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CHAPTER 3

PSEUDO-DIFFERENTIAIL, OPERATORS ON V-MANIFOLDS

REVIEW OF PSEUDO-DIFFERENTIAI, OPERATORS ON R”

This section summarizes material presented in detail in [4].
Given a multi-index « = («; ... «,) we denote by

Olal

D* = (— g ————— .
X% ... %,

We denote by dx the measure

dx = (1/V2zn)* dm

where dm means the Iebesgue measure on R

We shall say that a function p(x, £): R* X R* - C is a symbol
of order m e R if

(a) p is C*=.

(b) p has compact x-support. (In other words, there exists a
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compact set Kc R* such that p(x, &) = 0 for any (x, &) such that
x¢ K.)

(c¢) For all multi-indices «, §, there is a positive constant C, , such
that

ID,% D¢ p(x, &)| < Copp(l + [E)" 0.

We shall denote by S™ the space of symbols of order m. S ¢ S™ if
m > m'. Denote by D the space of C*° functions on R* with compact
support. Given p(x, £) € S™ we define its associate pseudo-differential
operator (abbreviated in the following as p.d.o.) to be the mapping
P:D —D given by

(3.1) (Pu) (x) =J e p(x, £) () dE =J6i‘”‘y"5ﬁkx, §) . u(y) dy dt,

R»

where x. £ means x1 £l 4 ... |- & &,
We shall say that two symbols a and b are equivalent and write

a~bif a —beS~ = [ S™ We shall also say that its associate
meR

p.d.o. are equivalent.

We shall need the Kohn-Nirenberg theorem ([4], theorem on
page 16) concerning the product of two p.d.o’s.

We shall also need the following

Lemma. Let P be a p.d.o. that comes from a symbol p (x, &) of order
— . Let Kc R"* be a compact. There is a C*® function k(x,y) on
R" X R", with compact support, such that, for any. u € D with support
contained in K, one has

n

(Pu) (x) = j B, 5) w(y) dy.

Sketch of Proof. Define k’(x,y) = f ¢F=E p(x, E) dE. Since p e S—°°,
R»

this integral is convergent and &’ is well defined. Let Y e D such
that ¥ =1 on K and put k(x,y) = k'(x,y). ¥(y). Then, % is the
function looked for.

Condition (b) in the definition of a symbol simplifies many proofs,
although it complicates some other ones. In the case of the existence
of parametrices for elliptic differential operators, the proof is more
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complicate. The exposition in [4] has some lacks in that point. Be-
cause of (b), an elliptic differential operator is not a p.d.o. We need
to introduce some definitions in order to enounce correctly the theo-
rem on page 29 of [4]. Given a differential operator

P =Y a,(x) D*

lal <m

we shall say that P is elliptic if its leading order symbol

only vanishes for & = 0.

Given an elliptic differential operator P, a p.d.o. Q and a compact
K in R* we shall say that PQ ~ I (I = identity) (res. Q P ~ I) over
the functions u € D (K) if there exist p.d.o’s. P’ and I' such that
P'Q ~I' (resp. QP'~1I') over the functions # € D(K) and such
that P'Qu = PQu (resp. QP'u = QPu) and I'u = Iu for any
u € D (K). One can prove the following

Theorem 3.1. Let P be an elliptic differential opevator. Given a
compact K in R", there exists a p.d.o. Q such that QP ~ PQ ~ I over
the functions u with support contained in K.

A p.d.o. can be extended to the Sobolev spaces as we are going
to see. Let p(x, &) € S™. Let P be its associate p.d.o. Let || ||, be
the Sobolev norm on D (R”) (see [4] page 3). Let us denote by (D, || ||,)
the space D (R*) endowed with the norm || ||;. One has the following

Theorem 3.2. ([4] pag. 11-13.) For any s € R the mapping P: (D,
I ) = (D, 1] =) ts continuous.

By virtue of this theorem P can be extended to a mapping
P:H (R*) - H,_,(R") in a natural way.

We also need the theorem of invariance of p.d.o.’s. under change
of coordinates. In order to enounce it we shall give the following
definition. Let ¥V and V be two open sets in R". Let f: 7 — ¥ be a
C* diffeomorphism. Let P be a p.d.o. acting on the C* functions
with support contained in a compact Kc V by the expression (3.1),
where p(, &) has #-support contained in V. Let K = f-1 (K). Given
a C> function # on V with support contained in K, we define
(P%) (%) = (Pu) (x), where f(%) = ¥ and & = u o f. One has the
following

5 — Collectanea Mathematica
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Theorem 3.3. (Change of coordinates.) In the situation above, P
is a p.d.o.

