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RESUMEN

En este articulo se estudia un problema de extensién de seccio-
nes diferenciables y se aplica el resultado obtenido en la demostra-
cién de un teorema de de Rham generalizado, que permite utilizar
formas diferenciales para describir la cohomologia de ciertos subes-
pacios de variedades diferenciables.

INTRODUCTION

Let &: E > M be a smooth vector bundle and let F = Flies
be a finite family of smooth submanifolds of M. We study the follo-
wing problem: which conditions should we impose on the family
F so that any given family {o;};.; of smooth cross-sections o; of
&|r, (such that o; coincides with o; on the intersection F; n F;,
t,j € I) could be extended to a smooth cross-section o of &?

We adopt, for convenience, the following comvention: a manifold
is understood to be a disjoint union of connected Hausdorff smooth
manifolds with countable basis of open sets,

It is easy to see the necessity of the following conditions:

a) F; is closed for all 1 el.

b) The intersection of any two manifolds of our family is again a
submanifold of M. \ ‘
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Thus, we may assume that all manifolds in F are distinet and
the intersection of any two members of F is either a member of F or
the empty set. We say that F is an n-family.

c) If F,=F,n F, (i,§,kel) and ze F; then

T.(F) = T.(F;) 0 T.(Fy).

d) If ze u F;, the family of subspaces {T,(F,)} ;s of T,(M) veri-
tel
fies:

T.(F) n ZT,(F;) = X T.(F) n T,(F), iel, Jcl
ieJ ieJ

We prove in this article that the above conditions are also suffi-
cient (theorem 2).

Theorem. (2) is used mainly in the proof of a de Rham theorem
(theorem 11) giving a description of the cohomology of y F; with

iel

real coefficients in terms of differential forms.

Finally we show that an example of a family F = {F3},,, as
above is provided by the ¢singular sety of a smooth toral action.

§ 1. EXTENSION OF CROOSS-SECTIONS.

(1) A family F = {F};.,;, of submanifolds of a manifolds M, ve-
rifying the above properties a},b),c),d) is called in this paper a net-
work of submanifolds of M. .

(2) Theorem

Let & E 2> M be a smooth real vector bundle and let F = {F},.;
be a net-work of submanifolds of M. Suppose that we are given
smoth cross-sections o; € Sec £|r, for all 7 eI, such that they agree
on the intersections. There exists then a smooth cross-section ¢ e
e Sec & such that coincides with o; when restricted to F,, for all fel.
~ ‘The proof of this theorem is postponed to (8) after we have proved
some preliminary lemmas.

Let {: N-%5 B be a smooth real vector bundle and let
(=00 @ ... @, be a direct sum decomposition into subbundles
;e N, %> B.

If I ¢ {l,.. un, we write N, = @ N,.

iel
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@i N —» N, is also a vector bundle, where g, is the projection
given by ¢,(z1 D ... P z,) = P z.

iel
The next lemma is taken essentially from the thesis of C-Watkiss
([8; lemma 1.5, page 103]).
Suppose that we have smooth maps f;: Ny, - R®, i=1,..,7,
where {I4, ..., 1} is a family of subsets of {1, ..., n}.

Assume that filvyng = filvuan Hi=1, .., 7

Define f: N - R”by

fEO =2 (=11 _ % filewa.azn @)

1< < <ip <7
(3) Lemma

a) With the above hypotheses, fis a smooth extension of the func-
tions f; to all of N. :

b) Assume further that we ate given a smooth function A:p~1(x) —»
- R" (U is an open set in B) such that &lny, no-1v) = filwn, ne-1() »
1=1,

Then for every open set V in B such that ¥V ¢ U, there exists
a smooth map f :N - R” such that

f}NIs =ﬁ-, 7 = 1, e, ¥ and le"l(V) == hle"(V) .

