PSEUDO-DIFFERENTIAL, OPERATORS ON V-MANIFOLDS AND FOLIATIONS

(Second part)

by

JOAN GIRBAU AND MARCEL NICOLAU

This paper is a continuation of Part I of the same title which has appeared at the last issue of this journal.

CHAPTER 3

PSEUDO-DIFFERENTIAL OPERATORS ON V-MANIFOLDS

REVIEW OF PSEUDO-DIFFERENTIAL OPERATORS ON \mathbb{R}^n

This section summarizes material presented in detail in [4]. Given a multi-index $\alpha = (\alpha_1 \dots \alpha_n)$ we denote by

$$D^{\alpha} = (-i)^{\alpha} \quad \frac{\partial^{|\alpha|}}{x_1^{\alpha_1} \dots x_n^{\alpha_n}} \ .$$

We denote by dx the measure

$$dx = (1/\sqrt{2\pi})^n dm$$

where dm means the Lebesgue measure on \mathbb{R}^n .

We shall say that a function $p(x, \xi): \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{C}$ is a symbol of order $m \in \mathbb{R}$ if

- (a) p is C^{∞} .
- (b) p has compact x-support. (In other words, there exists a

compact set $K \subset \mathbb{R}^n$ such that $p(x, \xi) = 0$ for any (x, ξ) such that $x \notin K$.)

(c) For all multi-indices α , β , there is a positive constant $C_{\alpha,\beta}$ such that

$$|D_x^{\alpha} D_{\xi^{\beta}} \phi(x, \xi)| \leq C_{\alpha, \beta} (1 + |\xi|)^{m - |\beta|}.$$

We shall denote by S^m the space of symbols of order m. $S^{m'} \subset S^m$ if $m \ge m'$. Denote by D the space of C^{∞} functions on \mathbb{R}^n with compact support. Given $p(x, \xi) \in S^m$ we define its associate pseudo-differential operator (abbreviated in the following as p.d.o.) to be the mapping $P: D \to D$ given by

(3.1)
$$(Pu)(x) = \int_{\mathbf{R}^n} e^{ix.\xi} p(x,\xi) \hat{u}(\xi) d\xi = \int e^{i(x-y).\xi} p(x,\xi) . u(y) dy d\xi$$
,

where x. ξ means $x^1 \xi^1 + ... + x^n \xi^n$.

We shall say that two symbols a and b are equivalent and write $a \sim b$ if $a - b \in S^{-\infty} = \bigcap_{m \in \mathbb{R}} S^m$. We shall also say that its associate p.d.o. are equivalent.

We shall need the Kohn-Nirenberg theorem ([4], theorem on page 16) concerning the product of two p.d.o's.

We shall also need the following

Lemma. Let P be a p.d.o. that comes from a symbol $p(x, \xi)$ of order $-\infty$. Let $K \subset \mathbb{R}^n$ be a compact. There is a C^{∞} function k(x, y) on $\mathbb{R}^n \times \mathbb{R}^n$, with compact support, such that, for any $u \in \mathbb{D}$ with support contained in K, one has

$$(Pu)(x) = \int_{\mathbb{R}^n} k(x, y) u(y) dy.$$

Sketch of Proof. Define $k'(x,y) = \int_{\mathbf{R}^n} e^{i(x-y).\xi} p(x,\xi) d\xi$. Since $p \in S^{-\infty}$,

this integral is convergent and k' is well defined. Let $\Psi \in D$ such that $\Psi = 1$ on K and put k(x, y) = k'(x, y). $\Psi(y)$. Then, k is the function looked for.

Condition (b) in the definition of a symbol simplifies many proofs, although it complicates some other ones. In the case of the existence of parametrices for elliptic differential operators, the proof is more

complicate. The exposition in [4] has some lacks in that point. Because of (b), an elliptic differential operator is not a p.d.o. We need to introduce some definitions in order to enounce correctly the theorem on page 29 of [4]. Given a differential operator

$$P = \sum_{|\alpha| \le m} a_{\alpha}(x) D^{\alpha}$$

we shall say that P is elliptic if its leading order symbol

$$\sigma_L(P) = \sum_{|\alpha| = m} a_{\alpha}(x) \, \xi^{\alpha}$$

only vanishes for $\xi = 0$.

Given an elliptic differential operator P, a p.d.o. Q and a compact K in \mathbb{R}^n we shall say that $PQ \sim I$ (I = identity) (res. $QP \sim I$) over the functions $u \in D(K)$ if there exist p.d.o's. P' and I' such that $P'Q \sim I'$ (resp. $QP' \sim I'$) over the functions $u \in D(K)$ and such that P'Qu = PQu (resp. QP'u = QPu) and I'u = Iu for any $u \in D(K)$. One can prove the following

Theorem 3.1. Let P be an elliptic differential operator. Given a compact K in \mathbb{R}^n , there exists a p.d.o. Q such that $QP \sim PQ \sim I$ over the functions u with support contained in K.

A p.d.o. can be extended to the Sobolev spaces as we are going to see. Let $p(x, \xi) \in S^m$. Let P be its associate p.d.o. Let $|| \ ||_s$ be the Sobolev norm on $D(\mathbf{R}^n)$ (see [4] page 3). Let us denote by $(D, || \ ||_s)$ the space $D(\mathbf{R}^n)$ endowed with the norm $|| \ ||_s$. One has the following

Theorem 3.2. ([4] pag. 11-13.) For any $s \in \mathbf{R}$ the mapping P: (D, $||\ ||_s) \rightarrow (D, ||\ ||_{s-m})$ is continuous.

By virtue of this theorem P can be extended to a mapping $P: H_s(\mathbf{R}^n) \to H_{s-m}(\mathbf{R}^n)$ in a natural way.

We also need the theorem of invariance of p.d.o.'s. under change of coordinates. In order to enounce it we shall give the following definition. Let V and \widetilde{V} be two open sets in \mathbb{R}^n . Let $f: \widetilde{V} \to V$ be a C^{∞} diffeomorphism. Let P be a p.d.o. acting on the C^{∞} functions u with support contained in a compact $K \subset V$ by the expression (3.1), where $p(x, \xi)$ has x-support contained in V. Let $\widetilde{K} = f^{-1}(K)$. Given a C^{∞} function \widetilde{u} on \widetilde{V} with support contained in K, we define $(\widetilde{P}\widetilde{u})$ (\widetilde{x}) = (Pu) (x), where $f(\widetilde{x}) = x$ and $\widetilde{u} = u$ o f. One has the following

Theorem 3.3. (Change of coordinates.) In the situation above, \widetilde{P} is a $\rho.d.o.$

The proof is sketched in [4].

THE NOTION OF A PSEUDO-DIFFERENTIAL OPERATOR ON A V-MANIFOLD

Let (B, \mathcal{A}) be a V-manifold of dimension n. We shall denote by $\mathcal{E}(B)$ the space of C^{∞} complex valued functions on B and by D(B) the space of C^{∞} complex valued functions on B with compact support. We shall denote by \mathcal{H} the family of open sets U in B for which there exists a l.u.s. $\{\widetilde{U}, G, \varphi\} \in \mathcal{A}$.

Definition 3.1. We shall say that a linear mapping $P: D(B) \to \mathcal{E}(B)$ is a p.d.o. on B of order k if for any $x_0 \in B$ there exists $U \in \mathcal{H}$ with $x_0 \in U$ satisfying the following condition:

- (C). Given,
- (i) a l.u.s. $\{\widetilde{U}, G, \varphi\} \in \mathcal{A}$ corresponding to U,
- (ii) a compact $\widetilde{K} \subset \widetilde{U}$, and
- (iii) a C^{∞} function $F: \widetilde{U} \to \mathbb{R}$ with compact support,

there exists a symbol of order k, $p(x, \xi)$, on \widetilde{U} , such that for any $f \in D(B)$ with support contained in $K = \varphi(\widetilde{K})$ one has

$$F(x) \cdot (Pf)_{\widetilde{U}}(x) = \int e^{i(x-y)\cdot\xi} p(x,\xi) f_{\widetilde{U}}(y) dy d\xi.$$

Definition 3.2. Given a p.d.o. P on B, we shall denote by \mathcal{H}_P the subset of \mathcal{H} consisting of those $U \in \mathcal{H}$ satisfying condition (C) of definition 3.1.

Proposition 3.1. Let P be a p.d.o. on B. If $U \in \mathcal{H}_P$ and $U' \in \mathcal{H}$ is contained in U, then $U' \in \mathcal{H}_P$.

PROOF. Let $\{\widetilde{U}', G', \varphi'\}$, $\{\widetilde{U}, G, \varphi\}$ be l.u.s's of \mathcal{A} corresponding to U' and U respectively. Let $\widetilde{K}' \subset \widetilde{U}'$ be a compact and F' a C^{∞} function $\widetilde{U}' \to \mathbb{R}$ with compact support. Let λ be an injection $\{\widetilde{U}', G', \varphi'\} \to \{\widetilde{U}, G, \varphi\}$ and $\eta : G' \to G$ its associated homomorphism. Put

 $\widetilde{K}=\lambda(\widetilde{K}')$ and consider the function F on \widetilde{U} defined by F=F' o λ^{-1} on $\lambda(\widetilde{U}')$ and F=0 outside. F is a C^{∞} function with compact support. By definition 3.3 there is a symbol $p(x,\xi)$ on \widetilde{U} such that, for any $f\in D(B)$ with support contained in $K=\varphi(\widetilde{K})=\varphi'(\widetilde{K}')$ one has

$$F(x)\cdot (Pf)\widetilde{v}(x) = \int e^{i(x-y)\cdot\xi} p(x,\xi) f\widetilde{v}(y) dy d\xi.$$

Observe that, if $\Psi: \widetilde{U} \to \mathbf{R}$ is a C^{∞} function with compact support contained in $\lambda(\widetilde{U}')$ and such that $\Psi = 1$ on sup F, then,

$$F(x) (Pf)\widetilde{v}(x) = \int e^{i(x-y).\xi} \Psi(x) \cdot p(x, \xi) f\widetilde{v}(y) dy d\xi.$$

Hence we can take the symbol $p(x, \xi)$ with the x-support contained in $\lambda(\widetilde{U}')$.

Given $f \in D(B)$ with support contained in K, define a C^{∞} function \widetilde{f} on \widetilde{U} such that $f = \widetilde{f}\widetilde{v}$ o λ^{-1} on $\lambda(\widetilde{U}')$ and $\widetilde{f} = 0$ outside. Then,

$$f\widetilde{v} = \sum_{i=1}^{m} \widetilde{f} \circ \sigma_{i}^{-1}$$

where $\sigma_1 = I$, σ_2 , ..., σ_m are representatives of each one of the classes of $G/\eta(G')$. Using this decomposition of $f_{\widetilde{U}}$ one has F(x) $(Pf)_{\widetilde{U}}(x) = \sum I_i(x)$, i = 1...m, where

$$I_i(x) = \int e^{i(x-y).\xi} p(x,\xi) \widetilde{f}(\sigma_i^{-1}(y)) dy d\xi.$$

Fix $i \neq 1$. Let $\varphi_i \in D(\widetilde{U})$ with compact support contained in $\sigma_i(\lambda(\widetilde{U}'))$ and such that $\varphi_i = 1$ on $\sigma_i(\widetilde{K})$. Then,

$$I_i(x) = \int e^{i(x-y).\xi} \varphi_i(y) p(x, \xi) \widetilde{f}(\sigma_i^{-1}(y)) dy d\xi.$$

Consider the operator Q_i , on \widetilde{U} , acting on the C^{∞} functions with compact support contained in $\sigma_i(\widetilde{K})$, defined by

$$(Q_i g)(x) = \int e^{i(x-y).\xi} \varphi_i(y) p(x,\xi) g(y) dy d\xi.$$

By virtue of technical lemma ([4] pag 17), by setting $r(x, \xi, y) = \varphi_i(y) \, p(x, \xi), \, Q_i$ is a p.d.o. with symbol $q_i(x, \xi)$ such that

$$q_i(x,\xi) \sim \sum_{\alpha} \frac{\partial_{\xi}^{\alpha} D_{y}^{\alpha} (\varphi_i(y) \cdot p(x,\xi))|_{y=x}}{\alpha!} = 0$$

(the equality yields since the x-support of $p(x, \xi)$ and the support of φ_i are disjoint). In other words, Q_i comes from a symbol of order $-\infty$. Then, by virtue of the lemma in the first section of this chapter, there exists a C^{∞} function, $k'_i(x, y)$, on $\widetilde{U} \times \widetilde{U}$, with compact support, such that, for any $g \in D(\widetilde{U})$ with support contained in $\sigma_i(\widetilde{K})$, one has

$$(Q_i g)(x) = \int k'_i(x, y) g(y) dy.$$

It is clear that we can take k'_i with the x-support contained in $\lambda(\widetilde{U}')$ and the y-support contained in $\sigma_i(\lambda(\widetilde{U}'))$. Hence,

$$I_{i}(x) = (Q_{i}(\widetilde{f} \circ \sigma_{i}^{-1}))(x) = \int k'_{i}(x, y) \, \widetilde{f}(\sigma_{i}^{-1}(y)) \, dy =$$

$$= \int k'_{i}(x, \sigma_{i}(y)) \, \widetilde{f}(y) \, J(\sigma_{i}) \, dy = \int k_{i}(x, y) \, \widetilde{f}(y) \, dy ,$$

where $k_i(x, y) = J(\sigma_i) k'_i(x, \sigma_i(y))$ and $J(\sigma_i)$ denotes the Jacobian of σ_i . Observe that k_i has the x-support and the y-support contained in $\lambda(U')$. Put $k = \sum_{i=2}^{m} k_i$. We shall have

$$F(x)\cdot (Pf)_{\widetilde{U}}(x)=\int e^{i(x-v)\cdot\xi}\,p(x,\xi)\,\widetilde{f}(y)\,dy\,d\xi\,+\int k(x,y)\,\widetilde{f}(y)\,dy\,.$$

Both integrals define p.d.o's that we can think acting on $\lambda(\widetilde{U}')$. Now, theorem 3.3 applied to the open sets \widetilde{U}' and $\lambda(\widetilde{U}')$ and to the diffeomorphism $\lambda:\widetilde{U}'\to\lambda(\widetilde{U}')$ completes the proof.

