondly, item (b) is used to “remove’” the possible singularities of
this extended harmonic function at the excepted lattice points.
Thirdly, item (c) is used to deduce that the extended harmonic func-
tion, which is defined at all finite points of the plane, must be a cons-
tant.

The precise nature of these three results is crucial for the proof
of the uniqueness theorem to be given here. Therefore, in order to
make this paper self-contained, § 2 includes the detailed statements
of items (a), (b) and (c) (see Theorems 1, 2, 3 and 4). The proofs of
these statements, in the case of items (b) and (c), are readily availa-
ble, see, for example, Petrovskii [1, pp. 258-259]. However, in the
case of the homogeneous Neumann boundary condition in item (a),
the proof of the precise result needed here does not seem to be rea-
dily accessible: see, for example, Courant and Hilbert [2], p. 272,
where the desired result is stated, but not proved, for Laplace’s
equation in several variables; and Diaz and Ludford [3], where the
desired result is stated and proved for linear elliptic second order
partial differential equations with constant coefficients in any number
of variables, but, under a general “linear” boundary condition, which
renders their proof more complicated than the proof in the special
“Neumann’’ boundary condition, two variable, case considered here.
Consequently, § 2 also contains a detailed proof of the reflection
principle for the Neumann homogeneous boundary condition (see
Theorem 2).

Section 3 contains the general uniqueness Theorem 5 for Laplace’s
equation, and § 4 contains the uniqueness Theorem 6 for boundary
value problems for Poisson’s equation; remarks on the possible ex-
tensions to more general partial differential equations and several
independent variables; and the construction of examples in which
the uniqueness conclusion of Theorem 5 is not valid, because the
function # is not bounded, in absolute value, in the open rectangle.

2. BACKGROUND.

2(ay) Schwarz rveflection principle [4] (“‘odd reflection principle”’),
corvesponding to the homogeneous Dirichlet boundary con-
dition u = 0,
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By this we mean:

THEOREM 1. Let D be a domain (i.e., an open, non-empty, connected
set) in a real two dimensional x, y plane. Suppose that the domain
D is symmetric about a straight line L, and that d denotes the (sup-
posed non-empty) intersection of the line L and the domain D, while
D+ and D- designate, respectively, the two open symmetric parts
into which D — 4 is divided by theline L, sothat D = D+ +d 4 D-.
Suppose that u(x,y) is a real, singlevalued, twice continuously dif-
ferentiable solution of Laplace’s equation

(2.1) U,y + 1, = 0,
in D*, and that, further,

lim u(x, y) = 0,
(%, 9) = (x,5)

for (v,y) in D* and (x,y) in d. Then, the real valued function U,
defined in D by ‘““odd reflection‘ :

u(x, ) , for (x,y) in D=,
Ux,y)=40 , for (x,9) in d
— u(x*, v*), for (x,y) in D—,

’

where the point (x*, y*) is the mirror image of the point (x, y) with
respect to the line L, is an analytic solution of Laplace’s equation
(2.1) throughout the domain D.

Let us recall the ““well known’” proof. Although this proof seems
to be ““well known”’, it is worth recalling here, since it differs essen-
tially from the argument given by Schwarz in [4] (because Schwarz
goes back to 1869, while “Koebe’s converse” dates only from 1906).

Since the partial differential equation (2.1) is invariant under
translations and rotations, the line L may be taken to be the x-axis,
v = 0, without loss of generality, with D+ lying in the upper half
plane vy > 0, and D~ in the lower half plane y << 0. With this spe-
cific choice of the line L, the Theorem 1, above, now reads:

ILet D be a domain (i.e., an open, non-empty, connected set) in
a real two dimensional x, v plane. Suppose that the domain D is
symmetric about the x-axis y = 0 (i.e., whenever the point (x, v)
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belongs to the domain D, then the point (x, — v) also belongs to D;
so that, if 4 denotes the, supposed non-empty, intersection of the
x-axis, ¥ = 0, and the domain D, while D+ and D- designate, res-
pectively, the two open symmetric parts into which D — 4 is divi-
ded by the x-axis v = 0, one has D = D+ +d + D). Suppose
that u(x, v) is a real, singlevalued, twice continuously differentiable
solution of Laplace’s equation