Proor:

a) fis clearly smooth and it is an easy computation to check that
f(z) = fi(2) for all zeNy,.

b} We know by (a) that there exists a smooth extension f of the
functions f; to all of N. Let (4, u) be a smooth partition of unity

subordinate to the open covering (¢~ 1(U), N — p~1(V)). Then
f = Ah + uf has the required properties. -
(4) Lemma

Suppose given a manifold M, a family {I, ..., ,} of subsets of
{1,..,7} and smooth maps f, Ny, -M, i=1, ‘

Assume that f,l[\/hn_[’n Wy = fj{N[‘nI,nWo 1":]. - 11 o,
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where W, is some open neighbourhood of B in N (we identify B
with its image under the o-cross-section).

a) There exist then a smooth map f: N — M and an open neigh-
bourhood W of B in N such that

fINI-'nW:fi|NI,~nw, 7;=,1,,__f_

b) Assume further that we are given a smooth map A: ¢~ 1(U) - M
(U is an open set in B) such that

filNI;ﬁWo == h[NI.-nWo 3 1 = 1) e

Then, for every open set V in B with V c U, there exists a smooth
map f~ N — M and a neighbourhood W of B in N such that

ﬁN“nW:filNI;nWJ 1'= 11 ...,fa'nd
f|e-‘(V)nW == h]g—l(V)nw-

PROOF:

a) We may assume that M is a closed submanifold of some R”.

Construct a smooth function i: N — R>0 sot hat ¢(z) = A(2) . 2
satisfies:
1) g(N) e Wo
2) ¢(2) = z for all z in some neighbourhood W’ of B in N.

Define then smooth maps f =f;0q, +=1,..,7 and observe
that f; and f; coincide on Nyny, 4,7 =1, ...,7.

Therefore, by lemma (3)a, there exists a smooth extension fiN -
— R™ of the f/.

Let gr: T — M be a tubular neighbourhood of M in R”. Construct
AN - R>0 smooth so that ¢'(2) = A'(z) .z satisfies:

'y ¢ ) e f~1(T)
2") ¢'(z) = z for all z in some neighbourhood W c¢ W’ of B in N.

Then, f = gy o foq' has the required properties.
b) Construct g: N - N asin (a)‘and define A’ = hogq(h': o~ 1(U) >

— M). Then by lemma 3(b) there exists a smooth map f :N —R»
such that
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oS . A
f|NI‘ =f,~', 1=1,..,7 and flq-l(V) = hIIQ—X(V) , where f,-’ =f,- o{g.

Construct ¢': N - N as in (a) but such that ¢'(N) cf‘l(T).
Then 7: or o f ogq’ has the required properties.

Assume next that F = {F},; is a net-work of submanifolds
of a manifold M with n F, = F, nonvoid, M = F_, € F. For each

iel
2 €l choose N; to be a subbundle of 7y, (restriction to Fy of the
tangent bundle of F;, vp,) such that

(Z .TFHFD) @ Ni = TFil po
R

Then we have t5,, = @ N,. (We say that ¢ <j;s jel, if
R<i

F;, c F)).
Set N°= @ N,foralliel.

o< ki
We make the identification

T.(M) = ® Ni(x) = To,(N>~), xeF,;
sel

identifying the element @ v, of @ N,(x) to the element (day), (ve) D
iel i€l
@ @D wly) of Ty (N®), where g,: F, - N®is the o-cross-section
iel— {0}
and w, is the composition of the canonical isomorphism N (x) =
% To, (N (x)) and the injective linear map To, (N (x)) - T, (N®)
induced by the inclusion N®(x) ¢ N.

In particular, given a smooth map f: 0 — M, where 0 is a neigh-
bourhood of Fy in N, such that f(x) = x for x € F;, we consider
(2f), as a linear map (df),: T,(N®) - T,(N*). For instance, it makes
sense to say that f verifies (df), = identify.

Fix an open set V in F, such that V ¢ U.

(5) Lemma

Assume that we are given smooth maps f;:N; - F;, iel
such that f|z = identity.