Corollary. If P_1 and P_2 are p.d.o's. on B, then so is $P_1 + P_2$.

PROOF. By virtue of proposition above, for each $p \in B$ there exists a neighborhood U of p such that $U \in \mathcal{H}_{P_1}$ and $U \in \mathcal{H}_{P_2}$. Obviously $U \in \mathcal{H}_{P_1+P_2}$. Then each $p \in B$ has a neighborhood $U \in \mathcal{H}$ satisfying condition (C) for $P_1 + P_2$.

Example 3.1. Consider the natural V-manifold structure on \mathbb{R}^n . Each p.d.o. on \mathbb{R}^n in the sense of the preceding section is a p.d.o. in the sense of definition 3.1. Let $p(x, \xi)$ be a symbol on \mathbb{R}^n satisfying conditions (a) and (c) of the definition of the preceding section, but not necessarily (b). The mapping $P: D(\mathbb{R}^n) \to \mathcal{E}(\mathbb{R}^n)$ defined by (3.1) constitutes a p.d.o. in the sense of definition 3.1.

COMPOSITION OF PSEUDO-DIFFERENTIAL OPERATORS

Let P and Q be two p.d.o's. on B. Let $f \in D(B)$. Consider the operator $PfQ: D(B) \to \mathcal{E}(B)$ defined by $(PfQ)(u) = P(f \cdot Q(u))$. If B is compact we can take $f \equiv 1$. Then PfQ is precisely the composition $P \circ Q$. (Observe that $P \circ Q$ is not defined if B is not compact since for $u \in D(B)$, $Q(u) \in \mathcal{E}(B)$ and P acts only on D(B)).

Theorem 3.4. PfQ is a p.d.o. on B.

PROOF. Let $\{U_{\alpha}\}$ be a locally finite open cover of B such that each $U_{\alpha} \in \mathcal{H}_P$, $U_{\alpha} \in \mathcal{H}_Q$. There is a finite number of U_{α} such that $U_{\alpha} \cap \sup f \neq \phi$. Let us denote by $U_1 \dots U_k$ these U_{α} . Let $\{g_{\alpha}\}$ be a C^{∞} partition of unity subordinate to the cover $\{U_{\alpha}\}$ (th. 2.1). Let $g_1 \dots g_k$ be the g_{α} 's corresponding to $U_1 \dots U_k$. We shall have

$$(PfQ)(u) = P(f \cdot Q(u)) = P((\sum_{\alpha} g_{\alpha}f) \cdot Q(u)).$$

Observe that $g_{\alpha} f = 0$ if g_{α} is different from $g_1 \dots g_k$. Hence

$$(PfQ)(u) = \sum_{i=1}^{k} (Pg_i fQ)(u).$$

Let us prove that each Pg_ifQ is a p.d.o. on B. We want to prove that the U_{α} 's satisfy condition (C) of definition 3.1 for the operator Pg_ifQ . If $U_{\alpha} \cap U_i = \phi$ it is clear that U_{α} satisfies condition (C). Let U_j be such that $U_j \cap U_i \neq \phi$. Let $\{\widetilde{U}_j, G_j, \varphi_j\}$ be a l.u.s. of \mathcal{A} corresponding to U_j . Let \widetilde{K}_j be a compact contained in \widetilde{U}_j . Let F_j

be a C^{∞} function $\widetilde{U}_j \to \mathbf{R}$ with compact support. We want to show that $F_j(Pg_ifQu)_{\widetilde{U}_j}$ comes from a symbol for any $u \in D(B)$ with support contained in K_j . Since P is a p.d.o. and $U_j \in \mathcal{H}_P$ there exists a symbol $p(x, \xi)$ on \widetilde{U}_j such that

$$F_{j}(x) (Pg_{j}fQu)\widetilde{v}_{j}(x) = \int e^{i(x-y).\xi} p(x, \xi) (g_{i}fQu)\widetilde{v}_{j}(y) dy d\xi.$$

But $(g_i f Q u)_{\widetilde{U}_j} = (g_i f)_{\widetilde{U}_j} (Q u)_{\widetilde{U}_j}$ and since $U_j \in \mathcal{H}_Q$ there exists a symbol $q(x, \xi)$ on U_j such that

$$(g_i f)_{\widetilde{U}_i}(x) (Qu)_{\widetilde{U}_i}(x) = \int e^{i(x-y).\xi} q(x, \xi) u_{\widetilde{U}_i}(y) dy d\xi.$$

By virtue of the theorem of Kohn-Nirenberg ([4] pag 16) there exists a symbol $s(x, \xi)$ such that

$$F_j(x)\cdot (Pg_ifQu)\widetilde{v}_j(x)=\int e^{i(x-y).\xi}\,s(x,\xi)\,u\widetilde{v}_j\,dy\,d\xi.$$

Elliptic differential operators on V-manifolds. Existence of parametrices

Definition 3.3. We shall say that a linear mapping $D: \mathcal{E}(B) \to \mathcal{E}(B)$ is a differential operator (abbreviated in the following as d.o.) of order k if for any $\{\widetilde{U}, G, \varphi\} \in \mathcal{A}$ there exists a C^{∞} d.o. of order k on $\widetilde{U} \subset \mathbb{R}^n$,

$$D\widetilde{v} = \sum_{|\alpha| \le k} a_{\alpha}(x) D^{\alpha}$$

in such a way that for any $u \in \mathcal{E}(B)$ one has $(Du)_{\widetilde{U}} = D_{\widetilde{U}}(u_{\widetilde{U}})$.

Remark. A d.o. is always a p.d.o. In particular the identity I is a p.d.o.

Definition 3.4. Given a d.o. D on B, we shall say that D is elliptic if the d.o's. $\sum a_{\alpha}(x) D^{\alpha}$ induced on each \widetilde{U} are elliptic.

Proposition 3.3. Let $D: \mathcal{E}(B) \to \mathcal{E}(B)$ be a d.o. Let $P: \mathcal{D}(B) \to \mathcal{E}(B)$ be a p.d.o. The composite operators D o P and P o D are defined and are p.d.o's.

PROOF. If B is compact, the proposition is an immediate consequence of theorem 3.4. Let us give an independent proof for the non-compact case.

Observe first that D o P is defined. In fact, P maps D(B) into $\mathcal{E}(B)$ and D maps D(B) into D(B). Hence D o P maps D(B) into $\mathcal{E}(B)$. In an analogous way P o D is defined as a mapping from D(B) into $\mathcal{E}(B)$. Let us prove that D o P is a p.d.o. Let $\{U_{\alpha}\}$ be a locally finite open cover of B with $U_{\alpha} \in \mathcal{H}_P$. We want to show these U_{α} 's satisfy condition (C) of definition 3.1 for the operator D o P. In fact, choose a $\{\widetilde{U}_{\alpha}, G_{\alpha}, \varphi_{\alpha}\} \in \mathcal{A}$ corresponding to U_{α} . Choose a compact $\widetilde{K}_{\alpha} \subset \widetilde{U}_{\alpha}$ and a C^{∞} function $F_{\alpha} : \widetilde{U}_{\alpha} \to \mathbf{R}$ with compact support. Let Φ_{α} be a C^{∞} function on \widetilde{U}_{α} with compact support such that $\Phi_{\alpha} \equiv 1$ on sup F_{α} . For any $u \in D(B)$ with support contained in $K_{\alpha} = \varphi_{\alpha}(\widetilde{K}_{\alpha})$ we shall have

$$F_{\alpha} \cdot (DPu)_{\widetilde{U}_{\alpha}} = F_{\alpha} \cdot D_{\widetilde{U}_{\alpha}}(Pu)_{\widetilde{U}_{\alpha}} = F_{\alpha} \cdot D_{\widetilde{U}_{\alpha}}(\Phi_{\alpha}(Pu)_{\widetilde{U}_{\alpha}}).$$

Since $U_{\alpha} \in \mathcal{H}_{P}$, Φ_{α} $(Pu)_{\widetilde{U}_{\alpha}}$ comes from a symbol on \widetilde{U}_{α} , so does $F_{\alpha} \cdot D_{\widetilde{U}_{\alpha}}$ $(\Phi_{\alpha}(Pu))_{\widetilde{U}_{\alpha}}$, by virtue of the theorem of Kohn-Nirenberg. Let us prove that the U_{α} 's satisfy also condition (C) of definition 3.1 for the operator P o D. Choose $\{\widetilde{U}_{\alpha}, G_{\alpha}, \varphi_{\alpha}\} \in \mathcal{A}$ corresponding to U_{α} and the compact $\widetilde{K}_{\alpha} \subset \widetilde{U}_{\alpha}$ as well as the function F_{α} as above. For any C^{∞} function u on u with support contained in u on u we shall have

$$F_{\alpha}(x) (PDu)_{\widetilde{U}_{\alpha}}(x) = \int e^{i(x-y).\xi} p(x,\xi) (Du)_{\widetilde{U}_{\alpha}}(y) dy d\xi$$

since $U_{\alpha} \in \mathcal{H}_{P}$. By virtue of the theorem of Kohn-Nirenberg, $F_{\alpha}(PDu)_{\widetilde{U}_{\alpha}}$ comes from a symbol on \widetilde{U}_{α} .

Proposition 3.4. Let $D: \mathcal{E}(B) \to \mathcal{E}(B)$ be an elliptic d.o. Let $U \in \mathcal{H}$. Let $\{\widetilde{U}, G, \varphi\} \in \mathcal{A}$ corresponding to U. Let \widetilde{K} be a G-invariant compact in \widetilde{U} . There exists a p.d.o. (in the sense of the first section of this chapter) $Q_{\widetilde{V}}: D(\widetilde{U}) \to D(\widetilde{U})$ such that

- (i) $Q_{\widetilde{U}}$ o $D_{\widetilde{U}} \sim D_{\widetilde{U}}$ o $Q_{\widetilde{U}} \sim I$ over the G-invariant functions with support contained in \widetilde{K} (These equivalences in the sense of the first section of this chapter).
 - (ii) QT maps G-invariant functions into G-invariant functions.