Uy + Uy = 0,
in D*, and that, further

lim w(x, v) = 0
(x, v) = (%, 0)

for (x,y) in D* and (¥, 0) in d. Then, the real valued function U,
defined in D by ‘‘odd reflection’:

u(x, ¥) , for (x,y) in D+,
Ux,y) =<0 , for (x,0) in 4 ,
— u(x, —v), for (x,v) in D-,

where the point (x, — v) is the mirror image of the point (x, y) with
respect to the x-axis y = 0, is an analytic solution of Laplace’s equa-
tion (2.1) throughout the domain D.

The function U is continuous on D, and, clearly, possesses the
Gauss mean value property, locally, at every point of D. Hence,
by the converse of the Gauss mean value theorem (see, for example,
Kellogg [5, pp. 224-228)), it follows that U,, 4 U,, = 0 throughout D.

2(ay) Reflection principle corvesponding to the homogeneous Neu-

. Ou . .
mann  boundary condition Pl 0 (“even reflection prin-
n
ciple’’).
By this we mean:

THEOREM 2. Let D be a domain (i.e., an open, non-empty, connected
set) in a real two dimensional x, y plane. Suppose that the domain
D is symmetric about a straight line L, and that 4 denotes the (sup-
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posed non-empty) intersection of the line L and the domain D, while
D+ and D- designate, respectively, the two open symmetric parts
into which D — d is divided by the line L, sothat D = D+ + d + D-.
Suppose that u(x, y) is a real, singlevalued, twice continuously dif-
ferentiable solution of Laplace’s equation

1y, ~F 1, =0,
in D*, and that, further,
lim ou (x,v) =0,
(x¥) ~ (z,5) o»

for (x, v) in D* and (%, ¥) in d, where 56— denotes differentiation
(A

in the direction of the outward normal to the line L. Then, the real
valued function U, defined in D by ‘“‘even reflection:

‘“(x, ¥ , for (x,y) in D+,
Ulx, y) = < lim - 1(x, v), for (jf’ 'X) i.n D-
(*,5) > (x,) and (x,y) in d ,
u(x*, y¥) , for (x,v) in D-,

where the point (x*, v*) is the mirror image of the point (¥, y) with
respect to the line L, is an analytic solution of Iaplace’s equation
(2.1) throughout the domain D.

(It should be noticed that the existence of the limit, which occurs
in the definition of the function U, is not a part of the hypotheses

of the theorem, but must be shown in the course of the argument.)
Proof. Since the partial differential equation (2.1) is invariant

under translations and rotations, the line L may be taken to be
the x-axis, without loss of generality, with D+ lying in the upper
half plane ¥ > 0, and D~ in the lower half planc v < 0. With this
specific choice of the line L, Theorem 2, above, now reads:

Let D be a domain (i.e., an open, non-empty, connected set)
in a real two dimensional %,y plane. Suppose that the domain D is
symmetric about the x-axis (i.e., whenever the point (x,y) belongs
to the domain D, then the point (¥, — y) also belongs to D; so that,
if d denotes the, supposed non-empty, intersection of the x-axis and
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the domain D, while D+ and D- designate, respectively, the two
open symmetric parts into which D — d is divided by the x-axis,
one has D = D* + d 4+ D-). Suppose that #(x, y) is a real, single-
valued, twice continuously differentiable solution of Laplace’s equa-
tion

Uy, + 14y, = 0,
in D+, and that, further,

im () =0,

(x,3) -~ (%, 0) %

for (x,y) in D+ and (x, 0) in d. Then, the real valued function U,
defined in D by ‘“even reflection’’: '

‘ u(x, ) , for (x,y) in D+,
Ulx, v) = lim u(x, v), for (x,y) in D*

i (%, v) - (%, 0) and (%, 0) in ,
lu(x, —v) , for (x,v) in D

where the point (x, — y) is the mirror image of the point (x, y) with
respect to the x-axis, is an analytic solution of Laplace’s equatlon
(2.1) throughout the domain D.