The proof is sketched in [4].

THE NOTION OF A PSEUDO-DIFFERENTIAL OPERATOR ON A V/-MANIFOLD

Let (B, A) be a V-manifold of dimension #. We shall denote by
£(B) the space of C*° complex valued functions on B and by D (B)
the space of C*° complex valued functions on B with compact support.
We shall denote by H the family of open sets U in B for which there

exists a Lus. {U, G, ¢} € A

Definition 3.1. We shall say that a linear mapping P : D(B) - £(B)
is a p.d.o. on B -of order % if for any x; € B there exists U € H with

%9 € U satisfying the following condition:
(C). Given,

(i) a Lus. 0,6, @} € A corresponding to U,
(ii) a compact KcU, and
(iii) a C*° function F: U - R with compact support,

there exists a symbol of order &, (¥, &), on U, such that for any
feD(B) with support contained in K = q)(I?) one has

F) . (P () = J §-9- p(x, £) for () dy dE |

Definition 3.2. Given a p.d.o. P on B, we shall denote by Hjp the
subset of H consisting of those U e H satisfying condition (C) of
definition 3.1.

Proposition 3.1. Let P be a p.d.o. on B. If Ue Hp and U’ € H is
contained i U, then U’ € Hp.

Proor. Let (U, G, o'}, {7, G, ¢} be lLus’s of A corresponding
to U’ and U respectively. Let K'c U’ be a compact and F’ a C*
function U’ - R with compact support. Let 1 be an injection {", G,
¢t >~ {U,G, ¢} and :G -G its associated homomorphism. Put
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K= A(K') and consider the function F on U defined by F = F' o
A1 on A(U") and F = 0 outside. F is a C* function with compact
support. By definition 3.3 there is a symbol p(x, &) on U such that,
for any feD(B) with support contained in K = ¢(K) = q;’(f(")
one has

Fx) - (PH7 () = j £0E p(x, €) f5 (y)dydE .

Observe that, if ¥: T — R is a C* function with compact support
contained in 3.((7 ') and such that ¥ = 1 on sup F, then,

F(x) (Pf)7 (x) = Jff“""”"’“ ¥(x) - p(x &) fo(y) dydt.

Hence we can take the symbol p(x, &) with the x-support contained
in A(T").

Given fe D(B) with support contained in K, define a C* func-
tion f~on U such that f = f& 0 -1 on A(T’) and f: 0 outside. Then,

70 g1
1

f7 =

4

P

where ¢, = I, 0y, ..., g,, are representatives of each one of the classes
of G/n(G’). Using this decomposition of fi one has F(x) (Pf)v (x) =
= 3 I,(x), s = 1... m, where

~

L) = [ 604 p(x, €) Flo1()) dyde.

~

Fix 72 % 1. Let ¢, e D(U) with compact support contained in
0,(2(U") and such that ¢, = 1 on g; (I?) Then,

I(x) = [ 6% () p (3, &) Flor=1 (v)) dydk.

Consider the operator @;, on U, acting on the C® functions with

~

compact support contained in ¢;(K), defined by
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(0:) (9 = [ e (5) b 2) £ ) dy

By virtue of technical lemma ([4] pag 17), by setting 7(x, &, y) =
=@, (y)p(x, &),0Q; is a p.d.o. with symbol ¢;(x, &) such that

a(%, 8 ~3 0D (@i (9) D% O)ly=x _

p ol

(the equality yields since the x-support of p(x, &) and the support
of ¢; are disjoint). In other words, Q; comes from a symbol of order
— oo. Then, by virtue of the lemma in the first section of this chapter,

there exists a C> function, #’;(x,v), on U X T, with compact sup-

port, such that, for any g eD(ﬁ) with support contained in g, (K),
one has

~

Qi) (¢) = J E(%,9)g(y) dy .