PROOF. By virtue of theorem 3.1, there exists $Q: D(\widetilde{U}) \to D(\widetilde{U})$ satisfying condition (i). One can see that there exist C^{∞} functions $k_1(x, y)$, $k_2(x, y)$ on $\mathbb{R}^n \times \mathbb{R}^n$ with compact x and y-supports contained in \widetilde{U} such that for any C^{∞} function h on \widetilde{U} with compact support contained in \widetilde{K} one has

$$(D\widetilde{v} Q h)(x) = h(x) + \int k_1(x, y) h(y) dy$$

 $(QD\widetilde{v} h)(x) = h(x) + \int k_2(x, y) h(y) dy.$

Given $\sigma \in G$ let Q_{σ} be the operator $D\left(\widetilde{U}\right) \to D\left(\widetilde{U}\right)$ defined by $(Q_{\sigma}(u))(x) = Q(u \circ \sigma^{-1})(\sigma(x))$. Theorem 3.3 asserts that Q_{σ} is a p. d.o. in the sense of the first section of this chapter. Let n(G) be the order of G. Define

$$Q\widetilde{v} = \frac{1}{n(G)} \sum_{\sigma \in G} Q_{\sigma}.$$

It is clear that this $Q_{\widetilde{U}}$ satisfies condition (ii). We want to show that it also satisfies condition (i). First observe that if $h: \widetilde{U} \to \mathbf{R}$ (or \mathbf{C}) is a G-invariant C^{∞} function with compact support, so is $D_{\widetilde{U}}(h)$. In fact, it suffices to observe that there exists $u \in D(B)$ such $h = u_{\widetilde{U}}$. Then, one has

$$D_{\widetilde{U}}(h) \circ \sigma = D_{\widetilde{U}}(u_{\widetilde{U}}) \circ \sigma = (Du)_{\widetilde{U}} \circ \sigma = (Du)_{\widetilde{U}} = D_{\widetilde{U}}(u_{\widetilde{U}}) = D_{\widetilde{U}}(h).$$

Let h be a G-invariant C^{∞} function $\widetilde{U} \to \mathbb{C}$ with support contained in \widetilde{K} . We shall have

$$Q_{\sigma}(D_{\widetilde{U}}(h))(x) = Q(D_{\widetilde{U}}(h) \circ \sigma^{-1})(\sigma(x)) = Q(D_{\widetilde{U}}(h))(\sigma(x)) =$$

$$= h(\sigma(x)) + \int k_{2}(\sigma(x), y) h(y) dy = h(x) + \int k_{2}(\sigma(x), y) h(y) dy.$$

Hence

$$Q_{\widetilde{v}}(D_{\widetilde{v}}(h))(x) = \frac{1}{n(G)} \left(\sum_{\sigma \in G} h(x) + \sum_{\sigma \in G} \int k_2(\sigma(x), y) h(y) dy \right) =$$
$$= h(x) + \int \overline{k_2}(x, y) h(y) dy,$$

where
$$\overline{k}_2(x, y) = \frac{1}{n(G)} \sum_{\sigma \in G} k_2(\sigma(x), y)$$
. Hence one has

 $Q_{\widetilde{v}}$ o $D_{\widetilde{v}} \sim I$ over the G-invariant C^{∞} functions with support contained in \widetilde{K} .

In order to prove $D_{\widetilde{U}}$ o $Q_{\widetilde{U}} \sim I$ we shall need the following

Lemma. For any C^{∞} function $h: \widetilde{U} \to \mathbb{C}$ with compact support and any $\sigma \in G$ we have $D_{\widetilde{U}}(h \circ \sigma) = (D_{\widetilde{U}}h) \circ \sigma$.

Proof of Lemma. It suffices to prove the equality for the points $x \in \widetilde{U}$ whose isotropy group $G_x = \{I\}$ since, if the equality holds for these points, it holds, by continuity, for any point.

Let x_0 be a point of \widetilde{U} such that $G_{x_0} = \{I\}$. Let $\sigma \in G$. We want to show that $D_{\widetilde{U}}(h \circ \sigma)(x_0) = (D_{\widetilde{U}}h)(\sigma(x_0))$. Let V_{x_0} be a small open neighborhood of x_0 such that for any $\sigma_1, \sigma_2 \in G$ with $\sigma_1 \neq \sigma_2$ one has $\sigma_1(V_{x_0}) \cap \sigma_2(V_{x_0}) = \phi$. (It is possible because G is finite and $G_{x_0} = \{I\}$). Let g be a C^{∞} function on \widetilde{U} with compact support contained in V_{x_0} , equal to h o σ in a small neighborhood of x_0 contained in V_{x_0} . Let f be the function on \widetilde{U} equal to g o τ^{-1} on each $\tau(V_{x_0})$, $\tau \in G$, and equal to zero outside the union of $\tau(V_{x_0})$ for any τ . f is a G-invariant C^{∞} function with compact support, hence $D_{\widetilde{u}}f$ is G-invariant. In other words, $D_{\widetilde{u}}f = (D_{\widetilde{u}}f)$ o τ for any $\tau \in G$. Since h o σ is equal to g in a small neighborhood of x_0 , one has $D_{\widetilde{u}}(h \circ \sigma)(x_0) =$ $=D_{\widetilde{u}}(g)(x_0)\cdot f\circ \sigma$ is equal to g on V_{x_0} since if $\sigma(x)\in \sigma(V_{x_0})$ one has $f(\sigma(x)) = g(\sigma^{-1}\sigma(x)) = g(x)$. Hence $D_{\widetilde{U}}(g)(x_0) = D_{\widetilde{U}}(f \circ \sigma)(x_0)$. Since f is G-invariant with compact support, so is $D_{\widetilde{v}}$ f. Hence $D_{\widetilde{U}}(f \circ \sigma)(x_0) = (D_{\widetilde{U}}f)(x_0) = (D_{\widetilde{U}}f)(\sigma(x_0)).$ We know that $f(\sigma(x)) =$ $= g(x) = h(\sigma(x))$ for any x in a small neighborhood of x_0 . Hence f is equal to h in a small neighborhood of $\sigma(x_0)$. Hence $(D_{\widetilde{u}}f)$ $(\sigma(x_0)) =$ $=D_{\widetilde{U}}(h)$ $(\sigma(x_0))$. We have then proven that $D_{\widetilde{U}}(h \circ \sigma)$ $(x_0)=(D_{\widetilde{U}}h)$ $(\sigma(x_0)).$

End of the proof of proposition. Let us prove that $D_{\widetilde{U}}$ o $Q_{\widetilde{U}} \sim I$ over the G-invariant C^{∞} functions $h: \widetilde{U} \to \mathbf{C}$ with support contained in \widetilde{K} . We shall have

$$D_{\widetilde{U}}(Q_{\widetilde{U}}h) = \frac{1}{n(G)} \sum_{\sigma \in G} D_{\widetilde{U}}(Qh).$$

Since h is G-invariant one has $(Q_{\sigma}h)(x) = Q(h)(\sigma(x))$. Hence

$$D_{\widetilde{U}}(Q_{\widetilde{U}}h) = \frac{1}{n(G)} \sum_{\sigma} D_{\widetilde{U}}(Q(h) \circ \sigma) = \text{(by virtue of lemma)} =$$

$$= \frac{1}{n(G)} \sum_{\sigma} D_{\widetilde{U}}(Q(h)) \circ \sigma = \frac{1}{n(G)} \sum_{\sigma} \{h(\sigma(x)) +$$

$$+ \int k_1(\sigma(x), y) h(y) dy\} = h(x) + \int \overline{k}_1(x, y) h(y) dy,$$

where

$$\overline{k}_1(x, y) = \frac{1}{n(G)} \sum_{\sigma} k_1(\sigma(x), y).$$

Hence $D\widetilde{v}$ o $Q\widetilde{v} \sim I$ over these h' s.

Definition 3.5. Let P and P' be two p.d.o's. on B. We shall say that P is equivalent to $P'(P \sim P')$ if P - P' is a p.d.o. of order $-\infty$ (that is, of order k for any k).

Theorem 3.5. Let $D: \mathcal{E}(B) \to \mathcal{E}(B)$ be an elliptic d.o. There exists a p.d.o. $Q: D(B) \to \mathcal{E}(B)$ such that $Q \circ D \sim D \circ Q \sim I$. The operator Q is called parametrix of D. (Observe that $Q \circ D$ and $D \circ Q$ are p.d.o's. by virtue of proposition 3.3.)

The proof of this theorem is based on proposition 3.4 and on some ideas taken from [1].

PROOF. Let $\{U_i\}$ be a locally finite open cover of B with $U_i \in \mathcal{H}$. Let $\{f_i\}$ be a C^{∞} partition of unity subordinate to $\{U_i\}$. Let g_i be a C^{∞} function on B with compact support contained in U_i , equal to 1 on sup f_i . For any $\{\widetilde{U}_i, G_i, \varphi_i\} \in \mathcal{A}$ corresponding to U_i let $Q_{\widetilde{U}_i}$, be the operator satisfying conditions (i) and (ii) of proposition 3.4 for

 $D_{\widetilde{U}_i}$ and the compact $\widetilde{K}_i = \varphi_i^{-1}$ (sup g_i). Consider on each U_i the induced V-manifold structure. Define on each U_i an operator $Q_i: \mathcal{D}(U_i) \to \mathcal{D}(U_i)$ in the following way. Let $U \in \mathcal{H}$, $U \subset U_i$. Let $\{\widetilde{U}, G, \varphi\} \in \mathcal{A}$ corresponding to U. Let $f \in \mathcal{D}(U_i)$. Take an injection $\lambda \colon \{\widetilde{U}, G, \varphi\} \to \{\widetilde{U}_i, G_i, \varphi_i\}.$ We define $(Q_i f)_{\widetilde{U}}$ to be equal to $Q_{\widetilde{V}_i}(f_{\widetilde{V}_i})$ o λ . Since $Q_{\widetilde{U}_i}$ satisfies condition (ii) of proposition 3.4, $(Q_i f)_{\widetilde{U}}$ depends neither on the choice of $\{\widetilde{U}_i, G_i, \varphi_i\}$ nor on the choice of λ . By vitue of proposition 2.4 we can extend each element of $D(U_i)$ to a C^{∞} function on B. Identify in that way $D(U_i)$ to a subspace of D(B). The operator $f_i Q_i g_i$ that assigns $f_i Q_i (g_i f)$ to each $f \in D(B)$ is (by virtue of the inclusion $D(U_i) \subset D(B)$) an operator from D(B)into D(B). The operator $Q = \sum f_i Q_i g_i$ is also a well defined operator $D(B) \to D(B)$ since there is only a finite number of U_i such that $U_i \cap \sup f \neq \emptyset$, for a given $f \in D(B)$. Let us prove that Q is a p.d.o. Given $p \in B$ let I_p be the set of indices j such that $p \in U_j$. I_p is a finite set. Choose an open neighborhood U of p, $U \in \mathcal{H}$, contained in U_i for any $i \in I_p$. We want to show that U satisfies condition (C) of definition 3.1 for the operator Q. Let $\{\widetilde{U}, G, \varphi\}$ be a l.u.s. corresponding to U. Let \widetilde{K} be a compact contained in \widetilde{U} . Let $F:\widetilde{U}\to \mathbf{R}$ be a C^{∞} function with compact support. Let $\{\widetilde{U}_i, G_i, \varphi_i\}$ $A \in \text{corres}$ ponding to U_i for any $i \in I_p$. Given $f \in D(B)$ with support contained in $K = \varphi(\widetilde{K})$, then $f_i Q_i(g_i f) = 0$ if $i \notin I_p$. If $i \in I_p$ we shall have

$$(f_i Q_i(g_i f))_{\widetilde{v}} = (f_i)_{\widetilde{v}} (Q_i(g_i f))_{\widetilde{v}} = (f_i)_{\widetilde{v}} (Q_{\widetilde{v}_i}(g_i f)_{\widetilde{v}_i} \circ \lambda_i)$$

But there exist a symbol p_i on each \widetilde{U}_i such that

$$(Q_{\widetilde{v}_i}(g_if)_{\widetilde{v}_i}) \; (\lambda_i(x)) = \int e^{i \, (\lambda_i(x) - y).\xi} \, p \, (\lambda_i(x), \, \xi) \; (g_if)_{\widetilde{v}_i} \, (y) \; dy \, d\xi \; .$$

Observe that $(g_i f)_{\widetilde{U}_i}$ has support contained in $\lambda_i(K)$. By a reasoning similar to that in the proof of Proposition 3.1 one can prove that there is a symbol q_i on \widetilde{U} such that

$$(Q_{\widetilde{U}_i}(g_if)_{\widetilde{U}_i})\;(\lambda_i(x)) = \int e^{i(x-x).\eta}\;q_i(x,\eta)\;(g_if)_{\widetilde{U}}\;(z)\;dzd\eta\;.$$

By virtue of technical lemma ([3] pag. 17), by setting $r(x, \eta, z) = q_i(x, \eta)$ (g_i) $\tilde{g}(z)$, there exists a symbol q'_i such that

$$(Q\widetilde{v}_i(g_if)\widetilde{v}_i)\;(\lambda_i(x))=\int e^{i\,(x-z).\eta}\,q'_i(x,\eta)\,f\widetilde{v}\;(z)\;dz\,d\eta\;.$$

It is clear that

$$\sum_{i \in I_p} F(x) (f_i) \widetilde{v}(x) (Q_i(g_i f)) \widetilde{v}(x) =$$

$$= \sum_{i \in I_p} F(x) (f_i) \widetilde{v}(x) (Q \widetilde{v}_i(g_i f) \widetilde{v}_i) (\lambda_i(x))$$

has the required expression.