Then, there exist an open neighbourhood W of Fy in N® and a
smooth map f: N® - M such that

H

1) fiwan, =filwan, i€l
ii) f(W n Ni) ¢ F,
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ProoF:

For each 4,7 eI — {0}, let F;; be the minimum stbmanifold in
F containing both F; and F;.

By lemma (4) b there exist an open neighbourhood W;; of Fy
in N;@® N, and a smooth map f;;: N;@® N, - F; such that

fiiquan zfiquan fH‘W{]ﬁ’,Ni =filWifﬂN1'

For each triple 4,7, k in I — {0}, let F,;; be the minimum sub-
manifold in F containing F,, F;, F,.

By lemma (4) b there exist an open neighbourhood W;; of Fo
in N;®N;® N, and a smooth map

ftjk: N,@N’@Nkk - Fiik
such that

fiiklwdﬂ:n(Ni@ Ny = fwl W V(N D Ny)

and similarly for %, jk.

Continuing this process we finally obtain a smooth map f: N® —~M
and an open neighbourhood W of Fy in N having the required
properties. :

(6) Lemma

There exist an open neighbourhood U(; of Fyin M and a diffeo-
morphism f: N® — Uy such that f(NY) = Uy n F; for all iel,
fir, = identity, (df), = identity for all x e Fy. ‘

Proor:

Fix any Riemannian metric in M and denote by exp*: O; -~ F;
the exponential of the restriction of the metric to F;, where O; is
an open neighbourhood of F;in T (total space of 75,).

Choose smooth maps 4;: N; - R>0 and define ¢;: N; - N; by
g:(2) = A4(2) .z such that ¢;(NV;) € N; € O; and ¢;(2) = z for all z
in some open neighbourhood W; ¢ N; n O; of Fyin N;.

Define f;: N; — F; by f; = exp’ o ¢;. Since fj|, = identity, we
deduce from lemma (5) that there exist an open neighbourhood
WO of Fyin N® and a smooth map f: N® - M such thatflwonm

= filwoan, t€1, and fWon N,) ¢ F;, iel.
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Butj—’lF0 = identity and if ¥ € Fyand v, e N;(x), s e I, (df), (@ v,) =
i€l
=2 ® X (4 exp),(v;) = D v,.
i€l _ i€l

In particular f is a local diffeomorphism on some neighbourhood
of Fyin N®, and then in view of [6; lemma 5.7, § 5] there exists an
open neighbourhood U® c¢ W0 of Fy in N such that f restricts to
a diffeomorphism f: U0 — U0, :

Thenf: U0 qn Ni - F, is a diffeomorphism onto an open set 0’;.

Choose an oepn neighbourhood O of Fyin U’ such that O n F;
c O/ forallsel.

Choose open 1-disc-bundles D; of N; (with respect to some Rie-
mannian bundle-metric on N;) such that

D; ¢ f~1(0) n U0,
i€l — {0}
Construct diffeomorphisms ¢/ N, - D;, ¢,/ (2) = 4, (2) .z for some

smooth maps 4, : N; - R>0, which are the identity in some neigh-
bourhood of Fyin N;.

Therefore we obtain we obtain a diffeomorphism

= @ ¢/:N°-> @ D,

ieI— {0} iel— {0}

Finally, f = foq', Uy = f( @ D,) have the required properties.
il —{0}

(7) Lemma

Let {;: E, Z> Bi=1,..,n be real vector bundles. Denote its
. 7
direct sum @ {; by {: E "> B, and let : N 2> E be a real vector
i=1

bundle over E. Assume that we are given cross-sections o; € Sec NEs
1=1,..,7 where {Ij,.., I} is a family of subsets of {1, ..., m
such that they agree on the intersections.

