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SUMMARY. The paper gives a systematic procedure for obtaining monotone
sequences of upper and lower bounds for quadratic integrals such as those encountered
in torsional rigidity, capacity, and other physical quantities. The monotone sequences
are obtained from Bessel’s inequality, while maximum and minimum principles for the
solutions of the boundary value problems are obtained from Schwarz’ inequality.

1. Introduction. In many problems of mathematical physics, it
is desired to find the numerical value of a quadratic integral of an unk-
nown function, where the unknown function is a solution of a certain
boundary value problem consisting of a linear partial differential equa-
tion plus linear boundary conditions. The quadratic integral in ques-
tion is usually the quadratic form associated with a bilinear integral
which occurs in a Green’s identity for the boundary wvalue problem.

For example, consider the determination of the capacity of a « ring
shaped » plane domain D bounded externally by a smooth simple clo-
sed curve C, and internally by another simple closed curve C,. Here
it is desired to evaluate the integral

/w+mmm
D

where the unknown function v is the solution of the Dirichlet problem :

Av =0, on D,

v=1 on C;; v=0, on G,
and \ ,
0o o
1=58 o

(*) This work was sponsored by the Office of Naval Research
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is the Laplacian. Still another example is the determination of the
torsional rigidity, or stiffness, S, of a bounded plane domain D whose
boundary is C. Consider the formula (Lamé’s constant u is taken to
be unity, and P is the polar moment of inertia of D with respect to its
centroid)

S = P—/(vi—{— v2) de dy,
D

which has been used by J. B. Diaz and A. WEINSTEIN [2] (}), and is va-
lid for simply or multiply connected D. In this formula, v is the warp-
ing function, and the evaluation of the torsional rigidity S is seen to
be equivalent to the evaluation of the integral

[+ aa
D

where the warping function v is a single-valued solution of the Neu-
mann problem
Av =0, on D,

o ol

O — Z L (g2 2

o as[z @ + y)], on C,
and %, ;s denote differentiation in the direction of the outer normal
to C, and along C respectively. In both these examples, the bilinear
integral associated with the quadratic integral to be evaluated is the
Dirichlet integral

/ (9 v: + @yy,) dzdy,
D

which occurs in Green’s identity
oy
pdpdzdy + | (p,y.+ @yy,) drdy = [ ¢ -~ ds.
D D p on

In many instances, known maximum and minimum principles for
a solution of the boundary value problem can be used to obtain upper
and lower bounds for the desired quadratic integral. However, for
numerical purposes it is important to be able to obtain explicitly,

(*) Numbers in square brackets refer to the bibliography at the end of the
paper.
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in a systematic manner, a sequence of monotonically non-increasing
upper bounds as well as a sequence of monotonically non-decreasing
lower bounds for the number sought, i. e. for the value of the quadra-
tic integral of the unknown function. In an earlier note (Diaz [1]) it
was shown that in a great many cases (for example, for certain semi-
homogencous boundary value problems, where either the boundary con-
dition or the differential equation is homogeneous) the maximum and
minimum principles follow directly from Schwarz’ inequality, whereas
the desired monotone sequences of upper and lower bounds can be
obtained readily from Bessel’s inequality. Starting with Schwarz’ and
Bessel’s inequalities, formulated for a linear vector space with a posi-
tive semi-definite scalar product, it was shown, without reference to
any specific boundary value problem, how incqualities for the square
of the length of an (a priori unknown) vector could be obtained immedia-
tely, and how the resulting inequalities could be readily applied in spe-
cial cases, which include Dirichlet’s and Neumann’s problems for Lapla-
ce’s equation. In the present paper the results of the previous note are
developed further, and inequalities are given which are also applicable
to non-homogencous problems (both differential equation and boundary
condition non-homogeneous and also to problems where the boundary

2]
condition is of «mixed type» (e. g., a0 + a—Z prescribed on the bound-

ary, in the case of Laplace’s equation). The same unified approach is
followed as in the previous note, starting with a linear vector space
with a positive semi-definite scalar product. Section 2 contains the
main inequalities, which are stated in the form of theorems, for conve-
nience of reference. All of these incqualities follow easily from Schwarz’
and Bessel’s inequalities. Section 3 deals with a few applications and
serves to show the wide variety of special cases covered by the inequa-
lities of section 2. Bibliographical remarks have been relegated to sec-
tion 4, which contains a discussion of several related papers. The biblio-
graphy lists related papers which have come to the writer’s attention,
and, in some instances, papers whose results are readily obtainable
from section 2 as special cases. The idea of a linear vector space with
a scalar product has been current in the mathematical literature for
around fifty years. The derivation of the basic inequalitics in a vector
space is a comparatively trivial matter, yet when these simple compu-
tations are performed (as secems to be the custom) explicitly in terms
of the bilinear integral which is used in defining the scalar product,
the sheer weight of the symbolism obscures the simplicity of the whole
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procedure, and many problems of estimating quadratic integrals, which
are, as shown here, identical, are not usually recognized to be one and
the same.

It may seem at first glance that the determination of upper and lower
bounds for a quadratic integral of an unknown solution of the bound-
ary value problem on the onc hand, and the approximation («in the sense
of the same quadratic integral ») of the unknown solution of the bound-
ary value problem by a linear combination of known functions on
the other, are questions which are not directly related to each other.
However, as can easily be seen, (essentially from «least squares»),
these two problems are equivalent. The precise sense in which this
equivalence is meant is stated at the end of section 2.

A new result concerning the estimation of Dirichlet’s integral in Diri-
chlet’s problem deserves special mention. This result is directly related
to the papers of'J. B. Diaz and A. WEINSTEIN [1], [2], which were the
starting point for the present paper. In [2] an upper bound for the
Dirichlet integral in Neumann’s problem was given in terms of a single
function satisfying a certain boundary condition, thus paralleling the
classical upper bound for the Dirichlet integral in Dirichlet’s problem,
given by Dirichlet’s principle in terms of a single function satisfying
a certain boundary condition. In [1] a lower bound for the Dirichlet
integral in Neumann’s problem was given in terms of a single arbitrary
non-constant function. Inequality (42) of the present paper, which yields
a lower bound for the Dirichlet integral in Dirichlet’s problem in terms
of a single arbitrary non-constant function, thus puts the estimation of
Dirichlet’s integral in Dirichlet’s and Neumann’s problems on a parallel
basis.

Finally, it is emphasized that the question of existence of a solution of
the boundary value problems considered is purposely set aside, and is not
considered at all. It is shown in each boundary value problem that, if a
solution exists, then such a solution is also given as a solution of certain
maximum and minimum principles, and bounds for a quadratic integral
of such a solution are obtained. A proof of the existence of a solution,
starting from one of the maximum and minimum principles (such as
is carried out, for example, for the classical Dirichlet’s principle, in
Courant [2] and Courant - HiLBERT [I] volume II) is not touched upon.

2. Upper and lower bounds. To avoid repetition in the various spe-
cial cases, it is convenient to operate in a real linear vector space with
a positive semi definite scalar product. By a real linear vector space
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is meant a set of elements (called « vectors», following custom) which
can be added in pairs (« vector addition»), can be multiplied by real
numbers («scalar multiplication »), these two operations obeying the
customary rules of vector algebra. Besides, there is a positive semi
definite scalar product, i. e., a real number (a, b) is associated with each
ordered pair of vectors a and b, which satisfies the rules

(aa, b) = a (a, b)
(aqy + a5, b) = (a5, b) + (a b),
(a, b) = (b, a),
(a,a) =0,

for any ve ctors a and b, and any real number «. The equality (o, @) = 0
may hold even if a is not the zero vector, and this, together with
the last inequality, explains the use of the adjective «positive semi
definite ». In the applications to boundary value problems, the elements
of the vector space are usually functions, and addition of functions
(vectors) and multiplication of functions by real numbers are defined
in the usual way for functions, while the scalar product of two functions
is given by a bilinear integral associated with the boundary value pro-
blem. A glance at the two examples mentioned in the introduction

taking ((a, b) = / (a,b, + a,by) dr dy) shows that the equality (a, a) =0
D

may indeed hold for functions other than the zero function. As
usual, the number (a, @) will be referred to as the square of the length
of the vector a. The length (norm) of the vector a will be denoted, as
usual, by |a|, and then

(a, @) = | a2

The original problem of obtaining upper and lower bounds for a qua-
dratic integral, phrased in a linear vector space with a positive semi
definite scalar product, is translated into finding upper and lower bounds
for the square of the length, (v, v) or the length, |v|, of a vector v. The
vector (function) v is a priori unknown, but some information is known
about it, say the partial differential equation and the boundary condi-
tions satisfied by v.