Observe that our calculations also prove that $(Q_i)_{\widetilde{U}}$ is a p.d.o. on \widetilde{U} in the sense of the first section of this chapter.

In order to prove that Q o $D \sim D$ o $Q \sim I$ we need the following.

Lemma. Let $U \in \mathcal{H}$, $U \subset U_i \cap U_j$. Let $K_i = \sup g_i$ and $K_j = \sup g_j$. Let $\{\widetilde{U}, G, \varphi\} \in \mathcal{A}$ corresponding to U. Over the functions $f \in D(B)$ with support contained in $K_i \cap K_j \cap U$, the operator $(Q_i)_{\widetilde{U}} : f_{\widetilde{U}} \to (Q_i)_{\widetilde{U}} f_{\widetilde{U}}$ and the operator $(Q_j)_{\widetilde{U}}$, defined in an analogous way, are equivalent in the sense of the first section of this chapter.

PROOF OF LEMMA. We have $D_{\widetilde{U}_i}$ o $Q_{\widetilde{U}_i} \sim I_{\widetilde{U}_i}$ over the functions $f_{\widetilde{U}_i}$ such that sup $f \subset K_i$, where $I_{\widetilde{U}_i}$ means the identity on \widetilde{U}_i . We also have $Q_{\widetilde{U}_i} \circ D_{\widetilde{U}_i} \sim I_{\widetilde{U}_i}$ over the functions $f_{\widetilde{U}_i}$ such that sup $f \subset K_j$. Since we have assumed that sup $f \subset K_i \cap K_j$, the two preceding relations hold. From the first one we deduce $D_{\widetilde{U}}$ o $(Q_i)_{\widetilde{U}} \sim I_{\widetilde{U}}$. From the second one we deduce $(Q_j)_{\widetilde{U}_i} \circ D_{\widetilde{U}_i} \sim I_{\widetilde{U}_i}$ (In the sense of the first section of this chapter). Hence

$$(Q_i)_{\widetilde{v}} = I_{\widetilde{v}}(Q_i)_{\widetilde{v}} \sim (Q_i)_{\widetilde{v}} \circ D_{\widetilde{v}} \circ (Q_i)_{\widetilde{v}} \sim (Q_i)_{\widetilde{v}} \circ I_{\widetilde{v}} = (Q_i)_{\widetilde{v}}.$$

End of the proof of theorem. Let us prove D o $Q \sim I$. For each $p \in B$ take an open neighborhood U of p, $U \in \mathcal{H}$ such that $U \subset U_i$ for any $i \in I_p$. Let $\{\widetilde{U}, G, \varphi\} \in \mathcal{A}$ corresponding to U. Take a compact $\widetilde{K} \subset \widetilde{U}$ and a C^{∞} function $F: \widetilde{U} \to \mathbf{R}$ with compact support. We have to prove that $F \cdot (D \circ Q)_{\widetilde{U}} \sim F \cdot I_{\widetilde{U}}$ over the $f_{\widetilde{U}}$'s such that $f \in D(B)$ with support contained in \widetilde{K} . We have

$$F \cdot (D \circ Q)\widetilde{v} (f\widetilde{v}) = \sum_{i \in I_p} F \cdot D\widetilde{v} (f_i Q_i g_i)\widetilde{v} (f\widetilde{v}) =$$

$$= \sum_{i \in I_p} F \cdot D\widetilde{v} ((f_i)\widetilde{v} (Q_i)\widetilde{v} ((g_i)\widetilde{v} f\widetilde{v}) = \sum_{j \in I_p} \sum_{i \in I_p} F \cdot D\widetilde{v} ((f_i)\widetilde{v} (Q_i)\widetilde{v} (g_i f_j)\widetilde{v} f\widetilde{v})$$

(since $\sum (f_i)_{\widetilde{U}} = 1$). But $g_i f_j f$ has support contained in $K_i \cap K_j$. By virtue of lemma, we have

$$F \cdot (D \circ Q)\widetilde{v} (f\widetilde{v}) \sim \sum_{j \in I_{p}} \sum_{i \in I_{p}} F \cdot D\widetilde{v} ((f_{i})\widetilde{v} (Q_{j})\widetilde{v} (g_{i}f_{j}f)\widetilde{v}) =$$

$$= \sum_{i,j} F \cdot D\widetilde{v} ((f_{i} (Q_{j})\widetilde{v} (f_{j}f)\widetilde{v}) +$$

$$+ \sum_{i,j} F \cdot D\widetilde{v} ((f_{i})\widetilde{v} (Q_{j})\widetilde{v} ((g_{i})\widetilde{v} - 1) (f_{j}f)\widetilde{v})$$

Since f_i and $g_i - 1$ have disjoint supports, it is easy to prove that $(f_i)_{\widetilde{U}}(Q_i)_{\widetilde{U}}((g_i)_{\widetilde{U}} - 1)$ is a p.d.o. of order $-\infty$ on U. Hence,

$$F \cdot (D \circ Q)\widetilde{v} (f\widetilde{v}) \sim \sum_{i,j} F \cdot D\widetilde{v} ((f_i)\widetilde{v} (Q_j)\widetilde{v} (f_j f)_U) =$$

$$= \sum_j F \cdot D\widetilde{v} ((Q_j)\widetilde{v} (f_j f)\widetilde{v}).$$

From $D_{\widetilde{v}_j}$ o $Q_{\widetilde{v}_j} \sim I_{\widetilde{v}_j}$ over the $f_{\widetilde{v}_j}$ such that $\sup f \subset K_j$, we deduce $D_{\widetilde{v}}$ o $(Q_j)_{\widetilde{v}} \sim I_{\widetilde{v}}$. Hence, $F \cdot (D \circ Q)_{\widetilde{v}} (f_{\widetilde{v}}) \sim \sum_i F \cdot (f_i f)_{\widetilde{v}} = F \cdot f_{\widetilde{v}}$.

The equivalence Q o $D \sim I$ can be proven in an analogous way.

PSEUDO-DIFFERENTIAL OPERATORS ON V-VECTOR BUNDLES.

Let $\pi: E \to B$ be a V-vector bundle with fibre \mathbb{C}^m on a V-manifold B (definition 1.8). Let \mathcal{A} and \mathcal{A}^* be the defining families of B and E respectively, satisfying the conditions of definition 1.8. Let \mathcal{H} be the family of open sets in B for which there exists a l.u.s. $\{\widetilde{U}, G, \varphi\} \in \mathcal{A}$. We shall denote by $\mathcal{E}(E)$ the space of C^{∞} cross sections of E (definition 1.9) and by D(E) the space of C^{∞} cross sections of E with compact support.

Given a cross section $s: B \to E$, $s = \{s_{\widetilde{U}}\}$, we know that each $s_{\widetilde{U}}$ is a section of the trivial bundle $\widetilde{U} \times \mathbb{C}^m \to \widetilde{U}$. We shall denote by $s_{\widetilde{U}}^A$ the composition π_A o $s_{\widetilde{U}}$, where π_A is the mapping $\widetilde{U} \times \mathbb{C}^m \to \mathbb{C}$ that assigns to each $(x, c) \in \widetilde{U} \times \mathbb{C}^m$ the A-coordinate of c.

Definition 3.6. Given a linear mapping $P: D(E) \to \mathcal{E}(E)$, we shall say that P is a p.d.o. of order k if for any $x_0 \in B$ there exists $U \in \mathcal{H}$ with $x_0 \in U$ such that the following condition (C) holds: Given

- (i) A 1.u.s. $\{\widetilde{U}, G, \varphi\} \in \mathcal{A}$ corresponding to U,
- (ii) A compact $\widetilde{K} \subset \widetilde{U}$,
- (iii) A C^{∞} function $F: \widetilde{U} \to \mathbf{R}$ with compact support,

there exists a (mxm)-matrix of symbols of order k on \widetilde{U} , $p_B{}^A(x, \xi)$, such that for any $s \in D(E)$ with support contained in $K = \varphi(\widetilde{K})$, one has

$$F(x)\cdot (Ps)_{\widetilde{U}}^{B}(x) = \sum_{A} \int e^{i(x-y).\xi} p_{A}^{B}(x,\xi) s_{\widetilde{U}}^{A}(y) dy d\xi.$$

Definition 3.7. Given a linear mapping $D: \mathcal{E}(E) \to \mathcal{E}(E)$, we shall say that D is a d.o. of order k if for any $\{\widetilde{U}, G, \varphi\} \in \mathcal{A}$ there exists a (mxm)-matrix of C^{∞} d.o's. of order k on $\widetilde{U} \subset \mathbb{R}^n$,

$$(D_A{}^B)\widetilde{u} = \sum_{|\alpha| < k} (a_A{}^B)_{\alpha} (x) D^{\alpha},$$

such that for any $s \in \mathcal{E}(E)$ one has

$$(Ds)_{\widetilde{U}}{}^{B} = \sum_{A} (D_{A}{}^{B})_{\widetilde{U}} (s_{\widetilde{U}}{}^{A}) .$$

Definitition 3.8. Let $D: \mathcal{E}(E) \to \mathcal{E}(E)$ be a d.o. For each $\{\widetilde{U}, G, \varphi\} \in \mathcal{A}$ consider the matrix

$$(D_A{}^B)\widetilde{v} = \sum_{|\alpha| \le k} (a_A{}^B) (x) D^{\alpha}.$$

Set

$$q_{\widetilde{U}}(x, \xi)_A{}^B = \sum_{|\alpha|=k} (a_A{}^B)(x) \xi^{\alpha}.$$

We shall say that D is elliptic if for any $\{\widetilde{U}, G, \varphi\} \in \mathcal{A}$ the matrix $(q_{\widetilde{U}}(x, \xi)_A{}^B)$ is only singular for $\xi = 0$.

We can now adapt the definitions and proofs of the preceding sections by substituting each symbol by a matrix of symbols. One proves in this way that an elliptic operator (acting on $\mathcal{E}(E)$) has a parametrix.

SOBOLEV SPACES AND THE DECOMPOSITION THEOREM OF SELF-ADJOINT ELLIPTIC OPERATORS ACTING ON A V-VECTOR BUNDLE

Let B an oriented compact Riemannian V-manifold. Let $\pi: E \to B$ be a V-vector bundle with fibre \mathbb{C}^m , endowed with a Hermitian metric h. We define the following Hermitian product on D(E):

$$\langle s_1, s_2 \rangle = \int_B h(s_1, s_2) \, \eta$$
,

where η is the volume element corresponding to the Riemannian metric. Let $D: D(E) \to D(E)$ be a self-adjoint elliptic differential operator. (Self-adjoint means that $\langle Ds_1, s_2 \rangle = \langle s_1, Ds_2 \rangle$ for any s_1, s_2 .)

Theorem 3.6. $D(E) = \ker D \oplus Im D$ (othogonal direct sum). Moreover, ker D has finite dimension.

PROOF. We have now almost all the elements in order to adapt the proof in [4, pag. 43] to our situation. The main ingredient of that proof is the existence of parametrices. The unique element that we have not yet in order to copy the proof in [4] is the definition of Sobolev spaces for V-manifolds.