There are two points of difficulty to watch out for in the proof:
(i) the existence of the limit
( lun( u(x, y), for (x,v) in D+, and for each point (¥, 0) in 4,
x,v) = (%,
which appears in the definition of U, (ii) the proof that U,, +
+ U,, = 0, whenever (%, 0) is in d (a priori, it is not even clear
whether the partial derivatives in question exist for a point (%, 0)
in d, but it is clear that U,(x, v) + U,,(x,v) = 0, whenever the
point (x, ) is in either D+ or D-).

These two difficulties will be taken care of simultaneously, by
showing that, for each point (xg, 0) of 4, there is a square interior,
D,, (r), consisting of all the points (x,y) in D such that

X —r<zx<zx+r and —r<y<v,
where 7 is a sufficiently small positive number; together with a real

valued function W(x,y) = W(xo, 7; %, v), defined for (x,y) in D, (7),
and satisfying Laplace’s equation
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W, v) + Wy (x,9) =0,  for (x,¥) in Dy (7),

and that, furthermore, the function W has the property that U(x, y) =
= W(x, y), whenever the point (x, y) is in D,, (7).

Let (xp, 0) be a point in 4, and choose a positive number 7 so
small that the square interior D, (r), with ‘“center” at (xp, 0), is con-
tained in D. The construction of the function W can be carried out
as follows.

First, notice that the function Z—u satisfies the hypotheses of
.’)7
Theorem 1, and, hence, the function V, defined by odd reflection:

5 (%, V) , for y >0,
Vizx,v) =<0 , for v =10,
—u,(x, — ), for v < 0,

is an analytic solution of Laplace’s equation V,, 4+ V,, = 0 throug-
hout the domain D. Iet & > 0 be a real positive number, with
v > h > 0. The function W, which clearly depends upon the choices
of %9, 7, and A, is then defined in D, (r) by the following equation

W(x,y) = u(x, h) + r Vix, ) dt,

Jh

where the integration is the usual Riemann integration.

The function W is certainly analytic in D, (7), since the function
V is analytic in D. The difficulty (i), mentioned above, will be taken
care of once it is shown that

‘ u(x,y) , for y >0, (x,y) in D, (7),
W(x, }’) = < .
? w(x, — v), for v < 0, (x,v) in D, (7).

This needed assertion may be verified as follows: clearly, by the fun-
damental theorem of the Riemann integral calculus,

W(x, v) = u(x, k) + fv w, (%, 8) dt = u(x, v),

Jh

for y > 0 and (x, y) in D,, (r); while, when v < 0 and (¥, y) belongs
to D,,(r), then (using carefully the definition of V)
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W (s, ) = u(x, k) + J " Viw, t) i,

=u(x,h)—|—f)y(,) —ux——t dt—!—J —u,(x, — 1) dt,
h J
= u(x, h) —Jhuy(x, t) dt —l—r 1, (%, S) ds —{—J , 8) ds,
0 s=0
=ulx, —y).

It still remains to take care of the difficulty (ii) mentioned above,
and this will complete the proof. It has to be shown that W, (x, v) +
+ W,,(x,y) = 0 for every point (x,y) in D,(r), and this can be
verified by a direct computation; since, from the definition of the
function W, it follows that (for any point (x, y) in D, (7)):

ry

W (x,v) = u.(x, h) + | V(x,0)dt,

Jh

— o (x, B) — ( Vo b) e,

Jh
= w6, B) — V,(%,9) + V(5. h),

= u,(x, h) — V(x,y) + w,(x, h),
= - Vy(x’ )

while, on the other hand, again from the definition of W, one has
that

W,(x, y) = Vix v),

and, therefore,
Wyy (x: :\') = Vy (x’ y) .

Finally, by addition of the equations for W,,(»,y) and W, (x,y),
the desired result

W (x, v) + Wy(x,y) =0

follows.
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2 (b) The isolated singularity theorem.