It is clear that we can take ', with the x-support contained in
A('(‘I’) and the y-support contained in o;(A(0’)). Hence,

L@ = (Q.(F 0 1) (@) = J K5 9) flom 1 (v)) dy =
- [ K%, 0,(9) F(9) J(0) dy = J ki, 5) Fl9) dy

where k;(x,y) = J(o;) &';(#, 0;(y)) and J(o;) denotes the Jacobian of
o;. Observe that %; has the x-support and the y-support contained

in A(U’). Put k = ¥} k. We shall have
=2

~

E(x) - (Pf)v (%) =j8""“”""ﬁ(x, §) fly) dyds + | k(x, y) F(y) dy .

Both integrals define p.d.o’s that we can think acting on l(ﬁ’). Now,
theorem 3.3 applied to the open sets U’ and A(T") and to the diffeo-
morphism A: U’ > l(ﬁ') completes the proof.

Corollary. If Py and P, are p.d.0’s. on B, then so is Py + P,.
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Proor. By virtue of proposition above, for each p e B there
exists a neighborhood U of p such that U e Hp and U e Hp,. Ob-
viously U € Hp, , p,- Then each p e B has a neighborhood U e H
satisfying condition (C) for P; + P,.

Example 3.1. Consider the natural V-manifold structure on R
Fach p.d.o. on R” in the sense of the preceding section is a p.d.o.
in the sense of definition 3.1. Let p (x, £) be a symbol on R* satisfying
conditions (a) and (c) of the definition of the preceding section, but
not necessarily (b). The mapping P : D (R") - £(R*) defined by (3.1)
constitutes a p.d.o. in the sense of definition 3.1.

COMPOSITION OF PSEUDO-DIFFERENTIAIL, OPERATORS

ILet P and Q be two p.d.o’s. on B. Let feD(B). Consider the
operator PfQ : D(B) — £(B) defined by (PfQ) (#) = P(f-Q(u)). If B
is compact we can take f = 1. Then Pf(Q is precisely the composition
P o Q. (Observe that P o Q is not defined if B is not compact since
for u e D(B), Q(u) € € (B) and P acts only on D (B)).

Theorem 3.4. PfQ is a p.d.o. on B.

Proor. Let {U,} be a locally finite open cover of B such that
each U, € Hp, U, € H,. There is a finite number of U, such that
U,nsup f # ¢. Let us denote by U, ... U, these U,. Let {g} be
a C partition of unity subordinate to the cover (U, (th. 2.1). Let
g1 - & be the g's corresponding to Uj ... U,. We shall have

(PfQ) (w) = P(f-Q(w)) = P((Z &.f) - Q(w) -

Observe that g, f = 0 if g, is different from g; ... g,. Hence

k

(PfQ) () = ¥ (Pg:.fQ) (u) .

=1

Let us prove that each Pg;fQ is a p.d.o. on B. We want to prove
that the U,’s satisfy condition (C) of definition 3.1 for the operator
Pg,fQ. If U,nU, = ¢ it is clear that U, satisfies condition (C).

Let U; be such that U;n U; #4¢. Let {T]i’ G;, ¢} be a lus. of 4
corresponding to U;. Let Ki be a compact contained in (77-. Let F;
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be a C° function Ui — R with compact support. We want to show
that F;(Pg; fQu)7; comes from a symbol for any » € D (B) with support
contained in K;. Since P is a p.d.o. and U, € Hp there exists a sym-

bol p(x, &) on (7} such that
F,(%) (Pg, fQu)5; (x) = J 664 b (x, €) (8, fQUT, (y) dyde

But (g fQu)v; = (& )7, (Qu)7; and since U; € H, there exists a symbol
g(x, &) on U, such that

/)5 () (Qu)5; () = [ e g (s, E)up; (y) dydé.

By virtue of the theorem of Kohn-Nirenberg ([4] pag 16) there exists
a symbol s(x, &) such that

F,(x) - (Pe,fQu)z; (v) = f 604 s (x, &) up; dydé

ELLIPTIC DIFFERENTIAL, OPERATORS ON V-MANIFOLDS. EXISTENCE
OF PARAMETRICES

Definition 3.3. We shall say that a linear mapping D: £(B) — £(B)
is a differential operator (abbreviated in the following as d.o.) of

order & if for any {U, G, g} e A there exists a C® d.o. of order % on
UcR,

Dy = ¥ a,(x) D=

lel <R
in such a way that for any » € £(B) one has (Du)g = Dy (u7) .