Consider the V-vector bundle $\pi: E \to B$. Let \mathcal{A} and \mathcal{A}^* be the defining families of B and E respectively, satisfying the conditions of definition 3.8. Let \mathcal{H} be the family of open sets U of B for which there is $\{\widetilde{U}, G, \varphi\} \in \mathcal{A}$. Choose a finite cover $\{U_i\}$ of B with $U_i \in \mathcal{H}$ and a C^{∞} partition of unity subordinate to this cover. Choose a $\{\widetilde{U}_i, G_i, \varphi_i\} \in \mathcal{A}$ for each U_i . For any $\{\widetilde{U}, G, \varphi\} \in \mathcal{A}$ let $\{U^*, G^*, \varphi^*\}$ be its corresponding element in \mathcal{A}^* . Given a section u on E, $u = \{u\widetilde{v}\}$, define

$$E(u)_{\widetilde{U}} = \sqrt{\sum u_{\widetilde{U}}^A \overline{u_{\widetilde{U}}^A}}$$
,

where the $u_{\overline{U}}^A$ have been defined in the preceding section. For any $s \in \mathbf{R}$ we define

$$||u||_s^2 = \sum_i \frac{1}{n(G_i)} ||E((f_i u)\widetilde{v}_i)||_s^2.$$

One can prove that if we employ another finite cover $\{U_i\}$ and another partition of unity $\{f_i\}$ in the definition of $||\ ||_s$, the two norms obtained are equivalent. We define the Sobolev space $H_s(E)$ to be the completion of $\mathbb{D}(E)$ in the norm $||\ ||_s$. One can prove that the injection $H_t \hookrightarrow H_s$ for t > s is compact (Reillich's lemma). By virtue of theorem 3.2, if $P: \mathbb{D}(E) \to \mathbb{D}(E)$ is a p.d.o. of order k, P can be extended to $P: H_s(E) \to H_{s-k}(E)$ for any $s \in \mathbb{R}$.

With these ingredients we can now literally copy the proof in [4 pag 43].

CHAPTER 4

APPLICATIONS TO FOLIATE MANIFOLDS

HAUSDORFF FOLIATIONS

Example 4.1. Let D be the open unit ball in \mathbb{R}^n . Let G be a finite subgroup of O(n). Let L be a compact manifold. Suppose that there is a free C^r action $(r \ge 1)$ of G on L, on the right. Define an action of G on Lx D by $g(p, x) = (pg^{-1}, gx)$. We shall denote by $Lx_G D$ the quotient of Lx D by this action, endowed with the quotient topology. If $(p, x) \in Lx D$, we shall denote by (p, x) its class in $Lx_G D$. $Lx_G D$ is a differentiable manifold in a natural way. To see this, consider local charts V in L such that $Vg \cap V = \phi$ if $g \ne I$, $g \in G$. The mapping

$$V \times D \to V \times_G D$$

$$(p,x)\to \widehat{(p,x)}$$

is then a homeomorphism. In fact, if (p, x) = (p', x') with $p, p' \in V$ then, there is $g \in G$ such that $p' = pg^{-1}$ and x' = gx. But g must be the identity since p and pg^{-1} belong to V. Hence, p = p' and x = x'. We take Vx D as a local chart corresponding to the open set $Vx_G D$. We get in this way a natural differentiable manifold structure in $Lx_G D$. We foliate now Lx D with leaves of the form Lx {point}.

This foliation is preserved by the action of G. So, we have a foliation induced on Lx_GD .

This example is interesting by virtue of the following theorem due to Reeb, Ehresmann, Haefliger and Epstein [3] (See also Reinhart [9] for colsed metric foliations).

Theorem 4.1. Let M be a manifold of dimension n+m, endowed with a C^r foliation $\mathcal{F}(r \geq 1)$ of codimension n. Suppose that the quotient space M/\mathcal{F} obtained by identifying each leaf to a point, with its quotient topology, is Hausdorff. Suppose moreover that all the leaves are compact. (Such foliations will be called «compact Hausdorff foliations» from now on). Then, there is a «generic» leaf L with the property that there is an open dense subset of M where the leaves are all diffeomorphic to L. Moreover, given a leaf L_0 , there is

- (a) A finite subgroup G of O(n),
- (b) A free C^r action of G on L, on the right,
- (c) An open neighborhood V of L_0 ,
- (d) A C^r diffeomorphism $\Phi: Lx_GD \to V$ which preserves leaves if one takes the foliation on Lx_GD introduced in the above example.

From theorem 4.1 we shall deduce the following.

Theorem 4.2. Let M be a manifold of dimension n+m endowed with a compact Hausdorff foliation $\mathcal F$ of codimension n. Let $B=M/\mathcal F$ be the quotient space endowed with its quotient topology. There is a V-manifold structure of dimension n on B, in a natural way.

PROOF. Denote by φ the canonical projection $M \to B$. Given a leaf L_0 of M we take a finite subgroup G of O(n), a free C^r action α of G on L, an open neighborhood V of L_0 , and a C^r diffeomorphism $\Phi: Lx_GD \to V$ such that the conditions of theorem 4.1 are fulfilled. Let \mathfrak{a} be the family of such collections (V, G, α, Φ) corresponding to all leaves L_0 of M. Let D' be the open ball in \mathbb{R}^n centered at the origin, of radius 1/2. The canonical injection $D' \hookrightarrow D$ gives rise to an injection $Lx_GD' \to Lx_GD$. Let \mathcal{H} be the family of those open sets in B of the form $\varphi\Phi(Lx_GD')$ for any $(V, G, \alpha, \Phi) \in \mathfrak{a}$. Given $p \in L$ we shall denote by s_p the mapping $D \to Lx_GD$ given by $s_p(x) = (\overline{p}, x)$. It is easy to prove that for any $U \in \mathcal{H}$ of the form $\varphi\Phi(Lx_GD')$ and

any $p \in L$ the collection $\{D', G, \varphi \Phi s_p\}$ is a l.u.s. corresponding to U. Let A be the family of such l.u.s's. To see that A defines a V-manifold structure on B we only have to prove the following

Proposition 4.1. Let $U, U' \in \mathcal{H}$. Let $\{D', G, \varphi \Phi s_p\}$ and $\{D', G', \varphi \Psi s_p\}$ be two l.u.s's of A corresponding to U and U' respectively. If $U \subset U'$, there exists a diffeomorphism λ from D' onto an open set in D' such that $\varphi \Phi s_p = \varphi \Psi s_{p'} \lambda$.

PROOF. Take the mappings $Lx_GD' \xrightarrow{\Phi} \varphi^{-1}(U) \subset \varphi^{-1}(U') \xrightarrow{\Psi^{-1}} Lx_GD'$ that preserve leaves. We have then the following mappings induced in its respective quotients $D'/G \xrightarrow{\widetilde{\Phi}} U \subset U' \xrightarrow{\widetilde{\Psi}^{-1}} D'/G'$, where $\widetilde{\Phi}$ and $\widetilde{\Psi}^{-1}$ denote the mappings induced by Φ and Ψ^{-1} respectively. Let β be $\widetilde{\Psi}^{-1}$ o $\widetilde{\Phi}$ from D'/G to D'/G'. It is clear that β is injective and open. Denote by π and π' the canonical projections $D' \to D'/G$ and $D' \to D'/G'$ respectively. To prove the proposition we need the following

Lemma. Let A be a connected open set in D'. Suppose that we have two mappings $\lambda: A \to D'$, $\mu: A \to D'$ such that each of them is a diffeomorphism from A onto an open set in D' and that π' o $\lambda = \beta$ o π , π' o $\mu = \beta$ o π . Then, there is a unique $g' \in G'$ such that $g'\lambda(x) = \mu(x)$ for any $x \in A$.

PROOF OF LEMMA. Since β is open and π and π' are both continuous and open then, λ and μ must be open. Let us prove the uniqueness of g'. If there were g'_1 and g'_2 such that $g'_1\lambda(x)=\mu(x)$ and $g'_2\lambda(x) = \mu(x)$, we would have $g'_1\lambda(x) = g'_2\lambda(x)$ for any $x \in A$. Choose x_0 such that the isotropy group $G'_{\lambda(x_0)}$ is the identity. (It is possible since $\lambda(A)$ is open). We have $g'_1 g'_2^{-1} \in G'_{\lambda(x_0)'}$ hence $g'_1 = g'_2$. Let us prove the existence. We know that D'/G' has a natural V-manifold structure (analogous to that in example 1.1). Given $x \in A$, let $U'_{\lambda(x)}$ be a small open ball centered at $\lambda(x)$, contained in $\lambda(A)$, such that $\{U'_{\lambda(x)}, G'_{\lambda(x)}, \pi'\}$ is a l.u.s. Fix $x \in A$. μ o λ^{-1} gives rise to a diffeomorphism from $U'_{\lambda(x)}$ onto a neighborhood of $\mu(x)$. Take $U'_{\lambda(x)}$ sufficiently small such that $\mu \lambda^{-1}(U'_{\lambda(x)}) \subset U'_{\mu(x)}$. Since π' o $\lambda = \beta$ o $\pi =$ $=\pi'$ o μ then π' o μ o $\lambda^{-1}=\pi'$ on $U'_{\lambda(x)}$. Hence μ o λ^{-1} is an injection $\{U'_{\lambda(x)}, G'_{\lambda(x)}, \pi'\}$ $\{U'_{\mu(x)}, G'_{\mu(y)}, \pi'\}$. Let i be the canonical injection $\{U'_{\mu(x)},\,G_{\mu(x)},\,\pi'\}\to\{D',\,G',\,\pi'\}$. Then i o μ o λ^{-1} will be an injection $\{U'_{\lambda(x)}, G'_{\lambda(x)}, \pi'\} \to \{D', G', \pi'\}$. Let j be the canonical injection

 $\{U'_{\lambda(x)}, G'_{\lambda,(x)} \pi'\} \to \{D', G', \pi'\}$. We know that there is a unique $\sigma' \in G'$ such that $i \circ \mu \circ \lambda^{-1} = \sigma' \circ j$. In other words, $\mu \lambda^{-1}(y) = \sigma'(y)$ for any $y \in U'_{\lambda(x)}$. That is, $\mu(z) = \sigma' \lambda(z)$ for any $z \in \lambda^{-1}(U'_{\lambda(x)})$. We can summarize this fact as follows. Given $x \in A$ there is a neighborhodd U_x of x contained in A and a unique $\sigma' \in G'$ such that $\mu(z) = \sigma' \lambda(z)$ $\forall z \in U_x$.

Fix $x_0 \in A$ and choose U_{x_0} and $g' \in G'$ such that $\mu = g'$ o λ on U_{x_0} . We want to see that $\mu = g'$ o λ on A. Let C be the subset of A consisting of those x such that there is an open neighborhood of x such that $\mu = g'\lambda$ on this neighborhood. C is obviously open. Let us prove that it is closed in A. Let $x \in A \cap \overline{C}$. Let U_x be a neighborhood of x as above such that there is a unique $\sigma' \in G'$ such that $\mu = \sigma'$ o λ on U_x . Let $y \in U_x \cap C$. There is a small neighborhood of x (that we can suppose contained in U_x) such that $x \in C$ on this neighborhood. Let $x \in C$ be a point of this neighborhood such that $x \in C$ be a point of this neighborhood such that $x \in C$ be a point of this neighborhood such that $x \in C$ be shall have $x \in C$. Since $x \in C$ is closed, open, and not empty, then $x \in C$ and $x \in C$ is closed, open, and not empty, then $x \in C$ and $x \in C$ is closed, open, and not empty, then $x \in C$ is closed.