By this we mean:

THEOREM 3. Let D be a domain (i.e., an open, non-empty, connected
set) in a real two dimensional x, y plane. Suppose that the function
u(x,y) is a real, single-valued, twice continuously differentiable so-
lution of ILaplace’s equation wu,, + u,, =0 in D — {Pg, where
Py = (%9, yo) is a point of the domain D; and that, further, the abso-
lute value of the function # is bounded on D — {P}, that is to say,
there exists a positive real number M such that

lu(x, y)| < M, for any point (x,y) in D — {Pg}.
Then, the function #(x, v) has a “removable singularity’’ at the point
Py; that is to say, there is a real number m such that the function

v defined by

( u(x,y), for (x,v) in D — {Py},
v, ¥) =
m, for (x,) = (%, ),

is twice continuously differentiable, and satisfies I.aplace’s equation

Uy + 0, =0 throughout the domain D.
For the proof of this theorem, see, for example, Petrovskii [I,
p- 259].
2(¢c) Liouwilie’s theovem for harmomnic fumctions.

By this we mean:

THEOREM 4. If the real valued function u(x,y) is of class C@ for
all real x, y, satisfies Laplace’s equation

Uy + %y, = 0

for all x,y, and is bounded in absolute value for all x, y, then the
function # must be a constant.
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For the proof of this theorem, see, for example, Petrovskii [1, p.
258].

3. The Dirichlet problem, the Neuwmann problem, and the fourteen
mixed Divichlet-Neumann problems.

In each of the boundary value problems to be considered in this
paper, a certain real valued, twice continuously differentiable func-
tion, defined on an open plane rectangle, and satisfying Laplace’s
equation there, will be required to satisfy certain boundary condi-
tions on the boundary of the rectangle: either the function itself,
or its normal derivative, will be required to have limit zero. There
are four open rectilinear boundary intervals, and two choices of
two boundary conditions each; this will give 24 = 16 distinct boun-
dary value problems. The Dirichlet problem arises when the func-
tion itself is required to tend to zero on all four open boundary in-
tervals; the Neumann problem arises when the normal derivative
of the function is required to vanish on all four open boundary in-
tervals; while the other fourteen ‘“mixed Dirichlet-Neumann’’ boun-
dary value problems arise whenever the function is required to tend
to zero on some (but not all) open boundary intervals, while, at the
same time, the normal derivative of the function is required to tend
to zero on the remaining open boundary intervals.

All these boundary value prohlems are considered, simultaneously,
in the following:

THEOREM 5. Let D be the interior of a finite plane rectangle, and
suppose that the real valued, twice continuously differentiable func-
tion u is defined on D, and satisfies Laplace’s equation u,, 4 u#,, = 0
throughout D. Further, suppose that the function # is bounded in
absolute value on D. Let R denote the rectangular boundary of
D (R is then the union of four open straight line intervals, call them
I, I, I, 1, plus four vertices). Suppose, further, that the function
u satisfies, on each open interval I;, where ¢ = 1, 2, 3, 4, a boundary
condition of the following form: either at all points of the open in-
terval I; one has lim #(x, y) = 0, whenever the point (x, v) ¢ D tends
to a point of the open interval I;; or else, at all points of the open

interval I;, one has limg@—‘ (x,y) = 0, whenever the point (x,y) € D
%
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tends to a point of the open interval I;,, where ai denotes the di-
n

rectional derivative in the direction normal to the open interval I,.

Then, unless, for every ¢ = 1, 2, 3, 4, the boundary condition on the

open interval I, is Iinlizg(x, y) = 0, it can be concluded that
on

the function % must be identically zero on D; while, in the Neumann
case (when, for every ¢ = 1, 2, 3, 4, the boundary condition on the

open interval I; is limg—ﬁ (%, ¥) = 0), it can only be concluded
n

that the function # must have a constant value throughout D.

Proor: The function # is defined, at the outset, only in the rectangu-
lar interior D. The idea behind the proof is to extend the function
u to a function U, which is defined over the whole plane, and which
satisfies the hypotheses of the Liouville Theorem 4; thus forcing U,
and hence #, to be a constant. This extension of # to U will be carried
out with the help of the reflection principles in Theorems 1 and 2,
and the isolated singularity Theorem 3.