In the present section, various inequalities giving the desired upper
and lower bounds will be given together. For the sake of clarity and
for convenience of reference they will be listed as numbered theorems
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and corollaries. Theorems 1 and 2 and corollaries were given earlier
(D1az [1]) as easy consequences of Bessel’s and Schwarz’ inequalities :

= (9 < (), ®)
where
PO & R A
(95 99 { 0, if j+i
and
(f, B* < (f, ) (b, h). (S)

Theorem 1 and Corollary 1 yield lower bounds for (v, v):
Theorem 1: 1If v is a vector, p is a positive integer, and wy, ..., w,,
are orthonormal vectors, then

3 0wy < @, ),
i=1

= 0.

with equality if and only if

»
v— 3 (v, wy) w;
i=1

Corollary 1: If v is a vector and w is a vector of positive length,
then
(v, w)®

(w, w)

= @),

(v, w)
(w, w)
Theorem 2 and Corollary 2 yield upper bounds for (v, v):
Theorem 2: 1If v is a vector, ¢ is a positive integer, z, ,.., z, are
orthonormal vectors such that (z;, ) =0 for i = 1....,¢, and z is a
vector such that (z— v, v) = 0, then

with equality if and only if |v — w|=0.

q

@, 0) <(2)—2(@z)P

i=1

q
with cquality if and only if |z—v— 3 (7, 2) z;| = 0.
1=1

(This follows easily from Bessel’s inequality, with f =z— v, n =g¢,
and 9 = Z; i= 1, eeey q).
Corollary 2: 1If v is a vector and z is a vector such that (z— v, v) =0,

then
,v) < (z 2),

with equality if and only if |[z—v| = 0.
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(In thcorem 2 and corollary 2, the condition (z— v, v) = 0 may
be replaced by (z—wv,v) =0, the argument remaining unchanged,
thus obtaining a theorem 2’ and a corollary 2', which will not be stated
explicitly, inasmuch as they arc included as special cases, respective-
ly, of theorem 4’ and corollary 4’ below, with y =0, and yy, ..., J,
absent).

Collecting the results of theorems 1 and 2, it follows that for each
pair of positive integers p and ¢

S0 W)t < 0,0) < (59— 3 (5

1=1 1=1

or, equivalently,

| Sewyw] <|op <

=1

q 2
Z— Z (Z’ Zi) Zil s
i=1

and thus a monotone non-increasing sequence of upper bounds and
a monotone non-decreasing sequence of lower bounds for the num-
ber (v, v) have been obtained. However, in order that these upper
and lower bounds be of practical use, one must be able to evaluate them
explicitly, without knowing the veclor ». In other words, using only
the information available about v (i. e. the partial differential equa-
tion and the boundary conditions satisfied by v) one must be able to
choose known vectors w; such that the scalar products (v, w;) are known,
and also choose known vectors z; and z which fulfill the conditions
(z,, V) = 0 and (z— v, v) = 0, respectively. Once p vectors w;, ¢ vec-
tors z;, and a vector z are chosen, the lasl inequalities furnish numerica-
Ily computable upper and lower bounds for the number (v, v).

In choosing the vectors w;, z;, and z, the main device employed is
Green’s identity, written in a form suitable for the boundary value
problem under consideration. From the examples given earlier (D1az [17)
and the ones in the next section it appears that theorems 1 and 2 are
particularly adapted for boundary value problems which are semi-
homogeneous (that is, either the differential equation or the boundary
condition is homogeneous ; for example

Av = f, on D,

v=0, on C,

where [ is a given function on D). In order to be able to deal with non-
homogencous problems (which may, of course, be reduced to semi-ho-
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mogeneous problems by a proper choice of either a particular solution
of the non-homogeneous differential equation or of a function satis-
fying the non-homogeneous boundary conditions) and also to deal with

e v
«mixed » boundary conditions (e. g., v+ o 0, on C), two more

theorems will be proved next.

The proofs of these two theorems depend directly on Schwarz’ ine-
quality. In order to see this more clearly, a few preliminary remarks
will be found useful. If x and y are vectors, then

I(x,x)y_(xsy)xlz = ((:r’x)y_(x’y)xs (x,x)y—(.’lf,y)it) =
= (z, 2)-[(z, ©) (¥, ¥) — (=, y)*],
and therefore

@ y)? < (@ 2) @ 9), 9]
with equality if and only if, either (z,z) =0, or (z,z) > 0 and
—_— Eﬁ’—fg x| = 0. (Incidentally, (*) (1) implies that the scalar product

of two vectors is always zero if just one of the vectors has zero length, a
fact which will be employed frequently). When (x, ) > 0, the con-
dition for equality may be restated thus: equality holds in (1) if and
only if y = Cx plus a vector of zero length, where C is a real number,

namely g’—ig- This remark serves to reformulate Schwarz’ inequality

(1) in the precise form in which it will be needed :

where, if (z, x) = O then both equality signs hold for any y; and, if
[2|? = (x, ) > 0 then right hand equality sign holds if and only if

y = {ixl x plus a vector of zero length, while if (z, ) > O then left

hand equality sign holds if and only if y = — }y?l z plus a vector of
zero length. Consider only the determination of the right hand equa-
lity condition in (2) when |z| > 0, the left hand equality condition

being obtained similarly. Clearly the right hand equality holds in (2)

() Actually it has only been shown so far that (1) holds if either (z,x) >0 or
(y, y) >0 However, if both (z,z) =0 and (y,y) =0 then 0 =(@=xy,zxy) = (r,2) +
+ (U, y) £2(z,y) = £2(z,y), so that (z,y) =0, and (1) again holds.
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if y= {%J'x plus a vector of zero length. Conversely, if the right

hand equality holds in (2) for some y, then (z,y) = |z| |y| and, by

squaring, it follows that equality also holds in (1). Therefore y = %i—; z
1y ’

plus a vector of zero length, i. e. y = [_z—l z plus a vector of zero length.
Slightly rephrased, (2) is just the triangle inequality
(z]—lg2 <z +yP < =]+ [y])*

The theorem of Pythagoras will also be needed. If z and y are vec-
tors and (%,y) = 0, i.e. x is perpendicular to y, then

|z Ly =z + |y~

In particular, if ,, ..., z, are orthonormal vectors, then

T = [:1: — i‘,l (z, x;) I,-] + é‘.i (z, z;) z;,

i=

where the vector x— Y (z, z,) x; is perpendicular to the projection
i=1

of z on the linear subspace spanned by ;. ..., z, ; that is, to the vector

> (x, x;) z; ; and Pythagoras theorem yields
i=1

n 2 n
!.’E |2 =|T— 'gl(x, .’E,‘) r; _l" 'gl(x’ xi) T, : =
n 2 n
—[s—S@an| +Iwar
=1 i=1

Theorem 3 : If c¢ is a vector, R is a non-negative number, n is a
positive integer, ay, ..., a, are real numbers, w, ..., w, are orthonormal
vectors, and w is any vector such that both |w—c|* = R? and
w, w;) = a; for i = 1, ..., n, then

é]i a; + [(l c[? —é ( wi)z)% — (RZ _,é {6 — (¢, wy} 2)%]2

t=1

1
<|wpP< l} 3
é:j %+ [(l e —_—21(0’ wi)z)% + (R2 - an{a,— @ wi)}z)%]z. J‘
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If = 0 then both equality signs hold in (3). If

n
c— 2 (C, wi) w;
=1

c— > (¢, w) w,-l > O then the left hand equality sign holds in (3) if
i=1

and only if w equals the vector

n
c— X (c, w)w,
1==1

n

c— 2 w)w;

=1

iéai w; + [ C-—ié(ﬁ w;) w; l— (Rz—’él{ a;— (¢, ;) }2)%]

plus a vector of zero length. If )c— ﬁ (c, w;) w,-‘ > 0 then the right
i=1
hand equality sign holds in (3) if and only if w equals the vector
c— f: (c, w;) w;
i=1

+ (Rz— 2"3 {a,— (¢, w)) }2)§] -

— —Semm,

élai w; + [

n
c— 2 (C, wi) w;
3=1

plus a vector of zero length.
Proof: In view of the conditions |w — c¢|? = R%, and (w, ;) = q;
for i =1,..,n, it follows that for any vector w

2
= |w_.c|2._

n
Z(w—c, w;) w;

i=1

n 2
‘w—c—Z(w—c, w;) w;

i=1

n

=R_—3 {ai — (¢ wi)}z'

N
= |
L @
J
(In particular, (4) implies that if the set of all such vectors w is not
empty, then R?2— 3, { a; — (c, w,-)}2 = 0).
=1
On the other hand

2

" 2 n
ol = | Ewy o] + |o— 5 @ wyw| =
n 2 ;:—l n - n 2
— | Sawl|+ ] w— 3, w) w,—|c— 3 @ m) w,-]+[c—_z Cc.wyw]|
= n = n = 2 n =l 2
—Sd+|o—c—Fw—cwu| +|c—Sewul +
i=1 i=1 i=1
+ 2 ([c —'_§1 (c, w;) w,-,], [w—— c—-i‘:_‘,l(w —c, w;) w,-]) =

=§]1a? + (R2 o Zﬂ {ai — e w) }2> + (l ‘ 12—2'1(6, w,-)z) *

i=1

+ 2([c—£] (c, w;) w,], [w —c—f} (w—c, w;) w,]).

i=1 i1=1
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The desired conclusion now follows by applying the result of (2)
to the last scalar product appearing in the last equation, choosing

n

r=c—23(w)w; and y =w—c— ¥ (w— ¢, w;) w; and taking (4)

1:=1 =1
into account.