End of proof of proposition. We want to define $\lambda: D' \to D'$ such that λ is a diffeomorphism from D' onto an open set of D' and that $\varphi \Phi s_b = \varphi \Psi s_{b'} \lambda$. We know that $U = \varphi \Phi(L x_G D') \subset U'$. Let D''be an open ball in \mathbb{R}^n centered at the origin, of radius r, (1/2) < r < 1, such that $\varphi \Phi(Lx_G D'') \subset U'$. We shall have $\Phi s_b(D'') \subset \Phi(Lx_G D'') =$ $= \varphi^{-1} \varphi \Phi(L x_G D'') \subset \varphi^{-1}(U')$. We shall have then $\Phi \circ s_{\flat} : D'' \to \varphi$ $\rightarrow \varphi^{-1}(U')$. Take the composition $\Psi^{-1}\Phi s_p:D''\rightarrow Lx_{G'}D'$. Let B be the family of local charts V of L such that $Vg' \cap V = \phi$ if $g' \neq I$, $g' \in G'$. Let C be the family of those open sets in $Lx_{G'}D'$ of the form $Vx_{G'}D'$ with $V \in \mathbb{B}$. For any $x_0 \in D''$ take a neighborhood W of $\Psi^{-1} \Phi s_b x_0$ such that $W \in C$ and take a small open ball A_{x_0} centered at x_0 , contained in D'', such that $\Psi^{-1}\Phi s_p(A) \subset W$. The family of all these balls $\{A_x\}_{x\in \overline{D}'}$ constitutes an open cover of \overline{D}' . Since \overline{D}' is compact, we can choose a finite subcover. Denote by $A_1 \dots A_r$ the balls of this subcover. One can rearrange $A_1 \dots A_r$ in another way such that $B_i = \bigcup_{i=1}^{r} A_i$ is connected for any $i = 1 \dots r$ and that the intersection $A_i \cap B_{i-1}$ is connected for any $i = 2 \dots r$. At the end of the proof we shall justify this fact. Accept this possibility and continue the proof. For any A_i denote by W_i the $W \in C$ such that $\Psi^{-1} \Phi s_{\mathfrak{p}}(A_i) \subset W_i$. W_i is of the form $V_i x_{G'} D'$ with $V_i \in \mathcal{B}$. For any $g' \in G'$ let $f_{ig'}$ be the mapping from W_i to D' defined by

$$V_{i} x_{G'} D' \longrightarrow D'$$

$$(v, x) \longrightarrow g' x$$

 $f_{ig'}$ is well defined. Let us define λ on $\bigvee_{j=1}^{r} A_j$. Let us begin by defining λ on A_1 . Fix any $g' \in G'$ and define λ on A_1 by $\lambda = f_{1g'} \Psi^{-1} \Phi s_p \cdot \lambda$ is then a diffeomorphism from A_1 to an open set in D' and one has π' o $\lambda = \beta$ o π . Let us extend λ to $\bigcup_{j=1}^{r} A_j$ by recurrence. Suppose that λ is already extended to $B_{i-1} = \bigcup_{j=1}^{r-1} A_j$ in such a way that λ is a diffeomorphism from B_{i-1} to an open set in D' and that π' o $\lambda = \beta$ o π . Let us extend λ to B_i . Choose any $\tau' \in G'$ and take the mapping $v: A_i \to D'$ defined by $v = f_{ir} \cdot \Psi^{-1} \Phi s_p$. v is then a diffeomorphism from A_i to an open set in D' and one has π' o $v = \beta$ o π . Take now $\lambda | (B_{i-1} \cap A_i)$ and $v | (B_{i-1} \cap A_i)$. Since $B_{i-1} \cap A_i$ is connected, there is (by lemma) a unique $\sigma' \in G'$ such that $\sigma' v(x) = \lambda(x)$ for any $x \in B_{i-1} \cap A_i$. Define λ on A_i to be equal to σ' o v. In this way we define λ on $\bigcup_{j=1}^{r} A_j$ and hence on D'. Condition π' o $\lambda = \beta$ o π imply $\varphi \Phi s_p = \varphi \Psi s_{p'} \lambda$. In fact, by virtue of the commutativity of the diagram

$$D' \xrightarrow{\lambda} D' \xrightarrow{s_{p'}} Lx_{G'}D' \xrightarrow{\Psi} \varphi^{-1}(U')$$

$$\downarrow \pi \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$D'/G \xrightarrow{\beta} D'/G' \xleftarrow{I} D'/G' \xrightarrow{\widetilde{\Psi}} U'$$

one has $\varphi \Psi s_{p'} \lambda = \widetilde{\Psi} \beta \pi$. But since $\beta = \widetilde{\Psi}^{-1} \widetilde{\Phi}$ one has $\varphi \Psi s_{p'} \lambda = \widetilde{\Phi} \circ \pi$. On the other hand, by virtue of the commutativity of the diagram

one has $\widetilde{\Phi}$ o $\pi = \varphi \, \Phi s_p$. Hence, $\varphi \, \Psi s_{p'} \, \lambda = \varphi \, \Phi s_p$. It remains to justify the possibility of rearranging $A_1 \ldots A_r$ in such a way that each B_i is connected and each $A_i \cap B_{i-1}$ is connected. Suppose, by recurrence, that we have already chosen $A_1 \ldots A_{i-1}$ with this property, and let us pick A_i . It is easy to see that given $\varepsilon > 0$ there is a neighborhood B_ε of \overline{B}_{i-1} such that any ball A centered at $x \in B_\varepsilon$, of radius $> \varepsilon$, is such that $A \cap B_{i-1}$ is connected and $A \cup B_{i-1}$ is connected. Let 3ε be the Lebesgue number of the cover $A_1 \ldots A_r$ before rearranging. Take any $x \in B_\varepsilon - \overline{B}_{i-1}$. Take the ball centered at x of radius 2ε . This ball will be contained in some A_i . Choose such a i. We have $i \notin \{1 \ldots i-1\}$ since i0 since i1 since i2 since i3 and i4 so a new i5. Obviously, all the required properties will be fulfilled.

AN IMPORTANT CLASS OF FOLIATE VECTOR BUNDLES (ALLOWABLE VECTOR BUNDLES)

Let M be a manifold of dimension n+m endowed with a C' foliation \mathcal{F} ($r \geq 1$) of codimension n. Each point has a neighborhood U and a coordinate system $(x^1 \dots x^n, y^1 \dots y^m)$ such that the leaves are given in U by $x^1 = \text{constant}, \dots, x^n = \text{constant}$. We suppose, for U sufficiently small, that U is homeomorphic to a product $U_x \times U_y$ where U_x is a cubical neighborhood in \mathbb{R}^n and U_y a cubical neighborhood in \mathbb{R}^m . A coordinate neighborhood $(U, x^1 \dots x^n, y^1 \dots y^m)$ satisfying all these conditions will be called flat. Let $E \to M$ be a vector bundle on M. We shall say that E is foliate if it is possible to find a cover $\mathcal{U} = \{W\}$ of M, by flat local charts, and trivializations of E on each $W \cap W'$ ($W, W' \in \mathcal{U}$) only depend on the coordinates $x^1 \dots x^n$. The transversal bundle is such.

When the foliation \mathcal{F} is compact, Hausdorff, we are going to introduce a very important class of foliate vector bundles. The vector bundles in this class will be called *allowable*. Let us begin by an example.

Example 4.2. Let Lx_GD be the foliate manifold of example 4.1. Let T(D) be the tangent bundle of D. The action of G on D gives rise to a natural action of G on T(D). Define an action of G on Lx T(D) by $g(p,x)=(pg^{-1},gx)$. Denote by $Lx_GT(D)$ the quotient of Lx T(D) by this action. Take the canonical projection $Lx_GT(D) \to Lx_GD$.

It is easy to see (using the fact that the action of G on L is free) that $Lx_G T(D) \to Lx_G D$ is a vector bundle of class C' on $Lx_G D$ (We shall see this fact later, in general). This vector bundle is precisely the transversal bundle of the foliation in $Lx_G D$ introduced in example 4.1. Remark that T(D) is the trivial bundle $Dx \mathbf{R}^n$. The action of G on T(D) verifies the following property: If $X_x \in T_x(D)$, one has $g(X_x) \in T_{g(x)}(D)$ for any $g \in G$. If we think T(D) as the product $Dx \mathbf{R}^n$ then X_x will be a couple (x, v). $g(X_x)$ will be a couple (g(x), w). Given $x \in D$ and $g \in G$, the mapping $v \to w$ is an element of $GL(n, \mathbf{R})$ depending on x and g. Denote by g(x) this element. The action of G on G

Generalization of example 4.2. Let Lx_GD be the foliate manifold of example 4.1. Denote by $C^{n-1}(D, GL(k, \mathbf{R}))$ the space of C^{n-1} mappings from D to $GL(k, \mathbf{R})$. Suppose that (as in example 4.2) we have a mapping $\eta: G \to C^{n-1}(D, GL(k, \mathbb{R}))$ such that for any $x \in D$ and for any σ , $\tau \in G$ one has $\eta(\sigma \tau)(x) = \eta(\sigma)(\tau x)$ o $\eta(\tau)(x)$. Take the action of G on $Lx Dx \mathbb{R}^k$ defined by $g(p, x, v) = (pg^{-1}, gx, \eta(g)(x)v)$. Denote by $(Lx Dx \mathbf{R}^k)/G$ the quotient by this action. If $(p, x, v) \in Lx Dx \mathbf{R}^k$, we denote by (p, x, v) its class in $(Lx Dx \mathbf{R}^k)/G$. The projection p of $(Lx Dx \mathbf{R}^k)/G$ to $Lx_G D$ defined by $(p, x, v) \to (p, x)$ is well defined. We are going to see that $\phi: (Lx Dx \mathbf{R}^k)/G \to Lx_G D$ is a vector bundle with fibre \mathbb{R}^k . In fact, given $u \in Lx_GD$, let (p, x) be a representative of u. Take a local chart U in L such that $Ug \cap U = \phi$ for any $g \neq I$, $g \in G$. (It is possible since the action of G on L is free). Let V be the subset of Lx_GD consisting of those classes $(\cancel{p'},\cancel{x})$ with $\cancel{p'} \in U$ and $x \in D$. Define a trivialization of $p^{-1}(V)$, $f: p^{-1}(V) \to Vx \mathbb{R}^k$ in the following way. Let $\alpha \in p^{-1}(V)$. There is a unique $(p', x) \in LxD$ such that $p(\alpha) = (p', x)$. Then $\alpha = (p', x, v)$ with v uniquely determined. Define $\widehat{f(p', x, v)}$ to be $\widehat{((p', x), v)}$.

Definition 4.1. Given a mapping $\eta: G \to C^{n-1}(D, GL(k, \mathbf{R}))$ such that for any $x \in D$ and for any σ , $\tau \in G$ one has $\eta(\sigma\tau)(x) = \eta(\sigma)(\tau x)$ o $\eta(\tau)(x)$, take the action of G on $Lx Dx \mathbf{R}^k$ defined above and take the vector bundle $p: (Lx Dx \mathbf{R}^k)/G \to Lx_G D$. Such a vector bundle on $Lx_G D$ will be called allowable.

Definition 4.2. Suppose that M is endowed with a compact, Hausdorff foliation of class C', say \mathcal{F} . Let $E \to M$ be a vector bundle. Such a vector bundle will be called *allowable* if given any leaf L_0 there is a subgroup G of O(n), a free action of G on L, a neighborhood U of L_0 , and a diffeomorphism $\Phi: Lx_GD \to U$ verifying the properties of theorem 4.1 such that the pull-back of E|U by Φ is an *allowable* vector bundle on Lx_GD .

We have the following

Proposition 4.2. An allowable vector bundle is foliate.

Sketch off roof. Take an allowable vector bundle $p:(LxDx \mathbf{R}^k)/G \to Lx_GD$. Take two connected charts V_1 and V_2 in L such that $gV_i \cap V_i = \phi$ for any $g \in G$, $g \neq I$, i = 1, 2. We know that $V_i x D$ is a local chart for $V_i x_G D$ and that the induced vector bundle over $V_i x_G D$ is trivial. Suppose $(V_1 x_G D) \cap (V_2 x_G D) \neq \phi$. Then, there is a unique $g \in G$ such that $V_1 g^{-1} \cap V_2 \neq \phi$. The trivialization taken on each $V_i x_G D$ is given by $(p_i, x, v) \to ((p_i, x), v)$. So, the transition function on $(V_1 x_G D) \cap (V_2 x_G D)$ is given by $\eta(g)(x)$ (depending only on $x^1 \dots x^n$).

Remark. The trivial bundle and the transversal bundle are both allowable. To give examples of allowable vector bundles the following considerations are useful. Let T be a differentiable functor in the category of finite dimensional vector spaces. It is well known that T can be extended to a functor T_M in the category of vector bundles on M. Suppose for example that T is a functor in r+s variables, contravariant in the first ones and covariant in the other variables. Let T_M be its extension. Since the definition of allowable vector bundle is obviously functorial, if $E_1 \dots E_r$, $F_1 \dots F_s$ are allowable, then $T_M(E_1 \dots E_r, F_1 \dots F_s)$ is such. Hence, if E and E are allowable, then $E \oplus F$, $E \otimes F$, E^* , Hom (E, F), $\wedge^k E$, ... etc, are allowable.

Definition 4.3. Let $E \to M$ be a foliate vector bundle. Let $\mathcal{U} = \{W\}$ be a cover of M by flat local charts, and trivializations of E|W for each $W \in \mathcal{U}$ given by bases of sections $s_1 \dots s_k$ of E|W such that the transition functions only depend on $x^1 \dots x^n$. We shall say that a cross section γ of E is base-like if one has an expression $\gamma = \sum \gamma^A s_A$ on each $W \in \mathcal{U}$, where the functions γ^A only depend on $x^1 \dots x^n$.

From now on we shall denote by $\Gamma_b(E)$ the space of base-like cross sections of E.