Then, there exists a smooth cross-section ¢ € Sec 7 such that
OE,=0;, t=1,..,7 ’

2

Proor:

Observe that if U is an open subset of B, then 7 trivializes on
7~ 1{U) if and only if v trivializes. Therefore, there exists a locally
finite open covering {U,., of B such that we have trivializations.
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@ 1(U) X H - ¢~ (=~ 1(U,))

so that o, (2, h) = z for all zen~1(U,), he H (H is the typical fi-
bre of ).

Define E;, n z~1(U,) % H by the relation ¢,(z, f#(2) = 0;(2)
for all ze Ey, with mze U,.

If zeE,na"Y(U) n E;, n a~Y(U,) = E,qr, n = 1(U,) we
have

a(2, f2(2)) = 0:(2) = 0j(2) = @ulz, f*(2))-

Thus f*(z) = f#(2). Therefore, by lemma (3) a, there exists f*:
Jt_l(Ua) — H such that falElinn‘l(Ua) =f7-°‘.

Define o*: 7~ 1(U,) » ¢~ Hm=1(U,)) by 0*(2) = ¢u(2 f*(2))-

We have po®(2) = 0,(z, f*(2)) = z and hence ¢% € Sec Naz-1(u,-

If zea~Y(U,) n E;, we have

0% (2) = @u (2 f4(2) = @ulz f2(2) = 0i(2).

Choose now a smooth partition of unity {A},., subordinate to
the open covering {Ug,., and define ce Sec # by 0 = X 4, 0,.
a

This o has the required properties.

(8) Proof of theorem 2

By lemmas 6 and 7 there exist an open neighbourhood U! of

U F; (I; is the set of minimal elements of I) and a cross-section
1ely 3

o1: Ul - E, such that ol|pntn = 0;|F,qun for all 1€l
Choose V1 open in M such that u F; ¢ V1 ¢ V1 ¢ Ul Consi-

_ i€l
der M; = M — V1 and the family {F; n M}ier—1,-

By lemmas 6 and 7 there exist an open neighbourhood U2 of
(u F)n M, in M; and a cross-section ¢2: U2 -~ E such that

iel
Gle:annuz = o;lramnve, €1 — I (I, is the set of minimal ele-
ments of I — I). ,
Choose V2 open in M such that (U F;) n M; c V2 c V2 e U2
(where 72 is now the closure of V2 in M;). Consider M, = M; — V2
(open submanifold of M; and hence of M) and the family
{F; n MYier—-nun
Continuing this process we define inductively:
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i) A family of open setsin M : U1, U2, ...
ii) A family of open submanifolds M = My > M, o M, 5 ...
iii) A family of open sets V1, V2, .

iv) A family of smooth cross-sections o*: U* - E(k = 1,2,..)

such that (U F;) n M,_; ¢ V% c V* (closure in M,_;) ¢ U* c
iely _
cM,_,M,=M—V* k=1,2,.. (I,is defined inductively as the
set of minimal elements of I — U L), o*|lp,am_invr = Glrnmg.nvs
i<k

k—1
forallk > 1and alliel — v I, (I = @).
t=0

Observe that {U%;-; is an open covering of U F;. Define
iel
:U= u U* >FE by o(2) = X #(2) 6*(2), where {#*} is a smooth
Ex1 r=1
partition of unity subordinate to the open covering {U%z-;. It

is clear that ¢ is a smooth cross-section on U and if x € F; we have
7 (x) = o;(x) for all x e F,.
Finally, choose an open set W suchthat u F; c We Wec U ¢

i€l
c M and let {4, 4} be a smooth partition of unity subordinate
to the open covering {W,M — u F;}. Then, o(x) = A(x) o(x) if

iel

xeU and o(x) = O, if x € M — W, has the required properties.

(9) Corollary

Let M, N be smooth manifolds and F = {F},,; a network of
submanifolds of M. Assume that we are given a family of smooth
maps f;: F; — N such that they agree on the intersections.