Remark. A d.o. is always a p.d.o. In particular the identity I is
a p.d.o. '

Definition 3.4. Given a d.o. D on B, we shall say that D is elliptic
if the d.o’s. ¥ a, (x) D* induced on each U are elliptic.
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Proposition 3.3. Let D: £(B) -~ £(B) be a d.o. Let P: D (B) -~ £(B)
be a p.d.o. The composite operators D o P and P o D are defined and
are p.d.0’s.

Proor. If B is compact, the proposition is an immediate conse-
quence of theorem 3.4. Let us give an independent proof for the
non-compact case.

Observe first that D o P is defined. In fact, P maps D (B) into
&(B) and D maps D(B) into D(B). Hence D o P maps D (B) into
&(B). In an analogous way P o D is defined as a mapping from D (B)
into £(B). Let us prove that D o P is a p.d.o. Let {Ug be a locally
finite open cover of B with U, e Hp. We want to show these U,’s
satisfy condition (C) of definition 3.1 for the operator D o P. In

fact, choose a {U,, G,, @ € A corresponding to U,. Choose a com-
pact I?a c U, and a C** function F,: U, - R with compact support.

Let @, be a C* function on U, with compact support such that
®, =1 on sup F,. For any # e D(B) with support contained in

K, = ¢,(K,) we shall have
F,: (DPu)y, = F, - Dy, (P%)'ﬁ'a = F,- Dy, (d}a(Pu)Fa) .

Since U, € Hp, D, (Pu)g, comes from a symbol on U,, so does
E,- Dy, (®,(Pu))7,, by virtue of the theorem of Kohn-Nirenberg.
Let us prove that the U,’s satisfy also condition (C) of definition

3.1 for the operator P o D. Choose {U,, G,, @,} € A corresponding
to U, and the compact K, ¢ U, as well as the function F, as above.

For any C* function # on B with support contained in K, = ¢, (I?a)
we shall have

F, (x) (PDu)g, () =J6""‘“”"5P(x, §) (Du)a, (y) dyd§

since U,eHp. By virtue of the theorem of Kohn-Nirenberg,
F,(PDu)p, comes from a symbol on U,.

Proposition 3.4. Let D: £(B) — £(B) be an elliptic d.o. Let U € H.
Let {(7, G, ¢} € A corresponding to U. Let K be a G-invariant compact
in U. There exists a p.d.o. (in the sense of the first section of this chap-
ter) Qv : D(U) » D(U) such that
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(i) Qv o D7 ~ D7 o Q7 ~ I over the G-invariant functions with

support contained in K (These equivalences in the semse of the first
section of this chapter).

(12) Qv maps G-imvariant functions into G-invariant fumctions.

PrOOF. By virtue of theorem 3.1, there exists Q : D (U) - D(ﬁ)
satisfying condition (i). One can see that there exist C°° functions
ki(x,v), Ba(x,v) on R* x Rrwith compact x and y-supports contai-
ned in U such that for any C*° function 4 on U with compact support
contained in K one has

(DFQh) () = h(x) + J by (5, 9) B () dy
(QD#h) (x) = h(x) + J ka(x, 9)  (3) dy

Given oeG let Q, be the operator D(U)—D(U) defined by
(Q,(n)) (x) =Q(u 0 0~ 1) (o(x)). Theorem 3.3 asserts that Q,is a p.
d.o. in the sense of the first section of this chapter. Let #(G) be the
order of G. Define

Q~ ﬂ(G gga Qa

It is clear that this Q% satisfies condition (ii). We want to show that
it also satisfies condition (i). First observe that if 4: U-R (or C)
is a G-invariant C* function with compact support, so is D (h).
In fact, it suffices to observe that there exists # € D (B) such 2 = uy.
Then, one has

Dy (h) o 0 = Dy (uv) 0 0 = (Du)y o 0 = (Du)y = Dy (ug) = Dy (h).

Let & be a G-invariant C*° function U — € with support contained
in K. We shall have

Qs (D7 (B) (%) = Q (D7 (k) 0 071) (0(x)) = Q (D7 () (0(%)) =

= h(o(x) + J ka(o(x), %) h(3) dy = h(x) + [ ka(0 (%), ) () dy .
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n(G) (‘SG @) + agcjkz(a(x)»y) h(y) dy) =

= h(x) + Fz (x, ¥) h(y) dy ,

where &, (x, y) =

1
k(o (x), v). Hence one has
w6

Qv o D¥ ~ I over the G-invariant C* functions with support contai-
ned in K.
In order to prove Dy o Q ~ I we shall need the following

Lemma. For awy C* function h: U — C with compact support and
any o € G we have Dy (h o o) = (Dzh) o o.