Theorem 3 may be easily interpreted geometrically. The set, call
it S, of all vectors w satisfying |w — ¢ |* = R? is a sphere with centre ¢
and radius R, while the set, call it P, of all vectors w such that (w, w;) = ¢;
is a plane («flat subset»). If the intersection of S and P is empty,
then the theorem is true vacuously. The various geometrical possibili-
ties can be easily visualized intuitively by means of a schematic two di-
mensional diagram. The set, call it L, of all linear combinations :

n
> ¢; w; plus a zero vector, where c,, ..., ¢, are real numbers, is repre-
i=1

sented by a straight line through the origin ; the plane P is represented

by a straight line perpendicular to the straight line representing L (the

point of intersection of these two straight lines represents the set of

all vectors: 3 a; w; plus a zero vector, which are common to P and
i=1

L) ; and the sphere S is represented by a circle intersecting the stra-

ight line which represents P. If = 0, i.e. ¢ belongs

c = §1 (c, w;) w;

to L, then all vectors on the intersection of the plane P and the sphere S

c— 2 (¢, wy) w¢[ >0,
i=1

i. e. ¢ does not belong to L, then a vector of the intersection which is
nearest to the zero vector is

are at the same distance from the zero vector. If

c_.i (¢, w;) w; , — <R2—— ﬁl {a,-—— (c, w,) }2)?15] C—igl(c, w;) w; ,

n
=t c— X (c, wy) w;
i=1

é:iai w; + {

while a vector of the intersection which is farthest from the zero vector is

n
n 1 c— 2 (c’ w‘l) w‘l:

+(r=g e m )] Seme]
c— X (c, w;) w;

1=1

n
c— 2 (¢, w) w;
1=1

Since n may he taken to be zero in theorem 3, in which case the real
numbers a, ..., a, and the vectors w,, ...,/ w, are absent, one obtains
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Corollary 3: If c is a vector, R is a non-negative number, and w
is any vector such that |w— c|* = R?, then

[l[e] —RP< |w]? <[|c|+ RE ®)

If |c| = 0 then both equality signs hold in (5) for any w. If lc] >0
sthen the left hand equality sign holds in (5) if and only if w equals
[c|]—R

el

plus a vector of zero length. If [c¢| > 0 then the rigﬁt hand equality
sign holds in (5) if and only if w equals
lc| + R

_ _.c
|¢]

plus a vector of zero length.

The following theorem will be useful in dealing with boundary value
problems with «mixed» boundary conditions. For clarity, the results
concerning upper and lower bounds are stated separately.

Theorem 4: (a) Suppose that c is a vector, R is a non-negative real
number, n is a positive integer, a, ..., a, are real numbers, w, ..., w, are
orthonormal vectors, and w is any vector such that both| w—-c¢ ]2 < R?
and (w, w;) = a; for i = 1, ...,n, then

op=Eat+{{lep— S w) + (e lo—cm)]. ©

If

¢— 3 (¢, w;) w; | = 0 then equality holds in (6) if and only if
i=1

|w—c|? = R? and (w, w;) = q; fori =1, ...,n. If

C——ﬁ: (c; wy) wi‘ >0,

$=1

then equality holds in (6) if and only if w equals the vector

.éai w; + [ C—Eﬁl(C, w;) w; | +
n % c— 2” (C, wi) w;
+(r— 2 {a—wf] —5
=1 c— 2 (¢, w) w;
i=1

plus a vector of zero length.
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(b) Furthermore, if, in addition
fler—ZE € opf —(F— 5 (a—@w}f]>0 @
i=1 i=1
then

7

o+l S wy) — (R — % {a— (. m) <ok ®

=1 1'=1.

Equality holds in (8) if and only if w equals the vector

’_éai w; + [

(2
c— X (¢, wy) wil—
7=21

n
c— 2 (C, wl) w;
i=1

—(r— 2 ta—@w)].

: " 4
= c— 3 (o w)w; |
i=1

plus a vector of zero length.
(c) I, instead of (7),

1

(er—E e o) —(r—F (a—co)f] <0 ®

=1

then
2"1 a < |wf, (10)
i=1

| n
where equality holds if and only if l w—> aq w,-' = 0.
i=1

Proof: (a) Given w such that |w—c|? < R?% and (w, w)) = q;
for i =1, ..., n there is a number A such that 0 < A < 1, for which
|w—c|? = 4 R%. From the right hand side of inequality (3) of theo-
rem 3 it follows that

o = g+ [t — e mo (om0,

i= =1
n n _}z_ n % 2
<Sa+[cr—E o) +(F—2 {a—@u)],
i=1 i=1 i=1
and the equality conditions are easily obtained from theorem 3.
(Notice that, if R > 0, equality in (6) forces 4 to equal 1, while if
R = 0 the numerical value of 4 does not matter).
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(b) Still using the number 1 introduced above, the left hand side
of inequality (3) of theorem 3 implies that

et ergem) (1w~ g = o

=1

and this last inequality, together with condition (7), yields the desired
inequality (8). As for the condition of equality, notice that (7) implies

n
that [¢c— 3 (c, w)) w;
i=1

then follows from theorem 3.
(c) Condition (9) implies that

> 0. The desired condition for equality in (8)

n

: = [c]z—ﬁ(c, wyP<R—_Y {ai—(c, w,-)}z.
im1 ;

=1

n
c— X (¢, wy) w;
i=1

(Notice that, if the set of vectors w such that both |w—c]P < R?
and (w, w;) = q; for i =1, .., n is not empty, then the right hand
side of the last inequality is certainly > 0, from (4). If the set of these
vectors w is empty, then the theorem s true vacuously, anyway). On
the other hand, using this last inequality

2 2

s

n
'c— > a; w;
i=1

c— é (c, w;) w;— i {ai_‘ (c wi)} w;
i=1 ;

=1

7

c— 3 (6 w) w;

i=1
< R%

2 n
+i§1 { a; — (¢, w) }2’

n n
Thus the vector 3 a; w; = 3} (w, w,) w; satisfies the same conditions as w,
= .

= i=1
that is, [w—c|? < R? and (w, w;) = a; for i =1, ..., n. Hence ine-
quality (10) is just Bessel’s inequality again.

Theorem 4 may be easily interpreted geometrically. The set,
call it S, of all vectors w satisfying |w—c¢]* < R?® is a sphere, plus
its interior, with center ¢ and radius R, while the set, call it P, of all
vectors w such that (w, w;) = a; for i = 1, ..., n is a plane («flat sub-
set»). If the intersection of S and P is empty, the theorem is true va-
cuously. There are various geometrical possibilities, corresponding to
cases (a), (b), and (c), each of which can be easily visualized by means
of a schematic two dimensional diagram. The set, call it L, of all linear
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"
combinations : Y} ¢; w; plus a zero vector, where ¢, ..., ¢, are real num-
i=1 )

bers, is represented by a straight line through the origin; the plane
P is represented by a straight line perpendicular to that representing L
(the point of intersection of these two straight lines represents the set
of all vectors: %ai w; plus a zero vector, which are common to P
i=1

and L); and the «solid sphere» S is represenled by a circle, plus its
interior, intcrsecting the line representing P. Consider (a) first: if the
center ¢ belongs to L then the vectors w on the intersection of S and P
(this intersection is a «solid circular disk ») which are farthest from the
zero vector are exactly all those vectors of the intersection which also
lic on the sphere, i. c., such that |w—— ¢ = R% If the center ¢ does
not belong to L then a vector of the intersection of S and P which is
farthest from the zcro vector is the vector (on the sphere)

i

n
n c— 2 (¢, w;) w;
1=1

¢— 2 (6 wy) w;

=1

+ (Rz—_z”: {e;—(, wi)}z)ﬂ_

=1

p .
c— 2 (c, w;) w;
1=1

(b) states that if the vector X a; w; does not belong to the intersection
i=1

of S and P, then a vector of the intersection which is nearest to the

zero vector is the vector (on the sphere)

n
c— > (c, w;) w;
i=1

ié1ai wi+[

u
c— > (¢, wy) w;
=1

— (R2 — §:1 {a;— (c, w) }2>1] .

n .
c— Z (C, wi) w;
i=1

Finally, (c) states that if the vector ¥ a; w; belongs,to the intersec-
=1

12
n
tion of S and P (notice that the vector X a;w;is the orthogonal pro-
i=1
jection on L of any vector w of the intersection of S and P) then this
n
projection, X a;w;, is a vector of the intersection of S and P which
i=1
is nearest to the zero vector.
Since n may be taken to be zero in theorem 4, in which case the
real numbers a, ..., a, are absent, one obtains

9 — Collectanea Mathematica,
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Corollary 4: (a) Suppose that ¢ is a vector, R is a non-negative
number and w is any vector such that |w—c|?> < R?, then

|w < [|e|+ RP. (1

If [c| = 0 then equality holds in (11) for any w such that |w[? < R2.
If | ¢| > O then equality holds in (11) if and only if w equals the vector

e

«C

plus a vector of zero length.
(b) Furthermore, if, in addition

c] —R >0, (12)
[le]—RP < |w] (13)

then

Equality holds in (13) if and only if w equals the vector

[¢]| —R
|¢]
plus a vector of zero length.
(c) If, instead of (12)
le|—R <0, (14)
then
0< |wf?, (15)

with equality if and only if |w| = 0.

Notice how (c¢) reduces to a triviality. Geometrically viewed, (c)
states that if all that is known of a vector w is that it is on or inside
of a sphere ‘with center ¢ and radius R, and the zero vector is also known
to be on or inside the same sphere, then the only certain lawer bound for
the length of w is the trivial bound, zero.