For convenience, the original rectangle D will be taken to be
simply 0 < x <a,0 <y <b; the given function u(x,y) is then
defined for 0 < x < @, 0 <y < b. By applying the reflection Theo-
rem 1, or the reflection Theorem 2, whichever is needed, the function
# may be extended to a function which is defined in the open rec-
tangle 0 < x <<a, — b <<y < 2b, which is three times the size of
the original rectangle. This extension of # is bounded in absolute
value, since its values on the (open) top and bottom intervals, of
the original rectangle, 0 <x <a, v=0and 0 <x <a, y =0, are
limits of values of the function » in the original rectangle, which
are bounded, by hypothesis. Notice that this extended function
satisfies the same homogeneous boundary condition (the Dirichlet
or Neumann type) on the two open intervals x =a, — b <y <0,
and x = a, b <y < 2b, as the boundary condition satisfied by the
original function # on the open interval x =a,0 <y < b (a similar
remark applies to the boundary conditions relative to the straight
line x = 0). Continuing in this way, “reflecting across the top and
bottom sides of this bigger rectangle”, and so forth..., one will obtain
the harmonic extension of the function # to the whole open infinite
strip 0 <x <a, —0o <v < .
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Now, the function which is defined on the infinite strip 0 < x < a,
—o0 < ¥ < oo can be reflected, across the straight line x = a4, to
a function which is harmonic on the infinite strip 0 < ¥ < 24, — 0 <
<y < oo (which is twice as wide as the initial strip just started
with), with the sole possible exception of the countable set of points
(@, wb), where n is an integer, positive, negative or zero. But, from
the isolated singularity Theorem 3, it then follows that there are
indeed no exceptional points, and that the harmonic extension of
the function # has been obtained, in this way, to the entire infinite
strip 0 <x < 2a, — oo <y < oo. In particular, this means that
the harmonic extension of the function # to the whole open infinite
strip 0 < 4 < @, — o0 < y < oo satisfies, at every point of the straight
line x = g, the same homogeneous boundary condition as the func-
tion u satisfies on the side x = a4, 0 << y << b of the original rectangle
(similarly, this harmonic extension of the function u satisfies, at
every point of the straight line x = 0, the same homogeneous boun-
dary condition that was satisfied by the original function # on the
side x =0, 0 <y << b of the original rectangle).

Proceeding in this way, by reflection across the straight lines
x = ma, where m is an integer, positive, negative, or zero, one ob-
tains the desired extension U of the function # to the whole x, y
plane. Since the function # is bounded in absolute value in the ori-
ginal open rectangle, the extension U, as follows from its construc-
tion, will also be bounded in absolute value in the whole #, y plane.
By Liouville’s Theorem 4, the extension U will be a constant func-
tion, hence the original function # will be a constant.

If at least one of the boundary conditions satisfied by the func-
tion # is the Dirichlet boundary condition, that lim u(x, y) = 0 on
an open side of the original rectangle, then it follows that the cons-
tant value of the function » must be zero (this will be the case in the
Dirichlet and the fourteen ‘“mixed Dirichlet-Neumann’ boundary
value problems for the rectangle). If the four boundary conditions
satisfied by the function # on the four open sides of the original rec-
tangle are all of Neumann type (that is, the normal derivatives of
the function # tend to zero), then it can not, of course, be asserted
that the constant value of the function # must necessarily be zero.

4 — Collectanea Mathematica
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4. Concluding remarks.

(1) It is clear that the uniqueness Theorem 5 in § 3, which is con-
cerned with Laplace’s equation u,, + u,, = 0, readily implies a
uniqueness theorem for a rectangle for Poisson’s equation u,, 4 u,, =
= F(x,y), with appropriate “limiting boundary’’ conditions, of the

form lim # = f and lim?—t = g, where F, f and g are given func-
n

tions (no continuity of any sort is required of these real valued func-
tions). All that one has to do is to apply the uniqueness Theorem
5 of §3 to the difference u = #; — u,, where the functions #; and
u, are assumed to be solutions of one and the same boundary value
problem for Poisson’s equation, to obtain a uniqueness theorem

for Poisson’s equation. In this way, one obtains the following theo-
rem.