Proor orF LEMMA. It suffices to prove the equality for the points

x e U whose isotropy group G, = {I} since, if the equality holds
for these points, it holds, by continuity, for any point.

Let xy be a point of U such that G,, = {I}. Let 0 € G. We want
to show that Dy (%o o) (xg) = (Dorh) (o(xg)). Let V,, be a small open
neighborhood of xy such that for any oy, 0, € G with o; # ¢, one
has oy(V,,) noa(V,) =¢. (It is possible because G is finite and

G,, = {I}). Let g be a C*® function on U with compact support con-
tained in ¥V, , equal to % o ¢ in a small neighborhood of %, contained

in V,,. Let f be the function on U equal tog o v~ on each ©(V,,), T€G,
and equal to zero outside the union of ¢(V,,) for any 7. fis a G-in-
variant C°° function with compact support, hence Dy f is G-inva-
riant. In other words, Dy f = (D% f) o t for any 7€G. Since koo
is equal to g in a small neighborhood of x, one has D (% 0 ) (%) =
= Dy (g) (%) - foo is equal to g on V, since if o(x) € ¢(V,,) one
has /(o (%)) = g(o~1 o(x)) = g(x). Hence Dy (g) (x0) = Dv(f 0 o) (xo).
Since f is G-invariant with compact support, so is Dy f. Hence
D7 (f o0 0) (xg) = (DTf) (%) = (D7 f) (o(x)). We know that f(o(x)) =
= g(x) = h(o(x)) for any x in a small neighborhood of #,. Hence
fis equal to % in a small neighborhood of o (x,). Hence (D7 f) (o (%)) =
= Dy (k) (o(xp)). We have then proven that Dy (k o o) (%) = (D7 k)

(O' (xo)) .
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END OF THE PROOF OF PROPOSITION. Let us prove that Dy o Q ~ I
over the G-invariant C*° functions % : U - C with support contained
in K. We shall have

L5 poion).

Dy (Qzh) = — o2

Since 4 is G-invariant one has (Q,%) (x) = Q (%) (o(x)). Hence

fun—y

Dy (Qwh) = () Y Dy (Q(h) o o) = (by virtue of lemma) =
1 77 0 — ___1_ o
= '”—(ES'EUIDU Q") o o= ) g{h( (%) +

+Jhwwwmwa=Mw+JEmwuw@,

where

Eww=;%—mwmw.

Hence D7 o Qi ~ I over these 4’ s.

Definition 3.5. Let P and P’ be two p.d.o’s. on B. We shall say
that P is equivalent to P'(P ~ P’) if P — P’ is a p.d.o. of order
— oo (that is, of order % for any %).

Theorem 3.5. Let D: E(B) — E(B) be an elliptic d.o. There exists
a p.d.o. Q:D(B) > E(B) such that Q o D ~D o0Q ~ I. The operator
Q s called parametrix of D. (Observe that Q o D and D o Q are $.d.0's.
by virtue of proposition 3.3.)

The proof of this theorem is based on proposition 3.4 and on
some ideas taken from [1].

Proor. Let {U} be a locally finite open cover of B with U, e H.
Let {f} be a C* partition of unity subordinate to {U;}. Let g be
a C* function on B with compact support contained in U;, equal to
1 on sup f;. For any (@, G, @;} € A corresponding to U, let Qg,, be
the operator satisfying conditions (i) and (ii) of proposition 3.4 for
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%,. and the compact K = @; "1 (sup g;). Consider on each U; the
induced V-manifold structure. Define on each U; an operator
Q;:D(U;) > D(U;) in the following way. Let UeH, UcU,. Let
(U, G, @} € A corresponding to U. Let fe D (U,). Take an injection
10,6 ¢y ~ (U, G, p). We define (0, /)7 to be equal to Q% (/)
o A. Since Qg satisfies condition (ii) of proposition 3.4, (Q; f)& de-
pends neither on the choice of {(7,-, G;, ) nor on the choice of 1.
By vitue of proposition 2.4 we can extend each element of D (U;) to
a C* function on B. Identify in that way D(U;) to a subspace of
D (B). The operator f;Q; g; that assigns f; Q; (g;f) to each feD (B)
is (by virtue of the inclusion D (U;) € D(B)) an operator from D (B)
into D (B). The operator Q = 3] f; Q; g; is also a well defined operator
D(B) -~ D(B) since there is only a finite number of U; such that
U;nsup f # ¢, for a given f e D(B). Let us prove that Q is a p.d.o.
Given p € B let I, be the set of indices j such that p € U;. I, is a finite
set. Choose an open neighborhood U of p, U € H, contained in Uj;
for any ¢ eI,. We want to show that U satisfies condition (C) of
definition 3.1 for the operator Q. Let {'(7, G, ¢} be a l.u.s. correspon-
ding to U. Let Kbea compact contained in U.Let F: U—~Rbe