Then, there exist an open neighbourhood U of U F; and a smooth

iel
map f: U - N such that fir, = f;, forall el

Proor:

We may assume that N is a closed submanifold of some Euclidean
space R”. Let ¢: T — N be a tubular neighbourhood of N in R”
(cf. [5; chapter 4, theorem 5.2]). Then, by theorem 2, we can find a

smooth map f: M — R” such that EF‘ = f;foralliel.
The open set U = f~1(T) and the map f=pof: U - N have
the required properties,
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(10) Remark

Let M, N be smooth manifolds and A a subset of M. A map
f:A — N is said to be smooth if and only if it is the restriction of a
smooth map f~ U — N defined on some open neighbourhood U of
A in M.

The above corollary can be regarded as saying that in case 4 =

= y F,, where {F},.;is a net-work of submanifolds of M, then f:
i€l
A - N is smooth if and only if f r, is smooth for all e I.

§2. DE RHAM THEOREM FOR NETWORKS OF SUBMANIFOLDS.

Let F = {F}},c; be a net-work of submanifolds of a manifold M.
Define A?(F) ¢ @ (F;) as follows
i€l

(D;);cr € A?(F) if and only if the p-forms @, agree on the intersec-
tions.

Clearly A*(F) = @ A?(F) is a differential graded subalgebra of

?

@ A*(F)).
iel

Thus we have the cohomology H¥:(F) of (A*(F), d), wich is a
commutative graded algebra.

(11) Theorem (Generalized de Rham isomorphism).

There is a natural isomorphism of graded algebras
Hix(F) % Hlne. (U Fii R
1€

Proor:

Denote by S7°(F,) the set of smooth p-simplexes of F; and by
S, (F;) the set of (continuous) p-simplexes of F;.
Define CZ_(F) (resp. C?(F)) as the set of p-singular cochains with
real coefficients of S¥(F) = u SP(F;) (resp. S,(F) = 'EI Sy (F3))-
1€ 1

Then CX%(F) and C*(F), with the corresponding coboundary
operators, are cochain algebras and we denote their cohomology
by HZ(F) and H*(F); with the cup product they are commutative
graded algebras.

Moreover, restriction defines homomorphisms
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C*(u F) "> C*(F) 2> C&(F)

iel

of cochain algebras. They induce homomorphisms

H¥,, (U F;; R) £ H*(F) L2 HE(F)
i€l
On the other hand, define

@3 : A1 (F) — Ct_(F)

by

23 (B2):e1) (0) = J ®, if image o  F, and o is smooth.

a

Stokes theorem shows that ¢; commutes with § and thus ¢j
induces a linear map in cohomology. :
We proof now theorem 11 by showing that we have isomorphisms

H¥g (U Fis R) Lis H(F) L2 HA(F) <22 Hix (F)
i€l = =

o~

i) ¢@*; is a graded algebra isomorphism.

It is clear that ¢*; is a graded algebra homomorphism, so it
remains to be shown that ¢*; is a linear isomorphism. We prove
this fact through 3 steps labelled a), b) and c).

a) Let F, be a maximal submanifold in the family F, then the linear

map HE,(u F;,, u F)— H%, (F,; u F;) induced by the
i€l o iel—{r} i<r

inclusion of pairs is an isomorphism.

We recall the following definition (cf. [2; page 285]):

Let X be a topological space and X, X, subspaces of X. We say
that X; n X, separates X, X, if X, — X; and X; — X, are both
open in X; u X; — X; n X,.

Observe that U F,; and F, are separated by u F,. Set

iel— {r} i<r
Xi= v F, X,=F, X= U F,; and consider the commutati-
iel= {7} el
ve diagram (H means Cech cohomology)
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H(X, X)) — H(Xy, X1 n Xy)

) !