In applying theorems 3 and 4 to boundary value problems, a slight-
ly different formulation is usually needed. Consider theorem 3 first.
As mentioned earlier, the practical problem is to find known upper
and lower bounds for a number |v |2, where v is itself an a priori unk-
nown vector, but about which some information (e. g., partial differential
equation, boundary conditions) is available. In many problems, using
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only the information known about v, it is possible to choose known
vectors y and z such that

(y_v5 Z——-l))=0, (16)
and also to choose, for positive integers p and g, p known orthonormal

vectors 7, ..., J» and ¢ known orthonormal vectors z, ..., z, satisfying
the conditions

(yi’ 27) = 0,
(y;, z— ) = 0, (17)
(y—v, z;) =0,

fori=1,..,p; j=1,..,9. Since equation (16) may be rewritten in
the form

2
, (18)

2 ly~z
— 12

‘U__.ll-f-z
2

the desired reformulation of theorem 3 follows readily, using theorem

jy—z

3Withc=y—_g—z; R = |5 n=p+gq;w,=y;fori=1,..,p;

Wy, =2z; for j =1,...,9; and finally a, = (n, wp) for k=1,..,n. It
is to be noticed that, from (17), (v, wy) is known for k =1, ..., n, since
0, y)=(zy,)fori=1,..,p, while (v, z;)) = (Y, z;) for j =1, ..., q.

Theorem 3': If v is a vector, y and z are vectors such that
(y— v, z—v) = 0, p and q are positive integers, U, ..., Yy 25 ..s 2, ATC
p -+ q orthonormal vectors such that (y; z—v) =0 for i =1, .., p
and (y —v,2) =0 for j =1,..,9, then

b
X (z, y)? -+ _Zq @, 7)) + my —21_ :
t=1 j=1

g AT
< PP < L 19)

y—:z
+(

2 b fg—z \2
—% (55 =2

.
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2— (__g_

1=1

y+=z

If’

y+z ,
) ( s ¢7-> =0, then both equality

§ (1]+Z y .)2 _02 (y+z’zj)2 =0

then the left hand cquahty sign holds in (19) if and only if v equals
the vector

signs hold in (19). If

y+ z|

2<am+zu>z+m

RIS j=1

y+z &[4tz ) (Y12 )
_2— 1':1( 9 »J J1—Z< 9 *7i 2

z_él(y%iyi>2_é<yr_j ‘)2)_] 'y? 2<J+”, 1)!/, 3

y-z

plus a vector of zero length, while the right ‘hand equality sign holds
in (19) if and only if v differs by a vector of zero length from the vector
obtained from (20) by replacing the square bracket by the sum instead
of the difference of the two square roots.
If p =q =0, and the orthonormal vectors are absent, one obtains
Corollary 3': If v is a vector, z and y are vectors such that

G—v, z—0v) =0,
|| =l = (|

= 0 then both equality signs hold in (21). If )y 42” z

then (y—;—z

) L@

>0

If‘y;rz

then the left equality sign holds in (21) if and only if v equals the vector

y+z |y —=-
2 2 y-+4z
ly + z 2
2
plus a vector of zero length. If I ‘ > 0 then the right hand equa-

lity sign holds in (21) if and only 1f v equals the vector

'y+z y—:z

2

+
y+z
2

Y4z
2

plus a vector of zero length.

et o

r (20)

2555
,Zi)Z
7‘=1(2 T
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Theorem 4 may be reformulated in a similar way. In some pro-
blems, using only the information known about v, it is possible to choose
known vectors y and z such that

@—vz—0)<0, (22)

and also to choose, for positive integers p and ¢, known orthonormal
vectors U, ..., Jp and ¢ known orthonormal vectors z, ..., z, satisfying
the conditions (17). Since equation (22) may be rewritten in the form

2

INES

v p)

2
y—z
§1 5

s

the desired reformulation of theorem 4 follows readily, using theorem

. y+z ,_ |y—z
4 with ¢ = 5 ; R= —5—
wpy; =z; for j =1, .., ¢ and finally ¢, = (v, w;) for k =1, ..., n. The
final result is

Theorem 4': (a) If v is a vector, y and z are vectors such that
(y—v, z—0v) <0, p and ¢ are positive integers, Yi, ..., Up Zp5..r 3,
are p -+ q orthonormal vectors such that (y,, z—v) =0 for i =1,..,p
and (y —v, z) =0 for j =1, .., q, then

sn=p+4q; w;=y;fori=1,..,p;

[v]F <
: d gtz ﬂ<y+z : ; (1t 2f
)2 7.)2 — ) — AL
EF””+E@”)+K‘2 D Y e R P
y—z? Lfy—z V¥ (y—z >2)~é-]2
+(I 2 _21( 2 ’yi> _,f§1 2 ' ' J
2 p 2 2
It :"ll;—z —2<y-‘g—"f, y,-)—zq:(‘%f, zj.> — 0 then equality holds in (23)
1=1 i1 A
A O o Y R (Hz ) 5 (l/_+_ i
whenever [v— 5| =3 .If( 5 _51 ——Z—,y, —]_:1 5 % >0

then equality holds in (23) if and only if » differs by a vector of zero
length from the vector obtained from (20) by replacing in the square
bracket the difference of the square roots by their sum.

(b) If, in addition,
y+z|* &Lfytz ¥ q<y+z )21_( 2_¢’<y_—_-: _)2_'7 y—z 2)—
(F 25w 255 4)) () -2l []=0
(24)

y—2z
2

i=1 =1
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22
then
» q )
_%(,y¢)2+21(y, z;)?
1= 7=
y+zP Atz ¥ L(fgtz V¢
+K 2 2\ Vs ja(z’%n L (25)
y—z|2 2ly—z 2 4 [y—z \2\LP
~(57[ =2t A )T =
<|v. )

Equality holds in (25) if and only if v differs from the vector (20) by a

vector of zero length.
() If, instead of (24), the left hand side of (24) is < 0, then
(26)

p
3 (5 y)E 4 §1 @R <|op
1= i=
q
2 (y’ zj) 2| = 0
7=1

P
where equality holds if and only if v — X (5, y,) y; —
i=1

If p =q =0, and the orthonormal vectors are absent, one obtains
(@) If » is a vector, and z and y are vectors such

Corollary 4’ :

that (y — v, z— v) < 0, then
e <[5+ | 552 @

ly_z 2
=

I = 0 then equality holds in (27) whenever |v > =

It ‘11 +z
y+z : » .
5 > 0 then equality holds in (27) if and only if v equals
the vector
y+4z y—=z
‘ 2 |73 l y+z
y+=z 2
2
plus a vector of zero length.
(b) If, in addition
y—z
e —| >0, (28)
then (1582 - |52 T < 1o (29)
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with equality if and only if » equals the vector

‘y +z|  |y—z
2 2 ¥ +z
ly +z 2

2

plus a vector of zero length.
(c) If, instead of (28),
|22 |- |52 <o (30)

then

U< |of @81

with equality if and only if [»| = 0.

A few remarks concerning the «mean square approximation» of an
unknown vector v and the equivalence of this approximation with the
determination of upper and lower bounds for | v |* are perhaps appro-
priate. This equivalence is seen at once from Bessel’s inequality. In
the notation employed at the beginning of this section, let f be a vector,
015 -» §n be 1 orthonormal vectors, and ¢;, ..., ¢, be real numbers. Since

n

2 n "
1= S| = 1P — 20 0 + Efs— G o0P,

it follows that the linear combination ¥ (f, ¢;) 9; of ¢4, ..., g4, Which
i=1

gives the «best approximation to f in the sense of least squares»

2
(i. e. which minimizes [f — X ¢; g,-‘ )is exactly the same linear combi-
i=1

nation of ¢, ..., g, which furnishes the «best lower bound» for |f 2
Notice that if gy, ..., ¢, and (f, g)), i =1, ...,n are known, but [ is not

n 2
known, then the «least possible error», | f — X (f, 9.) g;| obtained by
i=1

approximating f by ¥ (f, i) 9; is, in general, not known.
i1

Consider theorem 1, regarding v as an unknown vector, w;, ..., Wy as
known vectors, and (v, w;) for i =1, ..., p as known numbers. Taking
f=v,p=n, g=w, i=1,.,p, it follows that out of all linear

n
combinations of w;, ..., W,, the projection X (v, w;) w; is the best ap-
i==1
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proximation to v the sense of least squares. The mean square error
n 2

v— X (v, w;) w;| is in general not known.
1=1

Consider theorem 2, regarding v as an unknown vector, and z, Ziae 53,
as known vectors. Let ¢, be a real number. Taking / = v — Co s
n=4gq,g; =z, fori=1,..4q, it follows that (recall that (z — v, v) = 0
q
and (v, z) =0, i =1, ..,q) out of all vectors ¢,z + ¥ ¢;z;, where
=1

1=

€15 +--» Cg @re real numbers, the best approximation to v in the sense of
least squares is the vector

q
o [2— 2 (:5 Z(') Zi:|3
=1
and the «mean square crrory is

q 2 g o
v—co[z—El(:, z;) :,-” =(1—2¢y) [v]*+ ¢2 |z|2—('§i§1 (z, z)2.