a C* function with compact support. Let {(7,~, G;, ¢} A € corres-
ponding to U, for any ¢ € I,. Given f e D(B) with support contained

~

in K = ¢(K), then f,Q,(g;f) =0 if i¢I,. If ¢ € I, we shall have
(fi Qi) = (f)z(Q:i(gN)7 = (f)7 Q& )z, o 4)
But there exist a symbol p; on each l7, such that

Q7. (g:/)7) (A:(x)) = J F BB p(2(%), §) (8:1)T: () dydé .

Observe that (g; /)7, has support contained in 4,(K). By a reasoning
similar to that in the proof of Proposition 3.1 one can prove that

there is a symbol ¢; on U such that
(Qv:(&:f)7) (A (%)) = J ¢ g, (x, ) (&:f)7 (2) dzdn.

By virtue of technical lemma ([3] pag. 17), by setting 7(x, 5, 2) =
= ¢;(%, 1) (g)7 (2), there exists a symbol ¢’; such that



76 Joan Girbau and Marcel Nicolau
(0% (%) (2:(0) = j G g’ (x, 1) for (2) ddy.

It is clear that

Y Fl) (g () ( Q:le))v x) =

=3 F(x) (f)7 (%) (Qw.(g:./)7) (% ()

has the required expression.

Observe that our calculations also prove that (Q,)% is a p.d.o.
on U in the sense of the first section of this chapter.

In order to prove that Q o D ~ D o Q ~ I we need the following.

Lemma. Let UeH,UcU;nU;. Let K; = sup g; and K; = sup g;.
Let (U, G, @} € A corvesponding to U. Over the functions fe D (B) with
support contained in K,nK,nU, the operator (Q,)7 : for - (Q)v' f&
and the operator (Q,)v, defined in an analogous way, are equivalent in
the sense of the first section of this chapter.

Proor oF LEMMA. We have Dg, o Q%, ~ Ig, over the functions

fo, such that sup fc K;, where Iy, means the identity on (7;. We
also have Qg; o Dy, ~ Ig, over the functions f§; such that sup fc K.
Since we have assumed that sup fc K;n K;, the two preceding rela-
tions hold. From the first one we deduce D% o (Q;)% ~ I7. From the
second one we deduce (Q;)% o Dy ~ Iy (In the sense of the first sec-
tion of this chapter). Hence

Q)7 =Iz(Q)v ~ (Q)7 o D¥ o (Q)v ~ (Q)v o Iz = (Q,)7 .

END OF THE PROOF OF THEOREM. Let us prove D o Q ~ I. For
each p e B take an open neighborhood U of p, U e ’H such that

UcU; for any 1el,. Let @, G, ¢} € A corresponding to U. Take

a compact Kc U and a C* function F : U - R with compact sup-
port. We have to prove that F- (D o Q) ~ F - Iy over the fy's

such that f e D (B) with support contained in K. We have

F-DoQy(f5) =Y F-Dy(fiQ:ig)v (fo) =

i€lp
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= ¥ F-Dy((f)w Q)7 ()7 fo) =

i€l,

> ¥ F-Dy ((f)v Q)7 (&fi)7 f7)

jel, €1y
(since X (f;)v = 1). But g;f;f has support contained in K;n K;. By
virtue of lemma, we have

F-DoQw(fe)~ X X F-Dv((f)v Q)7 (&fif)v) =

jel, iel,

=¥ F-Dw((f: (@) (fif)w) +
+ ¥ F-Dy((fy @) (@o—1) (£)7)

Since f; and g; — 1 have disjoint supports, it is easy to prove that
()7 Q)7 ((g)v — 1) is a p.d.o. of order — oo on U. Hence,

F-(D o Q) (fo) ~ ¥ F-De((A)7 @)z (fif)o) =
=Y F-Dy(@)v (fif)o) -

From Dg; o Qg; ~ Ig; over the fg;. such that sup fc K;, we deduce
Dy o ()7 ~ Iy. Hence, F- (Do Qv (f5) ~X F-(f;f)lv = F - fo.
7

The equivalence Q o D ~ I can be proven in an analogous way.