THEOREM 6. Hypothesis. Let D be the interior of a finite plane rec-
tangle, and let R denote the rectangular boundary of D (R is then
the union of four open straight line intervals, call them I, I,, I3, 14,
plus four vertices). L,et F be a real valued function defined on the
interior D, and, for each ¢ =1, 2, 3, 4, let f; be a real valued func-
tion defined on the open interval I,. Suppose that the real valued,
twice continuously differentiable function #, is defined on D, and
satisfies Poisson’s equation u,, + u,, = F(x, y) throughout D. Fur-
ther, suppose that the function # is bounded in absolute value on
D. Suppose, still further, that the function # satisfies, on each open
interval I;, where 7 = 1, 2, 3, 4, a boundary condition of the follo-
wing form: Either at all points of the open interval I;, one has
lim u(x, y) = f;(P), whenever the point (x, y) in D tends to a point P
of the open interval I;; or else, at all points of the open interval

I;, one has lim? (%, y) = fi(P), whenever the point (¥,y) in D
n

tends to a point P of the open interval I;, where 63 denotes the
: 7

directional derivative in the direction normal to the open interval I;.

Conclusion. Then, unless, for every ¢ = 1, 2, 3, 4, the boundary

condition on the open interval I; is limgl (x, ¥) = f;(P), it can
n

be concluded that there is at most one such function #%; while, in
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the Neumann case, when, for every 7 =1, 2, 3, 4, the boundary
condition on the open interval I; is lim? (%, y) = f;(P), it can
7

only be concluded that, if #; and #, satisfy all the conditions im-
posed on u, then their difference, #, — u,, must have a constant
value throughout D.

(1r) It seems clear that extensions of the uniqueness Theorem 5
are possible, in various directions: to several independent variables,
and to more general partial differential equations. To mention just
one possible result, Laplace’s equation u,, + #,, = 0 could be re-
placed by the Helmholtz equation #,, + u,, — 224 = 0, using the
results of Diaz and Tudford [3]. It is planned to consider these pos-
sible generalizations, in more detail, elsewhere.

(1) In a paper concerned with Dirichlet, Neumann, and mixed
boundary value problems for a rectangle, but for the (hyperbolic)
wave equation #,, — u,, = 0, Abdul-Latif and Diaz [6] have given
a number of uniqueness theorems. It was in connection with some
correspondence involving this paper of Abdul-Latif and Diaz [6]
that Professor J. Barkley Rosser, in a letter, called our attention
to the related uniqueness questions for the same boundary value
problems, but for the (elliptic) Laplace’s equation =, + u, =0,
and communicated to us that he was in the process of writing up
his uniqueness results [7].

(1v) It is of interest to give examples in which the uniqueness
conclusion of Theorem 5 is not valid, because the function # is not
bounded, in absolute value, in the open rectangle D. It is easy to
construct such an example for the Dirichlet boundary conditions,
making use of the previously known fact that the Dirichlet problem
for given continuous boundary values can be solved. Intuitively,
using the terminology of plane hydrodynamics, all that has to be
done is to consider the stream function, in the rectangle, due to four
suitable dipoles situated at the vertices of the rectangle, and to
adjust this stream function, by subtracting from it a certain solution
of the Dirichlet problem (in order that the resulting difference func-
tion have zero Dirichlet data at every point of the boundary of the
rectangle which is not a vertex). Consider the complex number z = x +
+ 2y # 0, where x and v are real. Basically, all that is being used
is the fact that, when z # 0 is either real or purely imaginary, then



52 J. B. Diaz and R. B. Ram

the imaginary part of iz is zero. Notice that the imaginary part
2

of L equals =2 .
22 (xZ - y2)2
Explicitly, consider, for (x, v) in the rectangle, the function

N — xy (x —a)y
M= T T —app
x(y —b) (x —a)(y —b)

[+ (y — 022 [(x —a)2+ (y — 02

which is just the stream function of four dipoles situated at the
vertices of the rectangle. Notice that the function v, approaches
continuous boundary values at all points of the boundary R of the
rectangle, save at the vertices, and that it is unbounded in the rec-
tangle, ‘“near the vertices”. Furthermore, the continuous boundary
values of the function v; can easily be extended to a function which
is continuous on the entire boundary of the rectangle, including
the vertices; let the real, single valued, function v, be the solution
of the Dirichlet problem, for the plane rectangle D, corresponding
to these continuous boundary values. Then, the difference function
% = vy — v, satisfies all the hypotheses of Theorem 5, save for the
fact that it is not bounded.