Hg-ing.(X; Xl) —> Hg‘ing.(X2; Xl n Xz)

Since U F; is an Euclidean neighbourhood retract (see proposi-
i€l

tion 13), the vertical arrows are isomorphisms by [2; proposition

6.12] and the upper horizontal arrow is an isomorphism by [2; VII

(6.15)]. Therefore the lower horizontal arrow is also an isomorphism.

b) Let F, be a maximal of F as before and denote by U the covering
of u F,, U=( u F,;, F,). Denote by H*( u F,; U) the singular
i€l

el iel- {r}
cohomology coming {from_ cochains defined on simplexes that have
image in one of the two sets of our covering. (It is not an open cove-
ring!). It follows from a) and [7; theorem 4, chapter 4] that the na-
tural linear map

(12) Hiw (U Fi; ) S HY (U Fp; U)
i€ ;

i€l

is an isomorphism.

c) We prove finally that ¢*; is an isomorphism by induction on the
number of elements of I. If I has only one element this is trivial
since the map is the identity.

Assume that we know that c¢) holds for I with at most » — 1
elements (# > 2) and assume now that I has 7 elements, and choose
a maximal F,.

We clearly have a row exact commutative diagram

0—C*(u F;; U)—> C*( U F)®C*(F,)— C*(u F,)—> 0
el

i€l~r i<r

! ! !

0 —> C*(F) —> C*(F)) ®C*(F,) —  C*(F) — 0

where Fy = {F}ic, Fo = {F}ic,.

Next, induction hypothesis and the 5-lemma applied to the co-
rresponding cohomology diagram tell us that we have an isomor-
phism
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H*(u F;; U) S H*(F).

iel
Combine this with (12) to achieve the proof of 7).

i) ¢*, is a graded algebra isomorphism.

As before, it is clear that ¢*, is a graded algebra homomorphism.
To skow that ¢*, is also a linear isomorphism we induct on the num-
ber of elements of I. ,

For I with ouly one element this is classical. Suppose that ii)
is true for I with at most » — 1 elements (» > 2) and I has now 7
elements.

Choose F, maximal in the family F.

We clearly have the row exact commutative diagram

0 —> C*(F) —> C*(F1) ® C*(F,) —> C*(Fy) —> 0

! ! !

0 —> CE(F) —> Ci(F1) ® CE(F,) —> CE(Fp) —> 0

where Fy = {F}ier -1, F2= {Fi,.

Finally, the 5-lemma and induction hypothesis applied to the
corresponding cohomology diagram finish the proof of ii).
iii) ¢*; is a linear isomorphism.

We induct on the number of elements of I.

If I has only one elements F, we have H¥% (F) = H% (F),
H%,(F) = H%,(F) and ¢*; is the de Rham isomorphism.

Suppose that iii) is true for 7 with at most » — 1 elements (» > 2),
and I has now 7 elements.

Choose F, maximal in the family F and let Fy = {F}}c I-{},
Fo = {F},., as before.

The following is a short exact sequence of cochain complexes:

0—» A*(F) > A*(Fy) ® A*(F,) 12> A*(Fp) — 0
where f1((9));c1) = (@ier-gy, @,) and
Fol(@ier— i, D) = (D; — Dylr)ics-

In fact, the only non trivial part is the surjectivity of f, and this
is consequence of theorem 2 applied to the net work F, in F, and
the bundle Ar¥,.
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Consider next the row exact commutative diagram of cochain
complexes

0 —> A*(F) —> A*(Fy) @ A*(F,) — A*(Fy) —> 0

! ! !

0 —> C&(F) —> C&(F1) ® C*(F,) —> C*(F) —- 0

The 5-lemma and induction hypothesis applied to the correspon-
ding cohomology diagram finish the proof of iii).

iv) @*; is an algebra homomorphism.
Consider the simplicial set Sy (F) of smooth singular simplexes

of u F; with images contained in some F;. Thus, we can form the
iel

commutative graded differential algebra A (S (F), 8) (cf. [3; 13.5]).
The following diagram is commutative, where the non-labelled

maps are the obvious ones:

A*(Seo (F)) —> C&F)
»\ /4 oy
A*(F)

From here we deduce the commutative triangle

H*(4 (S (F), 8) 2 HE (P

-f \ / = ¢*3

Hir(F)

but fis clearly an algebra homomorphism and g is an algebra iso-
morphism (cf. [3; property 15.6]), therefore ¢*; is an algebra isomor-
phism.