1. s . .
The case ¢, = 5 15 of special interest, since then the crror is known

explicitly. The import of the factor % is clearly seen from the fact

2 2

v %
2

z
2

Consider theorem 3’, regarding v as an unknown vector, and y, z,
Ui eos Ups 235 +ver Z, @8 known vectors. Let ¢, and d, be rcal numbers.
Taking f=v—coy—dyz, n=p4gq, g=y; for i=1,.. D,
and g,,; = z; for j = 1, ..., q, it follows that of all vectors

that the condition (z —wv, v) = 0 is equivalent to

4 [
ol +dyz + .21 ¢y, + _Zld,'zp
1= 1=

where ¢, ..., ¢, dy, ..., d, arc real numbers, the best approximation to »
in the sense of least squares is the vector

p 7
Co [y —_21 @, y») yi—_Zl W, z) Z;‘] +
= j=
? g ? 7
+ d, [Z — _21(2’ )y, — .21(2’ z;) Zf] + 21 (z y) y; + '21 ;s z) zjs
= j= i= j= )
and the mean square error is

4
I v—(co Y + dy2) |2‘— Z(—cy+H{1—dgyz yl)z_'é ((1—co] y—dyz, ;)%

i=1
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1 2
The case ¢y = d, = 5 is of special interest (recall that |v— y—;—z
]2 )
‘UT ) for then the error is known explicitly to be
y—z[* & fy—z VY & (y—= Y
=R R )
~ |2
A similar statement applies to theorem 4'. Here v—"Y 1— | =

2
, where 0 < 4 < 1, but the number A is not necessarily

=2
known. In the (favorable) case, ¢, = d, = %, all that can be stated is

that the mean square error is certainly not greater than

2 b - 2 q = 2
y—: y—:
— 3 (55— 5 (L)

i=1

.
2

Finally, a remark concerning the consistent use of orthonormal se-
quences of vectors throughout in the formulation of the various theo-
rems. Consider n vectors (not necessarily orthonormal) G, ..., G,, which
are linearly independent, i. e. such that no lincar combination of
Gy, ..., G, has zero length, or, what is the same, such that the Gram
determinant

(G Gy - (G Gy)
(G”, Gl) (Gm Gn)

is positive. By the Gram - Schmidt method, say, one may construct
(in principle, anyway) n of their linear combinations, call them g, ..., g,
which are orthonormal, but this process may be awkward to carry
out numerically in practice, given the linearly independent vectors
Gy, ..., G, to start out with. If f is any vector, and ¢, ..., ¢, are real
numbers, then ’

’f—é 66| = [f[?— 2 (fé i Gi) + (121'71 ¢ Gvé 2 Gi) =

2
’

n 2 n
=lf[2— '§1C§:Gi’ + __21(61'—01*) G;
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where the real numbers cf, ..., ¢} are the uniquely determined real
numbers satisfying the system of linear equations

%7 (6, 6 = (£ 676, 6:) = (.6,
j= i=1
i =1, .., n. Thus

n 2
El cf (f, G) = <|fA

n
G
im1

with equality if and only if = 0. The reformulations of

n
f— _21 i G;

i
the final inequalities of the various theorems in terms of linearly in-
dependent sequences of vectors, rather than in terms of orthonormal
sequences of vectors, is now so obvious that it is not necessary to record
them in detail. The resulting inequalities are not so symmetric as the
oncs in terms of orthonormal sequences, since they involve the solu-
tion of certain systemsof linear equations (in the case of orthonormal
sequences of vectors the solution of the corresponding systems of linear
equations is immediate, since then the systems of linear equations have
matrices of cocfficients of diagonal form). However, for numerical pur-
poses, starting with a given sequence of lincarly independent vectors,
it is sometimes easier to apply the inequalitics in terms of linearly in-
dependent sequences of vectors, solving the necessary systems of linear
equations as they arise instead of first orthonormalizing the given
linearly independent vectors.

3. Applications. In Diaz [1i, a simple example was given of the
application of theorems 1 and 2 and the corresponding corollaries. Let v
be a solution of a linear boundary value problem consisting of a partial
differential equation plus linear boundary conditions. In order that
the upper and lower bounds given by theorems 1 and 2 be of practical
use, one must be able to evaluate them explicitly, without knowing the
vector v. Using Green’s identity, in a form suitable for the boundary
value problem under consideration, one must be able to choose known
vectors w; such that the scalar products (v, w;) are known and also
choose known vectors z; and z which fulfill the conditions (z;, v) = 0
and (z— v, v) = 0. Once these vectors are chosen, theorems 1 and 2
furnish monotone sequences of upper and lower bounds for the number
|v |2 Consequently, in a particular problem, once is it shown how to
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choose vectors w; such that (v, w;) is known, and vectors z; and z such
that (z;, v) = 0 and (z — v, v) = 0, the detailed statement of the upper
and lower bounds for |v|? is superfluous, since the result can be easily
written down directly from thcorems 1 and 2. However, the maximum
and minimum principles obtained from corollaries 1 and 2 are usually
of interest in themselves, since, so to speak, they furnish the initial
upper and lower bounds of the monotone scquences for |» %, and at
the same time, once they are stated, it is usually clear just how the
vectors w; and z; may be chosen.

Theorem 3’ can be used to deal directly with problems in which both
the differential equation and the boundary conditions are non-homoge-
neous, but it is usually more convenient to reduce such a problem to a
semi-homogeneous one by means of a particular solution of the non-
homogeneous equation or by means of a function satisfying the non-
homogeneous boundary condition. Theorem 4’ can be used to deal directly
with problems with «mixed boundary conditions ».

Rather than treating, in a general form, a boundary value problem
involving a system of parlial differential equations together with linear
boundary condilions, the general procedure to be followed will be illus-
trated by means of a few typical important special cases. The reader
will have no difficulty in finding a host of new examples by himself,
Further, only the simplest differential equations will be considered in
each case. It is perfectly clear, for example, how to modify the results
for Laplace’s equation

Uy + Uyy = O’
in order to obtain results for the self adjoint elliptic equation
(av, £ bvy), + (bv, + ), = 0,

where b2 — ac << 0. The extension to any finite number of dimensions
is also immediate. For simplicity, to avoid a detailed statcment of con-
ditions insuring the convergence of the integrals involved, only bound-
ed domains will be considered.
(I) Neumann’s problem. The boundary value problem consists in
finding » such that
Av=0, on D,
32
c (32)

3

R
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where D is a bounded, plane, connected, open set with a smooth bound-
ary C, and f is a given function on C. The quadratic integral to be

estimated is the Dirichlet integral / (3 + v2) dzdy.
D

In dealing with this problem, at least two different choices for the
elements of the linear vector space are possible. These two cases will
be treated separately :

(@) The elements of the auxiliary vector space are sufficiently
smooth real valued functions defined on D + C. Vector addition and
multiplication of vectors by scalars is defined in the usual way. The
scalar product (p, v) is defined by the bilinear Dirichlet’s integral

[ ]
l—/tpdwdxder_/«pﬂds,’
")) c’ on
(o> v) =/;(¢xwx+ @y py) dedy = W , |> (33)
— | pAgpdzdy / 2 as,
] /Dw g dzdy + Y an )

where the last equality is just Green’s identity, and (% denotes diffe-

rentiation in the direction of the outer normal to C. Since D is connec-
ted, (¢, ) = O implies that ¢ is a constant function.

Given any function w, the scalar product (v, w) is known, since,
from (33)

Corollary 1 then yields the following maximum principle for »: If w
is any non-constant function, then

ov . \?

/D (w2 + w?) dudy

g/ (02 4 v3) dzdy, (34)
D

with equality if and only if » = 2w + u for some real numbers 4 and u.

However, corollary 2, although still true, does not yield a useful
principle, since, as can be easily seen from (33), the information known
about v is not sufficient to determine non-trivial known functions z
which fulfill the condition (z, v) = (v, v).
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(b) The elements of the auxiliary vector space are ordered pairs
[p, q] of sufficiently smooth real valued functions defined on D + C.
Vector addition is defined in the usual way :

[P1> @] + [P2s 2] = [Py + @15 P2+ ol
while multiplication of a vector [p, q] by a real number « is defined by
«[p, q] = [ap, aq].

The scalar product ([p;, ¢;], [Py ¢2]) is defined by the bilinear integral
ot o) = [ {paa+ panbizay (35)

Clearly, ([p, 4], [p, q]) = O implies p = ¢ = 0. Using Green’s theo-
rem, and the definition, (35), of the scalar product, it follows that

(p; 9); [ps @s)) = — A @ (P, +¢,) dedy + _/; ¢ (pn, + qny) dr,  (36)

where n, and n, are the x and y components of the outer normal to C.
Notice that

(v 03] [0, 05]) = .L % + v}) dray.

Corollary 2 then yields (taking ¢ = v in (36) the following minimum
principle for v (or perhaps more precisely, for the derivatives v, and v,) :

If p and ¢ satisfy p, 4+ ¢, = O on D, and pn, + ¢n, = % on C, then
/ z + v3) dzdy < / (P? + ¢°) dedy, (36"
D D

with equality if and only if both v, = p and v, = ¢. (This is precisely
Kelvin’s minimum kinetic energy theorem, sec Lamb [I], pages 47 and
57, as has been remarked in Diaz and Weinstein [2], page 109).
Since the condition p, + ¢, = 0, on D, can always be replaced by
p =Wy, q =—w,, on D, where w is a suitable function (not necessarily
single-valued) the last minimum principle for » may be restated as fo-
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llows: Il w is any function (not necessarily single-valued, but such
that w, and w, are single-valued) such that

ow dz dy ov
35 = e g + w, Js = w,n, + wyn, =3, on C,
then
/ 02 + v2) dedy < / (w3 + wl) dx dy, @37
D D
with equality if and only if both », = w, and v, = — w,. (This is pre-

cisely the new formulation of Kelvin’s theorem referred to by Diaz and
Weinstein [2], page 109, and Weinstein [1], page 148).