Allowable vector bundles are important because of the following

Theorem 4.3. Let M be a manifold with a compact Hausdorff C^r foliation $\mathcal{F}(r \geq 1)$. Let B be the quotient space $M \mid \mathcal{F}$ with the structure of V-manifold given in theorem 4.2. Let $E \rightarrow M$ be an allowable vector bundle with fibre \mathbf{R}^k . Then there is a V-vector bundle on B with fibre \mathbf{R}^k that we shall denote by $B(E) \rightarrow B$ such that if we call $\Gamma(B(E))$ the space of differentiable cross sections of B(E) one has $\Gamma(B(E)) \simeq \Gamma_b(E)$.

Sketch of Proof. Let $M \xrightarrow{\varphi} B$ be the canonical projection. Each leaf L_0 has an open neighborhood U with the properties required in Definition 4.2. Let G be the family of those open sets in B of the form $\varphi(U)$, where U is a neighborhood of a leaf with the properties required in Definition 4.2. Let A be the defining family (of the V-manifold structure) introduced in theorem 4.2. Let A' be the subfamily of those $\{D', G, \varphi \Phi s_p\} \in A$ such that $\varphi \Phi s_p(D') \in G$. A' is also a defining family. Let $\{D', G, \varphi \Phi s_p\}$ and $\{D', G', \varphi \Psi s_{p'}\} \in A'$ such that $\varphi \Phi s_p(D') \subset \varphi \Psi s_{p'}(D')$. We have

$$Lx_GD' \xrightarrow{\Phi} U \subset U' \xleftarrow{\Psi} Lx_{G'}D'$$
.

Let $(LxD'x\mathbf{R}^k)/G$ be the pull-back of E|U by Φ and $(LxD'x\mathbf{R}^k)/G'$ the pull-back of E|U' by Ψ . We know that the restriction of $(LxD'x\mathbf{R}^k)/G$ by $\mathbf{R}^k)/G$ to $s_p(D')$ is trivial. The pull-back of $(LxD'x\mathbf{R}^k)/G$ by $s_p:D'\to Lx_GD'$ will be trivial. Analogously, the pull-back of $(LxD'x\mathbf{R}^k)/G'$ by $s_p:D'\to Lx_GD'$ will be trivial. Let λ be an injection $\{D',G'\varphi\Phi s_p\}\to\{D',G',\varphi\Psi s_p\}$. We have the following commutative diagram

$$Lx_{G}D' \xrightarrow{\Psi^{-1} \circ \phi} Lx_{G'}D'$$

$$S_{p} \uparrow \circ \qquad \qquad \uparrow \qquad S$$

$$D' \xrightarrow{\lambda} D'$$

Let F and F' be the pull-backs of $(LxD'x\mathbf{R}^k)/G$ and $(LxD'x\mathbf{R}^k)/G'$ by s_p and $s_{p'}$ respectively. The pull-back of F' by λ is F. Hence we have a mapping $\overline{\lambda}: F' \to F$ such that

$$F' \xrightarrow{\overline{\lambda}} F$$

$$\downarrow \qquad \qquad \downarrow$$

$$D' \xrightarrow{\lambda} D'$$

is commutative. But F' and F are trivial and we have a canonical trivialization of each one of them since $(LxD'x\mathbf{R}^k)/G$ over $s_p(D')$ and $(LxD'x\mathbf{R}^k)/G'$ over $s_{p'}(D')$ are canonically trivial. The mapping $\overline{\lambda}$ will have the form

$$\overline{\lambda}: D' \times \mathbf{R}^k \to D' \times \mathbf{R}^k$$

$$(x, v) \to (\lambda(x), g_{\lambda}(x)v)$$

where g_{λ} is a C' map from D' to $GL(k, \mathbf{R})$. Suppose now that one has $\{D', G, \varphi \Phi s_p\}$, $\{D', G', \varphi \Psi s_{p'}\}$ and $\{D', G'', \varphi \varrho s_{p'}\} \in \mathcal{A}'$ with $\varphi \Phi s_p(D') \subset \varphi \Psi s_{p'}(D') \subset \varphi \varrho s_{p'}(D')$. Let λ be an injection $\{D', G', \varphi \Phi s_p\} \to \{D', G', \varphi \Psi s_{p'}\}$ and let μ be an injection $\{D', G', \varphi \Psi s_p\} \to \{D', G'', \varphi \varrho s_{p'}\}$. As above we shall have mappings $\overline{\lambda}: D' \times \mathbf{R}^k \to D' \times \mathbf{R}^k$ and $\overline{\mu}: D' \times \mathbf{R}^k \to D' \times \mathbf{R}^k$. We shall have $\overline{\mu} \lambda \overline{\lambda}(x, v) = \overline{\mu}(\lambda(x), g_{\lambda}(x)v) = (\mu \lambda(x), g_{\mu}(\lambda(x)) \circ g_{\lambda}(x)v)$. Hence,

(*)
$$g_{\mu \circ \lambda}(x) = g_{\mu}(\lambda(x) \circ g_{\lambda}(x)$$
.

We have then a system of functions $\{g_{\lambda}(x)\}$ for any injection λ satisfying (*). By virtue of theorem 1 on page 472 of [11] these g_{λ} determine a V-vector bundle with fibre \mathbf{R}^k on B that we call $B(E) \to B$. Let γ be an element of $\Gamma_b(E)$. Let $a = \{D', G, \varphi \Phi s_p\}$ be an element of \mathcal{A}' . We have $\Phi: Lx_GD' \to U$. The restriction γ_U of γ to U gives, by Φ , a base-like section of $(LxD'x\mathbf{R}^k)/G$. Take the $p \in L$ that appears in s_p . Take V a small neighborhood in L such that there is a canonical trivialization of $(LxD'x\mathbf{R}^k)/G$ over Vx_GD' . This base-like section restricted to Vx_GD' will give a function $D' \to \mathbf{R}^k$ and so, a section of the trivial bundle $D'x\mathbf{R}^k$ over D'. Call γ_a this section. The system $\{\gamma_a\}$ for any $a \in \mathcal{A}'$ is a differentiable cross section of B(E) in the sense of definition 1.9. One can see that the correspondence $\gamma \to \{\gamma_a\}$ from $\Gamma_b(E)$ to $\Gamma(B(E))$ is the isomorphism looked for.

Remark. We can repeat all this section assuming that E is a vector bundle with fibre \mathbb{C}^k . We shall then get as a bundle B(E) a V-vector bundle with fibre \mathbb{C}^k .

COMPLEX ANALYTIC FOLIATIONS WITH BUNDLE-LIKE METRICS.

COHOMOLOGY OF BASE-LIKE FORMS.

Let M be a compact complex manifold of complex dimension n+m, endowed with a complex analytic foliation of complex codimension n whose leaves are closed in M. Call $\mathcal F$ this foliation. We suppose that $\mathcal F$ is defined by an adapted atlas $\{(U_\alpha, z_\alpha{}^a, z_\alpha{}^u)\}$ (index convention: $a, b, \ldots = 1, \ldots n; u, v, \ldots = n+1, \ldots n+m$) where $z^a = \text{constant}$ define the leaves. We suppose that M is endowed with a complete bundle-like Hermitian metric g. By a theorem of R. Hermann [6], the quotient space $B = M/\mathcal F$ is Hausdorff, so we can apply to this situation the results of previous sections.

We shall denote by * the Hodge star operator corresponding to g and by $\widetilde{*}$ the operator $\widetilde{*} \varphi = \overline{*} \overline{\varphi}$. We shall have a Hermitian scalar product defined on the space of differential forms by $\langle \varphi, \Psi \rangle = \int_{\mathcal{M}} \varphi \wedge \widetilde{*} \Psi$ and the operator $\delta = -\widetilde{*} d\widetilde{*}$ such that $\langle d\varphi, \Psi \rangle = \langle \varphi, \delta \Psi \rangle$. We shall have decompositions d = d' + d'', $\delta = \delta' + \delta''$ with respect to complex types.

Let $E \to M$ be a foliate complex analytic vector bundle with r-dimensional fibre (the transition functions only depend on z^a), endowed with a foliate Hermitian metric h (given locally by a Hermitian matrix (h_{AB}) depending only on z^a and \bar{z}^a) (index convention: $A, B \ldots = 1 \ldots r$). We shall use the associate Hermitian connexion locally given by $\omega_A{}^B = (d' h_{AC}) h^{CB}$. We can define a Hermitian product on E-valued differential forms by $\langle \varphi, \Psi \rangle = \int_M h_{AB} \varphi^A \wedge \widetilde{*} \Psi^B$ (If φ is an E-valued differential form then φ has the local expression $\varphi = \varphi^A \otimes s_A$ where φ^A are ordinary forms and $\{s_A\}$ is the basis of sections given by the taken trivialization).

We can define the operators d''_E and δ''_E on E-valued forms by the following local expressions:

$$(d^{\prime\prime}_{E}\varphi)^{A}=d^{\prime\prime}\varphi^{A}$$

 $(\delta^{\prime\prime}_{E}\varphi)^{A}=\delta^{\prime\prime}\varphi^{A}-\widetilde{\ast}e(\theta)\widetilde{\ast}\varphi^{A}$

where $e(\theta)$ means the exterior product by the matrix $\theta = (\theta_A{}^B)$, $\theta_A{}^B = h^{BC}(d''h_{CA})$.

If φ and Ψ are E-valued forms, one has

$$\langle d^{\prime\prime}{}_{\scriptscriptstyle E} arphi$$
 , $arPsi$ $arPsi$ $arPsi$ = $\langle arphi$, $\delta^{\prime\prime}{}_{\scriptscriptstyle E} arPsi$ $arPsi$.

Let Δ''_E be the Laplace operator (acting on *E*-valued forms) defined by $\Delta''_E = d''_E \delta''_E \delta''_E d_E$. We shall denote by $D^{p,q}(E)$ the space of C^{∞} *E*-valued base-like (p,q)-forms, that is, the space of *E*-valued forms which have a local expression:

$$(4.1) \quad \varphi = \frac{1}{p!} \cdot \frac{1}{q!} \varphi^{A}_{a_1 \dots a_p \bar{b}_1 \dots \bar{b}_q} dz^{a_1} \wedge \dots \wedge dz^{a_p} \wedge dz^{\bar{b}_1} \dots dz^{\bar{b}_q} \otimes s_A$$

where the coefficients $\varphi^{A_{a_1...a_p}}\bar{b}_{1...}\bar{b}_q$ only depend on $z^1...z^n$, $\bar{z}^1...\bar{z}^n$. Let $H^{p,q}(M,E)$ be the space of those $\varphi \in D^{p,q}(E)$ such that $\Delta''_E \varphi = 0$. Observe that the operator d''_E maps $D^{p,q}(E)$ into $D^{p,q+1}(E)$.

Theorem 4.4. $\delta''_E(D^{p,q+1}(E)) \subset D^{p,q}(E)$ and if E is an allowable complex analytic vector bundle (see def. 4.1 and 4.2) one has the following orthogonal decomposition with respect to $\langle \ , \ \rangle$:

$$(4.2) \ D^{p,q}(E) = H^{p,q}(M,E) \oplus d''_{E}(D^{p,q-1}(E)) \oplus \delta''_{E}(D^{p,q+1}(E)).$$

Moreover, the space $H^{p,q}(M, E)$ has finite dimension.

PROOF. Let $D^{p,q}$ be the space of ordinary base-like (p,q)-forms. At each point $x_0 \in M$ we can define algebraically a Hodge star operator $\widetilde{*}_b: D_{x_0}{}^{p,q} \to D_{x_0}{}^{n-p,n-q}$ (using only the transversal part $(g_{a\bar{b}})$ of the metric g) in the following way. We can always suppose that the coordinates $z^1 \dots z^n$ have been taken such that the matrix $(g_{a\bar{b}})$ at x_0 is the identity. (This can be got by a linear change $z^a = \alpha_b{}^a z^b$, where $\alpha_b{}^a$ are constants). Let $A_p = \{a_1 \dots a_p\}$ be a set of indices $a_1 < \dots < a_p$, $0 \le a_i \le n$. We denote by $A'_p = \{1 \dots n\} - A_p$ ordered by <. We can define $\widetilde{*}_b$ at x_0 by

$$\widetilde{*}_{b}(fdz^{A_{p}}\wedge\ d\,\overline{z^{B_{q}}})=(-\ 1)^{q\,(n-p)}\;\varepsilon(A_{p},\,A'_{p})\;\varepsilon(B_{q},\,B'_{q})\,\overline{f}dz^{A'_{p}}\wedge\ d\,\overline{z^{B'_{q}}},$$

where f is any complex number. Define δ_b on $D^{p,q}$ by $\delta_b = -\widetilde{*}_b d\widetilde{*}_b$. We need the following

Lemma. If $\varphi \in D^{p,q}$ then $\delta_b \varphi = \delta \varphi$.