PSEUDO-DIFFERENTIAI, OPERATORS ON V-VECTOR BUNDLES.

Let n : E — B be a V-vector bundle with fibre C” on a V- manifold
B (definition 1.8). Let A4 and A* be the defining families of B and
E respectively, satisfying the conditions of definition 1.8. Let H be
the family of open sets in B for which there exists a Lu.s. {U, G, ¢} € A.
We shall denote by & (E) the space of C* cross sections of E (definition
1.9) and by D (E) the space of C* cross sections of E with compact
support.

Given a cross section s: B — E,s = {s7}, we know that each
sy is a section of the trivial bundle T x C» - U. We shall denote
by s74 the composition n, o st, where 7, is the mapping UxC*—>C
that assigns to each (x,¢c) e U x C* the A-coordinate of c.
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Definition 3.6. Given a linear mapping P:D(E) - E(E), we
shall say that P is a p.d.o. of order % if for any %, € B there exists
U e H with xy € U such that the following condition (C) holds: Given

(1) A Lus. (U, G, ¢} € A corresponding to U,
(ii) A compact Ke U,
(iii)) A C* function F: U - R with compact support,

there exists a (mam)-matrix of symbols of order £ on U, pst(x, &),

~

such that for any s € D (E) with support contained in K = ¢(K), one
has

F@0) - (P7(0) = 3 [0 4208 v () .
A
Definition 3.7. Given a linear mapping D: E(E) - E(E), we
shall say that D is a d.o. of order % if for any {7, G, ¢} € A there
exists a (mxm)-matrix of C*° d.o’s. of order % on UcR",

D457 = ¥ (a4")a (%) D*,

such that for any s € £(E) one has

(Ds)7? = 2} (D4®)w (sv4) .

Definitition 3.8. Let D: £ (E) — & (E) be a d.o. For each {U, G, ¢} € A
consider the matrix

DuB)7 = ¥ (as®) (x) D*.

lel <k

Set

g7 (%, 8% = Y (as®) (v) &.

la| =%

We shall say that D is elliptic if for any {ﬁ, G, ¢} € A the matrix
(g (%, &) 4B) is only singular for & = 0.

We can now adapt the definitions and proofs of the preceding
sections by substituting each symbol by a matrix of symbols. One
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proves in this way that an elliptic operator (acting on &£(E)) has
a parametrix.

SOBOLEV SPACES AND THE DECOMPOSITION THEOREM OF SELF-ADJOINT
ELLIPTIC OPERATORS ACTING ON A V-VECTOR BUNDLE

Let B an oriented compact Riemannian V-manifold. Letz: E — B
be a V-vector bundle with fibre C”, endowed with a Hermitian me-
tric 4. We define the following Hermitian product on D (E):

(s1, $2) =J h(si,s2) 7,

where 7 is the volume element corresponding to the Riemannian
metric. Let D:D(E) > D(E) be a self-adjoint elliptic differential
operator. (Self-adjoint means that (Ds, s;> = (s;, Ds,) for
any si, S;.)

Theorem 3.6. D(E) = ker DD Im D (othogonal divect sum). Mo-
reover, ker D has finite dimension.

Proor. We have now almost all the elements in order to adapt
the proof in [4, pag. 43] to our situation. The main ingredient of
that proof is the existence of parametrices. The unique element
that we have not yet in order to copy the proof in [4] is the definition
of Sobolev spaces for V-manifolds.

Consider the V-vector bundle n: E -~ B. Let 4 and A* be the
defining families of B and E respectively, satisfying the conditions
of definition 3.8. Let ‘H be the family of open sets U of B for which
there is {ﬁ, G, ¢} € A. Choose a finite cover {U} of B with U, e H
and a C° partition of unity subordinate to this cover. Choose a
{ﬁi, G;, ¢} € A for each U;. For any {(7, G, ¢} € A let {(U*, G*, ¢}
be its corresponding element in A*. Given a section # on E, u = {uy},
define

E(u)y =\/2uﬁ"‘¢7§3,

where the #34 have been defined in the preceding section. For any
s € R we define
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o2 = s

E ((f)) 13-

One can prove that if we employ another finite cover {U;} and another
partition of unity {f}} in the definition of || ||, the two norms obtai-
ned are equivalent. We define the Sobolev space H,(E) to be the
completion of D (E) in the norm || ||,. One can prove that the injec-
tion H, —— H, for ¢ > s is compact (Reillich’s lemma). By virtue of
theorem 3.2, if P: D (E) — D (E) is a p.d.o. of order %, P can be exten-
ded to P:H(E) - H,_,(E) for any seR.