Corollary 1 (taking [p, q] = [v,, v,] and [¢,, ,] = [w,, w,] in (36)
yields exactly the same maximum principle for » that was obtained in
(34) above.

(1) Dirichlet problem. The boundary value problem consists in
finding » such that

=V, D;
Adv =0, on } (38)

v=1/f on C,
where [ is a given function en C. Again it is required to find upper and
lower bounds for the Dirichlet integral / (v + v3) drdy. The cases of

D

auxiliary vector space consisting of single functions and of pairs of func-
tions will again be considered separately.

(@) The elements of the vector space are single functions and the
scalar product is defined by (33).

Given any function w such that 4w = 0 on D, the scalar product
(v, w) is known, since, from (33)

Jw
w, w) = / v —dr.
c on

Corollary 1 then yields the following maximum principle for v: If w is
any non-constant function such that 4w = 0 on D, then

ow 2
(fr5ne)

A W2 + w}) dedy

< f 02 + v2) dxdy, 39

with equalily if and only if » = 4 w + u for some real numbers  and p.
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Given any function z such that z = v on C, it follows from (33) that
(z, v) = (v, v). Corollary 2 then yields the familiar Dirichlet’s principle :
If z is any function such that z = » on C then

[t wai < [ @t mpaa, (10)
D D

with equality if and only if v = z.
(b) The elements of the auxiliary vectlor space are ordered pairs,
[p, q] of functions, and the scalar product is defined by (35).
Given any vector [p, q] such that p, + ¢, = 0 on D, it follows from
(36) that the scalar product ([p,q], [v,, v,]) is known, since

(s q)s [V, »y)) = /; v (pn, + qn,) ds.

Corollary 1 then yields the following maximum principle for » (or, per-
haps more precisely, for the derivatives v, and v»,): If p and g satisfy

P,+ ¢,=0, on D, and/ (p? + ¢®) dxdy > 0, then
D

2
[[rom o]

/ (P* + ¢%) dady
D

< / (% + v3) dxdy, (€3))
D

with equality if and only if both », = Ap and v, = 4¢ for some real
number A.

Since the condition p, 4 ¢, = 0, on D, can always be replaced by
P = Wy, q =— w, on D, where w is a suitable function (not neces-
sarily single-valued), the last maximum principle for v may be restated
as follows: If w is any non-constant function (not nccessarily single-
valued but such that w, and w, are single-valued) then

[/ v d—wds]
c os

A(w,% + w?) dxvdy

< / (0% + v3) dody, (42)

ow . . . .
(Where 55 = Wrl.— wxny> with equality if and only if », = Aw,

and v, = — Aw, for some real number A. The maximum principle
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given by (42) includes the maximum principle for » given by (39). For,
let w be a harmonic function, and w* be a harmonic conjugate of w
ow  Jw*

on D, that is, w, = w}, w, = — w;, on D. Then, since = a5
s

on C, the lower bound for / (% + v3) drdy furnished by w in (39)
D

is equal to the lower bound furnished by w* in (42), and vice versa.
Corollary 2 (taking [p,q] = [v,, v,] and [g,, ,] = [z,, z,] in (36))
yields exactly the same minimum principle for v that was obtained in
(40) above.
As a matter of fact, (42) is just Schwarz’ inequality :

v3%) drdy,

2
[/ (w, v 4+ w,v;) dx dy]
2 = < / 03 +
A (wE + w}) dudy ?

where v* denotes a harmonic conjugate of v on D, that is, v, = v;,
vy = — v¥, on D; because

‘/(wv1 lvyvy)dtdy—/w—ds ___/ __ds_/‘va_wds'
c os

Or, even more directly, without introducing the harmonic conjugate
function v¥, (42) is just Schwarz’ inequality

.

2
(v, w, — v, w,) dx dy]

=< / (v2 + v3) dxdy,
D
-A‘ (wi - w2) dxdy

/u — ds _/ v (w,n, —w,n,) ds,

= / [((bw,), — (vw,),] dxdy,
s D

because

= / v, w, —v,w,) dvdy.
D
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(I1I) Mixed problem. The boundary value problem consist in fin-
ding v such that
Av =0, on D, )

ocv+ﬂ%l—l:=/, on C, JL (43)

where the functions f, & and B are given real valued functions on C,
such that both «*+ %> 0 and «f = 0 on C. Again it is required
to find upper and lower bounds for the Dirichlet integral of a solution
v of (43). The first condition on « and f§ merely insures that a boundary
condition on v is actually imposed at each point of C, by requiring that
o and B do not vanish simultaneously on C. The reason for the second
condition on « and § is apparent from equation (46"). The present boun-
dary value problem includes Neumann’s (« = 0, # = 1) and Dirichlet’s
(x = 1, § = 0) as special cases,

Corollary 4, as will be seen below, is always available for this pro-
blem. However, as in the special cases discussed above, corollaries 1,
2 and 3’ may yield useful results more readily in particular cases.

Let C, denote the subset of C on which « vanishes, Cg denote the
subset of C on which 8 vanishes. The boundary condition to be satis-
fied by v is then

v
—=f, on G,
=/ «

:

v=1Ff on G L (44)
o

o+ B =/, on C—<ca+cﬂ)-J‘

Consider first the application of corollary 4’ :
(@) The elements of the vector space are single functions, and the
scalar product is defined by the Dirichlet integral (33). Now

r _ )
— /(y—v) A4 (z—v) dxdy_*_f(y__v). 2 (z—v) ds,
b on
Cy - Cgt(C—C,—Cp
b o r (45)
— / (z—v) 4 (y—v)dzdy -+ f (z—) - =) 4,
b on
L Cyt CgH(€=C,=Cp) J

and since the roles of y and z are perfectly symmetric, only the top cqua-
tion need be used. In order that corollary 4’ be of practical use, it must

3 — Collectanea Mathematica.
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be possible, once functions «, B and f are given (satisfying o2 + 8% > 0
and « # = 0 on C) to choose a non-trivial set of functions y and z such
that any harmonic function » in D which fulfills the boundary condi-
tions (44) also satisfies (y — v, z— v) < 0. From (45), this last ine-
quality certainly holds if y and z are such that

4A(z—v)=0, on D, }

and 5 T (46)
Y—v)—(Ez—v)<0, on C.
on ) J
Since «# = 0 on C, and
) 1
20cﬁ-(y—u)-;)—r;(z——v)= L
| (46")

=[ro—otsge—o] —m—or—[pre—n].

it follows that the last condition of (46) clearly holds if

oz ov
ocy+ﬁ35=°w+ﬂ£=f: on C. (47
. e dz _odv _f R |
(Notlce that (47) implies thatﬁ_ﬁ _B,on Ca, and thaty_v-;,

on Cﬁ). Thus corollary 4’ may be applied, provided that y and z satisfy

4z=10, on D, WI

oz r (48)
ozy-{—ﬂ£=/, on C. J|
Notice that for special boundary value problems, the determination of
y and z satisfying (48) may be equivalent to the solution of the original
problem, and then corolary 4’ does not yield a useful result. For exam-
ple, if C = C, (Neumann’s problem) then z is required by (48) to be
a solution ot the same Neumann’s problem again. On the other hand, if
C = G, (Dirichlet problem) then y is required by (48) to satisfy y = v
on C, and choosing z to be zero furnishes again the familiar Dirichlet
principle which was obtained earlier. Another non-trivial result is ob-
tained if none of the three sets C,, Cg, and C— (C, + Cp) is empty.
Finally, in order to apply theorem 4/, it is readily seen that, since

(yi,z—v)=—/yi4(Z—D)dxdy‘f-/yii(z—v)ds’
D c on
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the functions y; may simply be chosen to vanish on C— Cy, and since

0z;
(y——u,z,-)=-——/D(y—v)Az,~dxdy—|—./;(y—v)-a—i’ds,

the functions z; may simply be chosen to satisfy

4z; =0, on D,
oz; 49)

=1 — —
an_O, on C Cp.J

It is not necessary to repeat in detail the result of theorem 4.

(b) The elements of the vector space are pairs of functions, and
the scalar product is defined by (35). Now, by taking y = [y, ¥s]
and z = [z, z,],

(W1 Yol — [V V3]s (220 2] — [0, 1)) = — [) z—0) { W — 1)+ Ga— )y} dzdy

+</c (z—0) {(y]_vx)nx+ (yz—vy)n:v} ds,

so that the condition (y — v, z— v) < 0 is certainly satisfied if

Y1 + Y = 0, on D, ]
} (51)
J

0
az+ B @Un,+ yzny)=°¢l’+ﬂ’a'§=f, on C.

(Thelast condition of (51) implies that z=v = é on Cg,and y, n,+ Yo, =

= g— = Zon Cy). Thus corollary 4’ is useful in many mixed problems.

p

In order to apply theorem 4’, one may simply choose vectors y; = [, Yis)
and [z, z;] such that

Yz + Yiyy =0, on D, 1‘
YN, + Yy =0, on C— Cg, ¥ (52)
z;=0, on C— Cy J

Since in (51) and (52) the condition to be fulfilled in D is that a certain
divergence is zero, this condition may be formulated in terms of single
functions (as was done in the case of the Dirichlet and Neumann pro-
blems). Letting w be such that y, = w,, y, = — w,; and w; be such that

N
L (50)
|
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. ow
U1i = Wiy, Yo; = — W;,, and recalling that == wyn, — w, n, the con-

ditions (51) and (52) may be rewritten simply

0
uz+ﬂ§l—:=au—|—ﬂj—s=/, on C, (51%)

and

(52')

The detailed statement of the results of theorem 4’ and corollary 4’
as applied to this special case, is not needed.