PROOF OF LEMMA. It suffices to prove this relation at a point x_0 . Take an adapted coordinate system (U, z^a, z^u) with $x_0 \in U$ such that $(g_{a\bar{b}})$ and $(g_{u\bar{v}})$ are the identity at x_0 . If φ has the local expression (4.1) we shall have

$$egin{aligned} \widetilde{st} \ d \ \widetilde{st} \ arphi = rac{1}{p!} \cdot rac{1}{q!} \ \partial_{\overline{c}} \ arphi_{A_p \, \overline{B_q}} \widetilde{st} \ (dz^c \wedge \ \widetilde{st} \ (dz^{A_p} \wedge d\overline{z^{B_q}})) \ + \ & + rac{1}{p!} \cdot rac{1}{q!} \ \partial_c \ arphi_{A_p \, \overline{B_q}} \widetilde{st} \ (d\overline{z^c} \wedge \ \widetilde{st} \ (dz^{A_p} \wedge d\overline{z^{B_q}})) \ . \end{aligned}$$

We shall have an analogous expression for $\widetilde{*}_b d \, \widetilde{*}_b$. In order to prove the lemma it suffices to prove that one has at x_0 :

$$\widetilde{*}(dz^c \wedge \widetilde{*}(dz^{A_p} \wedge dz^{\overline{B_q}})) = \widetilde{*}_b(dz^c \wedge \widetilde{*}_b(dz^{A_p} \wedge dz^{\overline{B_q}})),$$

and the analogous expression for $d\vec{z}$. But these algebraic relations are obvious. This concludes the proof of lemma.

Define the operator $(\delta''_E)_b$ on $D^{p,q}(E)$ by $(\delta''_E)_b = \delta''_b - \mathfrak{F} e(\theta) \mathfrak{F}_b$. Since the metric h is foliate $(\delta''_E)_b$ maps $D^{p,q}(E)$ into $D^{p,q-1}(E)$. One can also prove (in the same way that in lemma) that $(\delta''_E)_b = \delta''_E$ on $D^{p,q}(E)$. On $D^{p,q}(E)$ we shall have $\Delta''_E = d''_E(\delta''_E)_b + (\delta''_E)_b d''_E$. Hence Δ''_E maps $D^{p,q}(E)$ into itself. The spaces $d''_E(D^{p,q-1}(E))$, $\delta''_E(D^{p,q+1}(E))$ and $H^{p,q}(M,E)$ are mutually orthogonal in $D^{p,q}(E)$ with respect to the Hermitian product $\langle \ , \ \rangle$. The spaces $\Delta''_E(D^{p,q}(E))$ and $H^{p,q}(M,E)$ are also orthogonal. If we prove that if E is allowable one has

$$(4.3) D^{p,q}(E) = H^{p,q}(M,E) \oplus \Delta^{\prime\prime}_{E}(D^{p,q}(E))$$

then $\Delta''_E(D^{p,q}(E))$ will be the orthogonal complement of $H^{p,q}(M, E)$. Hence, $d''_E(D^{p,q-1}(E)) \oplus \delta''_E(D^{p,q+1}(E))$ (orthogonal to $H^{p,q}(M, E)$) will be contained in $\Delta''_E(D^{p,q}(E))$. But (by definition of $\Delta''_E(D^{p,q}(E)) \subset d''_E(D^{p,q-1}(E)) \oplus \delta''_E(D^{p,q+1}(E))$. Then, we shall have (4.2). Therefore it suffices to prove (4.3) and that $H^{p,q}(M, E)$ has finite dimension in order to prove the theorem.

Let us denote by η_b the base-like volume element. η_b is the element of $D^{n,n}$ defined by

$$\eta_b = \sqrt{\det(g_{a\overline{c}})} dz^1 \wedge \dots dz^n \wedge d\overline{z^1} \wedge \dots d\overline{z^n}.$$

If φ , $\Psi \in D^{p,q}(E)$ we denote by $(\varphi, \Psi)_b$ the base-like function defined locally by

$$h_{AB} \varphi^A \wedge \widetilde{*}_b \Psi^B = (\varphi, \Psi)_b \eta_b$$

Let $\varphi \in D^{p,q-1}(E)$ and $\Psi \in D^{p,q}(E)$. One can easily prove the following local expression

$$d(h_{AB}\varphi^{A} \wedge \widetilde{*}_{b} \Psi^{B}) = d''(h_{AB}\varphi^{A} \wedge \widetilde{*}_{b} \Psi^{B}) = h_{AB} d'' \varphi^{A} \wedge \widetilde{*}_{b} \Psi^{B} - h_{AB} \varphi^{A} \wedge \widetilde{*}_{b} ((\delta''_{E})_{b} \Psi)^{B} = (d''_{E}\varphi, \Psi)_{b} \eta_{b} - (\varphi, (\delta''_{E})_{b} \Psi)_{b} \eta_{b}.$$

In other words, we have

 $(d''_E \varphi, \Psi)_b \eta_b = (\varphi, (\delta''_E)_b \Psi)_b \eta_b + \text{differential of a base-like} (2n-1)-\text{form.}$

Therefore, if φ , $\Psi \in D^{p,q}(E)$ we shall have

 $(\Delta''_E \varphi, \Psi)_b \eta_b = (\varphi, \Delta''_E \Psi)_b \eta_b + \text{differential of a base-like} (2n-1)$ -form.

Let us denote by Q the transversal (orthogonal) bundle of complex type (1,0) corresponding to the foliation \mathcal{F} . Q is an allowable complex analytic vector bundle. Let us denote by $F = \bigwedge {}^{p}Q^* \otimes \otimes \otimes \bigwedge {}^{q}\overline{Q^*} \otimes E$. F is allowable. We shall have $\Gamma_b(F) = D^{p,q}(E)$. On each fibre F_{x_0} of F we shall have the Hermitian product induced by $(\ ,\)_b$. Hence, we shall have a Hermitian product in the vector bundle $F \to M$ also called $(\ ,\)_b$. This Hermitian product is foliate.

Consider now the quotient space $B=M/\mathcal{F}$ as a real 2n-dimensional V-manifold. Let $B(F) \to B$ be the V-vector bundle (with complex fibres) described in the preceding section. Given $s \in \Gamma(B(F))$, there exists $\gamma \in \Gamma_b(F)$ such that $\{\gamma_a\} = s$, $a \in A'$ (we use the notation of proof of th. 4.3). We define $A''_E s$ by setting $(A''_E s)_a = (A''_E \gamma)_a$. We have then an elliptic operator $A''_E : \Gamma(B(F)) \longrightarrow \Gamma(B(F))$. The foliate Hermitian product $(\ ,\)_b$ of F induces a Hermitian product in the V-vector bundle $B(F) \to B$ that we shall also denote by $(\ ,\)_b$. The bundle-like metric on M induces a Riemannian metric on B that we shall also denote by g. The V-manifold B is orientable. In fact, it suffices to observe that if $(U_\alpha \ z_\alpha^a \ z_\alpha^u), (U_\beta \ z_\beta^a \ z_\beta^u)$ are two flat local charts of $\mathcal F$ in M, one has

$$\frac{\partial (z_{\alpha}^{1} \dots z_{\alpha}^{n}, \overline{z_{\alpha}^{1}} \dots \overline{z_{\alpha}^{n}})}{\partial (z_{\beta}^{1} \dots z_{\beta}^{n}, \overline{z_{\beta}^{1}} \dots \overline{z_{\beta}^{n}})} > 0$$

The volume element on B corresponding to g is precisely the 2n-form defined by $\{(\eta_b)_{\widetilde{U}}\}$ that we shall also denote by η_b .

Define a Hermitian product [,] on $\Gamma(B)(F)$ by

$$[arphi,\,arPsi]=\int_{\,{B}}(arphi,\,arPsi)_b\,\eta_b\,.$$

If $s = \{s_{\widetilde{U}}\}$ is an r-form over B, we define its exterior differential ds to be the (r + 1)-form on B $ds = \{ds_{\widetilde{U}}\}$. If φ , $\Psi \in \Gamma(B(F))$ we shall have

 $(\Delta''_E \varphi \ \Psi)_b \eta_b = (\varphi \ \Delta''_E \Psi)_b \eta_b + \text{differential of a } (2n-1) \text{-form on } B.$

By integrating over B we shall have

$$[\varDelta''_E \varphi \ \Psi] = [\varphi \ \varDelta''_E \Psi] + \int_B \text{differential of a } (2n-1) \text{-form on } B.$$

But this integral vanishes since B is compact. In fact, if β is a (2n-1)-form over B, $\beta = \{\beta_{\widetilde{O}}\}$, we take a partition of unity subordinate to a finite cover $\{U_i\}$ of B with $\{\widetilde{U}_i, G_i, \varphi_i\} \in A$ and we shall have

$$\int_{B} d\beta = \int_{B} \sum d(f_{i}\beta) = \sum \frac{1}{n(G_{i})} \int_{\widetilde{U}_{i}} d(f_{i}\beta) \widetilde{U}_{i} = 0.$$

We have then proven that Δ''_E is a self adjoint elliptic operator acting on $\Gamma(B(F))$. By virtue of theorem 3.6, $\Gamma(B(F)) = \ker \Delta''_E \oplus \mathbb{I} m \Delta''_E$ and $\ker \Delta''_E$ has finite dimension. From the isomorphism $\Gamma(B(F)) \cong \Gamma_b(F)$ we obtain (4.3) and that $H^{p,q}(M, E)$ has finite dimension. This ends the proof.

Corollary. Let $H^q(D^{p,\cdot}(E), d''_E)$ be the q cohomology space of the complex

$$\cdots \longrightarrow D^{p,q}(E) \xrightarrow{d''} D^{p,q+1}(E) \longrightarrow \cdots$$

We have $H^q(D^{p,\cdot}(E), d''_E) \simeq H^{p,q}(M, E)$, and these spaces have finite dimension. (We are assuming that E is allowable).

REFERENCES

- [1] ATIYAH, M.F.-BOTT, R. A Lefschetz fixed point formula for elliptic complexes: I. Ann. of Math. 86 (1967) 374-407.
- [2] BAILY, W.L. The decomposition theorem for V-manifolds. Amer. J. of Math. 78 (1956) 862-888.
- [3] EPSTEIN, D.B.A. Foliations with all leaves compact. Ann. Inst. Fourier. Grenoble. 26. I (1976) 265-282.
- [4] GILKEY, P.B. The Index Theorem and the Heat Equation. Math. Lecture Series. Publish or Perish, Inc. (1974).
- [5] GIRBAU, J. Some vanishing cohomology theorems and stability of complex analytic foliations. To appear.
- [6] HERMANN, R. On the Differential Geometry of Foliations. Ann. of Math. 72 (1960) 445-457.
- [7] KITAHARA, H. On a parametrix form in a certain V-submersion. To appear.
- [8] REINHART, B.L. Harmonic integrals on foliated manifolds. Amer. J. of Math. 81 (1959) 529-536.
- [9] REINHART, B.L. Closed metric foliations. Michigan Math. J. 8 (1961) 7-9.
- [10] SATAKE, I. On a generalization of the notion of manifold. Proc. Nat. Acad. Sci. USA 42 (1956) 359-363.
- [11] SATAKE, I. The Gauss-Bonnet theorem for V-manifolds. J. of Math. Soc. of Japan 9 (1957) 464-492.

Joan Girbau and Marcel Nicolau Secció de Matemàtiques de la Universitat Autònoma de Barcelona. Bellaterra (Barcelona)

Added in proof

In theorem 3.5 we must also assume that the family $\mathcal H$ of open sets in B corresponding to l.u.s's is a basis of open sets in B. In fact, in order to prove that $Q = \sum f_i Q_i g_i$ is a p.d.o., given $p \in B$ we must take a neighborhood U of p, $U \in \mathcal H$, contained in U_i if $i \in I_p$ and such that $U \cap \sup_i g_i = \phi$ for any $i \notin I_p$. Such an U satisfies condition (C). (Note that it does not suffice to take $U \in \mathcal H$ contained in U_i for any $i \in I_p$ to assure that $f_i Q_i(g_i f) = 0$ if $i \notin I_p$).

Because of this we also must assume this condition on the base space B of the V-vector bundle $E \to B$ in the last two sections of chapter 3. Observe that the examples considered in chapter 4 fulfil this supplementary assumption.