(13) Proposition
Let F = {F};; be a finite n-family of closed submanifolds

of a manifold M. Then u F;is an Euclidean neighbourhood retract,
i€l
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Proor:

We recall that a topological space is called an Fuclidean neigh-
bourhood retract (ENR) if it is homeomorphic to a subspace Y of
some R*, such that Y is a retract of some neighbourhood in R” (cf.
[2; page 81]).

We proof the proposition by induction on the number of elements
of I.

If I has only one elements F, we may consider (by Whitney's
embedding theorem) that F is a closed submanifold of some R
and then we use the existence of tubular neighbourhoods to show
that F is an ENR,

Suppose now that I has r elements and the proposition holds
for I with less than #» elements (v > 2).

Assume that F, is maximal in the family F. The two families
Fi = (Flict—tn, Fa2 = {F};., have less than 7 elements and
hence they are ENR by induction hypothesis.

But

u F)n F,=n F,.
iel— {r} i<r

Thus U F;=( u F;) u F,isan ENR (cf. [1; chapter 4]).

i€l ieI— {7}

3. NET-WORK OF FIXED POINTS OF TORAIL ACTIONS

Let G be a compact abelian Lie group (in particular if G is connec-
ted it is a torus) acting amoothly on a manifold M and having finite
orbit type (this happens for instance if M is compact or more genera-
lly if it has finite dimensional homology, (cf. [4; theorem 3]).

The purpose of this section is to prove the following theorem

(14) Theorem

F ={xeM|G,+¢ and F° = {x € M|GS + ¢} can be expressed
as union of the members of networks of submanifolds of M.

Here, e denotes the unit element of G, G, the isotropy subgroup
at x of the action of G on M and G} the l-component of G,.
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Proor:

If H is a subgroup of G define H= {aeGlax = x for all x € Fp},
where Fj denotes the fixed point set of the restricted action of H on
M (i.e. x € Fy if and only if ax = x for all a e H).

Tt is clear that H = H if and only if H = n G,. In particular

xe€Fpg
the family G of subgroups H of G such that H = H, is finite. Let
G° be the 1-components of the subgroups of G. Then we have F° ¢ F

and F——- U FH = U FG:C’ FO U FH= U FGDZ.
Heg Gz#e Heg® GOz #e
H#e H#e

We show now that the families {Fg}gen and {Fgluege are net-
works.

It is well known that the sets Fy are closed submanifolds of M
and it is easily checked that {Fy}neg and {Fgluego are n -families.

To show that property ¢) of net-works is verified, we endow M
with a G-invariant Riemannian metric. Observe that Fy is totally
geodesic in M for all closed subgroups H of G (in particular for H € G
or H e G°) and then use the following lemma.

(15) Lemma

If F; and F, are totally geodesic submanifolds of a Riemannian
manifold M and F; n F, is also a submanifold of M, then
T.(Fin Fy) =T,(F1) n T,(Fy), xe Fy n Fs.

Proor:

Trivially we have T,(F; n F,) € T,(F;) n T,(F;). Conversely,
if heT,(F1) n T,(F,), let « be the geodesic in M: :

a(f) = exp, (¢h).

By hypothes1s a(t) e Fin F2 and so h="a'(0)e T ,(F; n Fy).

Finally, property d) of networks is easily verified since we may
restrict ourselves to consider an Euclidean vector space with an
orthogonal action of G.

(16) Remark

Since for a compact Riemannian manifold the zero-set of a Killing
vector field coincides with the fixed point set of the action of a torus,
we obtain from theorem 14 that the set of zeroes of the X, (where
X4, ..., X, are Kkilling vector fields w1th [X“ X ;] =0 for all ¢, 7) is
a net-work of submanifolds.
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