In this example, use was made of the previous knowledge of
the existence of the solution of the Dirichlet problem, for the plane
rectangular domain, for given continuous boundary data. It seems
clear that, proceeding in a similar way, for the other fifteen boundary
value problems, one would require a knowledge of the existence
theorem for each of the boundary value problems in question. To
avoid having to rely on a previously proved existence theorem, one
could perhaps proceed, in a manner reminiscent of similar cons-
tructions in the theory of elliptic functions, by placing suitable di-
poles (or other suitable singularities) at the lattice points (na, mb),
where m,n =0, + 1, 4+ 2, ..., which are ‘generated« by the four
vertices of the rectangle. This is just an indication of one possible
way of approaching the problem of the explicit construction of exam-
ples for the other fifteen boundary value problems.

(v) It may appear to the reader, upon first thinking about the
problem, that the uniqueness theorem of the type given here, for
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a very particular domain, like a rectangle, must surely be contained,
as a very special case, in the literature concerning what are called
“discontinuous boundary value problems” (where, for example, the
unknown function is assigned on the part of the boundary of the
domain and the normal derivative of the function is assigned on
the other part of the boundary). The standard reference for such
problems for Iaplace’s equation is the book of G. C. Evans [8]. Ho-
wever, a study of this work of Evans, and of several of his later papers
(see [9]), having to do with what he called ‘“discontinuous Dirichlet
and Neumann problems in the plane”, will reveal that the theorems
given here are not special cases of his results.

Still another remark is to be made about the fact that the rectan-
gle appears, at first glance, to be a very special domain, and that
one has the uneasy feeling that one would rather like to have a result
about ““a more general open set”. But, this can be taken care of,
in a nearly obvious way. All one has to do is to consider all the open
sets which one obtains by ‘“‘mapping conformally” the closed rectan-
gle by means of a single valued function which is analytic (in the
sense of ““an analytic function of a single complex variable”) in a
domain containing the closed rectangle in its interior. It is not worth-
while to state here in detail separately the resulting theorem for
these ‘“‘open sets”.

(v1) It is clear that the condition, in Theorem 5, that the function
# be bounded in absolute value over the whole open rectangle, can
be replaced by a much weaker condition. Because, this boundedness
condition is only used in the proof for points which are in the imme-
diate neighborhood of the vertices of the rectangle (when the appa-
rent singularities, which are the vertices, are “removed”, using what
was called ““Riemann’s removable singularity theorem’). All that
one has to do is to use a stronger form of the removable singularity
theorem, which, instead of boundedness of the absolute value of
the function in the neighborhood of the ‘singular point’’, merely re-
quires that the absolute value of the function, at points near the
“singular point”, is bounded by a positive constant times the abso-
lute value of the logarithm of the Euclidean distance, measured
from the “‘singular point” (see Petrovskii [1], pp. 260-261). The point
being made here is that, instead of assuming that the function = is
bounded in absolute value in the open rectangle, one need only
assume that, speaking informally, ‘‘near each vertex of the rectangle,
the absolute value of the function # grows at most like a positive
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constant, depending on the vertex, times the absolute value of the
logarithm of the Fuclidean distance, measured from the vertex in
question’. Only a slight modification of the proof of the Theorem 5, as
given above, is required. All that one has to do is to proceed as follows.
The first step of the proof is as before: the original function, defined
on the given rectangle, is extended, by a reflection process, to a func-
tion defined on a rectangle which is nine times as large, but this ex-
tended function has possible ‘‘singularities” at the vertices of the
original rectangle; these apparent singularities must then be “re-
moved’’ at once, before proceeding further with the reflection process
which gives a function defined over the whole plane, and to which
Liouville’s theorem is applicable.
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