Perhaps the simplest mixed boundary value problem is that in which
C—(Ca+ Cp) is empty, that is, v is prescribed on a subset Cj, of C,

o
and a—z is prescribed on the remainder, C,, of C. The results either be-

come trivial or reduce to thosc of Neumann’s problem when C = C,
and to those of Dirichlet’s problem when C = Cg. Corollary 2 does
not yield uscful principles either when the auxiliary vector space consists
of single functions of when it consists of pairs of functions. However,
corollary 1, when the auxiliary vector space consists of single functions,
yields the following two principles :

(1) I w is any non-constant function such that w = 0 on Cjg, then

ov 2
(_/;de_nds)

[ @t + g away

< / v2 + v?) dxdy,
D

with equality if and only if » = 2w + u for some real numbers 4 and p.
(2) If wis any non-constant function such that 4w = 0, on D,

sw
andﬁ = 0 on C,, then

2
(/ v-j—: ds)
s

[, @i+ wh dady
D

< / (02 + 03) dzdy,

with equality if and only if v = 2w + u for some real numbers 1 and pu.
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Corollary 1, when the auxiliary vector space consist of pairs of func-
tions, yields the following principle (taking ¢ = » in (36)):

(3) If p and q satisfy p, + ¢, =0, on D, and pn, 4 qn, =0, on
C— Cg and

A(Pz + ¢°) dzdy > 0,

2
([ vom+ i

L < D(v,,—rvy) dz dy,
/D (P®+ ¢ dx dy

then

with equality if and only if », = 4p and v, = Aq for some real number A.
Replacing the condition p, + ¢, =0o0on D, by p=w,, ¢ =—w,
on D, the last principle can be phrased in terms of a single function :
(4) If w is any non-constant function (not necessarily single va-

lued, but such that w, and w, are single-valued) such that %—L-: =0
on C— G, then

(o)

/(102 + w}) dzdy

< / (% 4 v3) dudy,

with equality if and only if », = Aw, and v, = — Aw, for some real
number A.
(IV) A problem in the theory of thin elastic plates.

Although various mixed problems can be discussed, only a particular
problem, which occupies a placc similar to that occupied by Neumann’s
problem in the theory of Laplace’s equation, will be considered. For
the theory of plates, refcrence is made to K. O. FrizpricHs [2], and
S. TmMosHENKO [1]. The boundary value problem consists in finding
v (the deflection of the plate) such that

Adv =f, on D,

3
40 C)—AU—-O on C,

|
Vn = (1 - lu') 382 on l on IL (54)
|

%

M,=—pdv—Q1—pu )az 0, on C,
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where f is a given function on D, u is an elastic constant, called Poisson’s
ratio, such that 0 < p < 1; and V,, and M,, denote the transverse force
and the bending moment on C, respectively. The quadratic integral to
be estimated is the energy integral

:
/ (A0 —2 (1= ) @utyy—})] dody = |
D
4 (55)
- / (1 (A0 + (1 — p) O -+ 03, + 208)] dz dy. J

The elements of the vector space are single functions. The scalar
product is defined by

(> p) = /1; [(4 @) (Ap)— (1— 1) (@rx W3y + Pyy Y2z — 2 @y P)] ddy,

=‘/; [lu’ (A (p) (A 1/)) + (1 - 4“) (‘Pa‘x "/)xx + ‘Pyy ’/’yy + 2 ‘ny ny)] (ISC dy’

f r 5 s
1oy, (1 _d_(p]___ [ N9 _I_qu;]l .
. J/z:wddtpdxdy_i_./c.lan [“A(p FA—n on? p|(A—m) os2on ' on st,

L (56)

9 92 By  ody
’L/,:¢Adwdxdy+-£{£.[pqu—}—(l——,u)sFy;]—w[(l—y)asZan—l—d—n]}ds. |

Corollary 1 yields the following maximum principle for v: If w is any
function such that (w, w) > 0, then
<

2
(/ w-AAudrcdy)
\J/'D

/ (o (A + (1 —p) @ + why +202)]dedy [ (67
D

< A [ (A0 + (1 — ) (0% + 03, + 202,)] dedy.

Equality holds in (57) if and only if v (z,y) = aw (x, y) + bx+dy + ¢
for some real numbers a, b, ¢, and d.

(V) Three dimensional elasiicily. Suppose body forces are absent,
i. e., the differential equations are homogeneous, and consider only the
boundary value problem which is the analogue of the Dirichlet problem
in the theory of Laplace’s equation. For brevity, the usual sumation
convention will be employed, where a repeated subscript implies summa-
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tion over 1, 2, 3. Also, (z;, %, &5) = (¢, Y, z) and a comma denotes

partial differentiation, e. g., v, , = %%’ . The boundary value problem
e

consists in determining the displacement v = [v;, v, U3] in an open
set B with a smooth boundary S, where v;, i = 1, 2, 3, are real valued
functions defined on B -+ S, such that

for i =1, 2,3, and

(ijpq¥s,0,; =0, on B,
(58)

v;=1/f, on S,

where f,, f, f; arc known functions on S. The functions d;;,, are known
real valued functions on B 1 S (in the usual « two constant » elasticity,

dijpgVp,g = B V4j + (A4 1) Viis (59)

where A and p are Lamé’s constants of elasticity, see Love [1]). The
quadratic integral to be estimated is the energy integral

/I;diiﬁqvb,q”i,id& (60)

where the known functions d;;,, are, of course, assumed to be such
that, for any point P of B and any real numbers &;, i, j =1, 2, 3,

dijpg (P)-&ii&pg = 0,

which implies that thc integral (60) is positive semi definite.

(@) The elements of the vector space are triples of functions
@ = [@1, gs» @s] and the scalar product is defined by (assume further
that d;jp, = dpgs;» SO that the scalar product will be symmetric)

,
(@1 @2 @3> [ o Ys)) = /1; dijpg Pora y;,;dB,

_A(difPQW¢,q).i ®:dB + /;(diiiaq%,q"f) @.dS, t  (61)

lr
= <
IL— _/; (iipq 95,0, ¥idB + /; (iipq Pp,a™) PidS,

where n,, n,, n, are the components of the outer normal to S.
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Corollary 1 then yields the following maximum principle for v:
It ((wy, wy, w3], [wy, w,, w,]) > 0, and

dijpqWp,q = 0, on V,

for i =1, 2, 3, then

2
(‘/S. (diqu wp,qn,-) *D; dS)

/I; dipq Wy, W;,;d B

S /Bj diipg I)P,q U{’f dB, (62)

with equality if and only if

A dzj'pq (Ui’ — Cle)'q (U,; — aw,-),,-dB = O,
for some real number s.

Corollary 2 yields the following minimum principle for v — (01, 0y, 15]
If the functions z,, z,, z; are such that

z;=v; on S,
for i =1, 2, 3, then

/; ijpqVp,q0ijdB < /; Liipg2p,4%:, 4 B (63)
with equality if and only if
/;diipq (U{,—— Zt,)’q (Ui —_ Z,-)’j dB = O

(b) The elements of the auxiliary vector space are sequences [P;;]
of nine functions each, the scalar product being defined by

([Pii:" [Qij]) = /};diipq P, QiidB- (64)

Clearly, by Green’s theorem

(65)

([sz]: [Ui,i]); = '/Bj d”quPqI}mdB = — ’/B‘(d’.fPﬂPPq),i UidB_‘_ 1
¢
+/S-(di1'MPMni) v;dS. Jl
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Corollary 1 then yields the following maximum principle for » (or, per-
haps more precisely, for the derivatives v;;): If the functions P,
i, j =1, 2, 3, satisfy

(dijpqPpg);, = 0, on B, (66)

fOI‘ i = 1, 2, 3, and/ d”?qppq.l)”dB > 0, then
B

2
(./S' (d,-,-MPMnj)U,-dS)
= _/':dijﬁq”#,q”

;,; 4B, 67)
/ diitqptqpide
B

7

with equality if and only if / dijpq (p,g— aPpg) (vi;— aPy) dB =0
for some real number a. i

Without entering into a detailed statement, it will merely be men-
tioned that a lower bound for the integral (60) may be obtained from
the last result (sec the procedure followed in II b above) in terms of
three arbitrary functions, using either the Maxwell or Morera stress
functions for three dimensional elasticity (which are described, for
example, in Love [1], page 88) in order to satisfy condition (66) above.

4. Concluding remarks. The starting point for the present paper
were the papers by Diaz and WEINsSTEIN [1], [2], which dealt with
upper and lower bounds for the Dirichlet integral in Dirichlet’s and
Neumann’s problem. The second paper quoted contains the following
foimula for the torsional rigidity, or stiffness, S:

S=P— "/; (p% + @2) dady,

where P is the polar moment of inertia of the cross section with respect
to the centroid of the section, and ¢ is the warping function. The above
formula for S, together with the results on upper and lower bounds
for the Dirichlet integral in Neumann’s problem, furnish a method for
determining practically upper and lower bounds for the torsional rigi-
dity, regardless of whether the cross-section is simply or multiply con-
nected. Numerical applications of this method will be published els-
ewhere. In [1] it was mentioned that the «direct method of obtaining
upper and lower bounds for the Dirichlet integral by using Schwarz’
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inequality as a starting point» could be applied in the case of other qua-
dratic functionals. This was formulated explicitly, in a general form,
in Diaz [1].

Related questions have been discussed in many recent papers, and
it seems worthwhile to review briefly the relation of some of these
results to the conclusions of the present paper.

The initial paper along these lines seems to have been that of
TreEFFTZ [1] Who showed how to obtain a lower bound for the Dirichlet
integral of a solution of Dirichlet’s problem, starting with an arbitrary
non-constant harmonic function, thus complementing Dirichlet princi-
ple, which states that any function having the prescribed values on
the boundary will furnish an upper bound for the Dirichlet integral of
the solution. TREFFTZz stated that his method was applicable to other
boundary value problems, but does not seem to have considered any
other examples. In order to improve the initial upper and lower bounds,
TrEFF1Z proceeds by solving certain linear equations, a procedure which
is in practice equivalent to that of orthonormalizing certain functions
first. The advantage that is gained by using orthonormal functions is
that the upper and lower bounds can be explicitly written down, and
the exact role of Bessel’s inequality is then apparent.

K. O. Friepricus [1], page 20 (see also CouranT - HILBERT [1],
vol. I, pages 208 and 209, « Problem III» and «Problem IV »), uses a
formal transformation of a given variational problem into other rela-
ted variational problems. Starting with Dirichlet’s principle in the
case of the Dirichlet problem, FrIEDRICHS obtains two minimum prin-
ciples given in equations (31) and (32) of his paper, which can be shown
to be closely related to (41) and (42) respectively, of the present paper.
Consider (32) of Friedrichs’ paper. Restated in the notation of section
2 of the present paper, this minimum principle says that

1 F)
5/;@)3-;— w3)d:cdy+/cwd_‘s’ds *)

is minimized, over the class of all sufficiently smooth functions w de-
fined on D+ C, by a harmonic conjugate »* ot the solution » of the
Dirichlet problem :
4dv =0, on D,
v = a given function, on C.
ov ov*

Since v, = v}, v, = — v, and 3 = an the minimum value of (*) is
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minus one half the Dirichlet integral of »*, or, what is the same, minus
one half the Dirichlet integral of v. Thus, for any w:

1 2} 2 _&_U 1 2 2 ~
5/’;(w,,';+ wy)d:cdy—|—/;wasds 2—2-/;(vx+vy)da,dy.

Now, suppose w is a non-constant function, and let 2 be any real num-
ber. The last inequality continues to hold when w is replaced by Aw.
In particular, the inequality holds for A.:-w where

z-min =

/ w2 + w3) dedy
D

minimizes the quadratic form in A. The resulting inequality obtained
upon replacing w by Amm-w is exactly (42) of the present paper.
A similar procedure can be shown to lead from (31) of FRIEDRICHS [1]
to (41) of the present paper.

W. Pracer and J. L. Synce [1] consider three dimensional elasti-
city, body forces being absent. In their notation, their main result
seems to be the following inequalities :

(S*.1"2 < S? < S*2,  (5.8), page 249,
and

mn

2"1(:;>!<.1;')2 <SS S (SL), (1021), page 258,
g= =

where S? = S-S and S*2 = S*.S*, the scalar product being denoted
with a dot. However,

"

I"= ———, page 247,
S”. S//)x;; I g
S*.8" — S.8",  (4.7), page 247,
0, if g=+s
and 1.1 = { , :f Z= ~ (1.1}, page 252,

so that the left hand inequalities of (5.8) and (10.21) are merely

(S-S5

T =5

and 3 (S I < S-S,
g=1
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i. e., Schwarz’ and Bessel’s inequalities, respectively. Moreover, since

§*.S = §:S,  (4.2), page 246,

S-I, =0, (9.5), page 255,
and

0, if p=+r,
IL.I; = 1), s
o1y { 1, if p=r, (7.1), page 252

the right hand inequalities of (5,8) and (10.21) are merely

(S-9)* = (S*-S)2 < (5*-5%) (5-9),
and

S (S*. II)2 Sy = 5 (ox. e S \? *. O
[Z el 69 =[£ e+ (s 55) < 60,

i. e., Schwarz’ and Bessel’s inequalities respectively (notice that the

m -+ 1 vectors Iy, ..., I,,, are orthonormal). Thus the simple

S-S
and immediate analytic origin of inequalities (5.8) and (10.21) is hidden
by the geometrical approach systematically employed and advocated
in PraGER and SyNGE [1], where no mention of Bessel’s inequality is
to be found, and Schwarz’ inequality is only mentioned in passing on
page 249.

J. L. SyNGE [2], in dealing with the special case of elasticity, body
forces being present, arrives at an incquality ((35) of page 19) which
can be seen to coincide with and may be said to have suggested the
inequality (19) of theorem 3 of the present paper, although it is not
stated in exactly the symmetrical form of (19). The argument leading
to (34) in SynGE [2], employs the method of Lagrange’s multipliers and
hence would seem to involve some justification, especially since the
linear space dealt with is infinite dimensional.

J. L. Synge [1] deals with Neumann’s Dirichlet’s and the mixed
problem, for the sake of generality, in a ‘Riemannian-N-space. The
mixed problem for Laplace’s equation, as dealt with in [1] (pages 454-
457) may be interpreted as an application of theorem 4’ to the particu-
lar problem considered there, and may be said to have suggested theo-
rem 4', but neither the final inequalities of theorem 4’ nor a detailed
account of the various possibilities is given. For the two dimensio-
nal Neumann’s problem for Laplace’s equation, the following inequa-
lity is given for the Dirichlet integral of a solution v:
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2
(jc[pfwz+-p§u41dxdy)
/; [(w2)? 4+ (wh)?] dxdy

<

< A i+ v,) dedy < /1; [(01)* + (p3)*] dzdy,  (28), page 452,

where w" is a non-constant function, and the functions pf and pj
satisfy the conditions

opf | ops
— 4+ -——==0, on D,
a'v+ay

ov
p;*n,—|—p§‘ny=a—n, on C

ov, . . . . .
where n is a given function on C. The upper bound in this last inequa-

lity is just Kelvin’s minimum energy theorem, as remarked both by
SyxGeE [1] and Diaz and WEINSTEIN [1], [2]. This upper bound was
first formulated in terms of a single function (a «stream function »)
by Diaz and WEINSTEIN [2]. As to the lower bound, it can be shown at
once that it is independent of the functions pf, p? employed. Because,
by Green’s theorem and the conditions satisfied by pf, p3, it follows that

ov
R - "
J/.:[pl w; + ps wy] dedy = /; w' - ds,

and the lower bound then coincides with the lower bound for Dirichlet’s
integral in Neumann’s problem, in terms of a single arbilrary non-
constant function, which was already given in D1az and WEINSTEIN [1].
A similar remark applies to the inequality for the Dirichlet integral
of a solution » of Dirichlet’s problem, which follows from table I on
page 455 of SynGE [1]. The inequality is

(foo v+ w3 pt1 0y
Jiw:+ @ dzay

2
= A %+ vf) dedy < A [(@2)? + (wy)?] dzdy

where the function w* satisfies

w*=v, on C,
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v being a given function on C, while the functions pj and p} satisfy

op1 , 9P _
ax—!—ay =0, on D,

and / [(p1)? + (p%)?] dxdy > 0. The upper bound is Dirichlet’s prin-
D

ciple, while it can be shown at once that the lower bound is independent‘
of w*. Because, by Green’s theorem, and the conditions satisfied by
w*, pi and p3, it follows that

/;[w??p’{ + wy ps] dedy = /cv-[p’{n, + p3 n,] ds,

and the lower bound then coincides with that given by inequality (41)
of the present paper.

In a later paper, J. L. Sy~xcE [3] presents his general geometri-
cal scheme.

L. BrogLio [1] has obtained maximum and minimum principles
for solutions of varicus linear boundary value problems, all of which
can be obtained readily from the results of the present paper, and some
of them can be improved. Only an example need be mentioned.
Consider Neumann’s problem

Av =0, on D,

— =1f, on C,

where f is a given function on C. On page 6 (teoremaA) of BrogLIo
[1], an inequality is given, which, for the two dimensional case, reads:.

/D[(wj:)z + W)l dzdy < /1; (2 + v3)dady,

where the function w* satisfies
Aw* =0, on D,

L[(w}‘)z + (w;)?] dady = A w* ;l)- ds.
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Since, given any non-constant harmonic function w, the function

A w, where
/w Z—sds
A= <

[t wp acay

3

may be taken as w*, the lower bound for the Dirichlet integral of v
given by BrogLIo is seen to be just

2
(/ - s)
c on

/D w?Z + wi) dxdy

< / (0% + v}) dxdy,
D

-

which is thus a special case of the lower bound for / (24 v3) dxdy
D

given by Di1az and WEINSTEIN [1] (see also (34) ol the present paper),
where the function w is an arbitrary non-constant function, and not
required to be harmonic.

The results of Topolyanskii [2], which arc patterned exactly after
TrerrTz [1], also follow readily.

The bibliography contains references to papers, dealing with related
questions, which have come to the writer’s attention. In some instan-
ces, their results can be obtained rapidly by following the unified appro-
ach of the present paper.
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