With these ingredients we can now literally copy the proof in
[4 pag 43].

CHAPTER 4

APPLICATIONS TO FOLIATE MANIFOLDS
HAUSDORFF FOLIATIONS

Example 4.1. Let D be the open unit ball in R*. Let G be a finite
subgroup of O(n). Let L be a compact manifold. Suppose that there
is a free C” action ( > 1) of G on L, on the right. Define an action
of G on LxD by g(p, x) = (pg~1, gx). We shall denote by Lx;D
the quotient of Lx D by this action, endowed with the quotient

topology. If (p,x) e Lx D, we shall denote by (p, %) its class in
LxyD. Lx;D is a differentiable manifold in a natural way. To see
this, consider local charts V' in Lsuchthat VgnV =4¢ifg £ 1,g€G.
The mapping

VxD->Vzx;D
(5, %) > ($, %)

is then a homeomorphism. In fact, if (5, ) = (;b”,x’) with p, p' eV
then, there is g € G such that p" = pg~1 and »" = gx. But g must
be the identity since p and pg~! belong to V. Hence, p = p’ and
x = x'. We take Vx D as alocal chart corresponding to the open set
VxgD. We get in this way a natural differentiable manifold structure
in Lx; D. We foliate now Lx D with leaves of the form Lx {point}.
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This foliation is preserved by the action of G. So, we have a foliation
induced on Lx;D.

This example is interesting by virtue of the following theorem
due to Reeb, Ehresmann, Haefliger and Epstein [3] (See also Reinhart
[9] for colsed metric foliations).

Theorem 4.1. Let M be a manifold of dimension n + m, endowed
with a C7 foliation F (r > 1) of codimension n. Suppose that the quotient
space M |F obtained by identifying each leaf to a point, with its quotient
topology, is Hausdorff. Suppose moreover that all the leaves are com-
pact. (Such foliations will be called «ompact Hausdorff foliationsy
from now on). Thew, there s a «gemericy leaf L with the property that
there is an open dense subset of M where the leaves ave all diffeomorphic
to L. Moreover, given a leaf L, there is

(a) A finite subgroup G of On),
(b) A free Cr action of G on L, on the right,
(c) An open meighborhood V of L,,

(d) A Cr diffeomorphism D : Lx, D — V which preserves leaves if
one takes the foliation on Lx; D introduced in the above example.

From theorem 4.1 we shall deduce the following.

Theorem 4.2. Let M be a manifold of dimension n + m endowed
with a compact Hausdorff foliation F of codimension n. Let B = M|F
be the quotient space endowed with its quotient topology. There is a
V-manifold structure of dimension n on B, in a natural way.

Proor. Denote by ¢ the canonical projection M — B. Given a
leaf Ly of M we take a finite subgroup G of O(n), a free C7 action o
of G on L, an open neighborhood V of L;, and a C* diffeomorphism
@ : Lx; D -V such that the conditions of theorem 4.1 are fulfilled.
Let a be the family of such collections (V, G, «, @) corresponding
to all leaves Ly of M. Let D’ be the open ball in R” centered at the
origin, of radius 1/2. The canonical injection D’ —— D gives rise
to an injection Lx;D’ - Lx; D. Let H be the family of those open
sets in B of the form 9@ (Lx; D) for any (V, G, o, D) €a. Given pe L

we shall denote by s, the mapping D - Lx; D given by s, (%) = (m)
It is easy to prove that for any U € H of the form ¢ @ (Lx; D’) and

6 — Collectanea Mathematica



82 Joan Girbau and Marcel Nicolau

any p e L the collection {D’, G, p®Ps;} is a lLu.s. corresponding to
U. Let A be the family of such l.u.s’s. To see that 4 defines a V-mani-
fold structure on B we only have to prove the following

Proposition 4.1. Let U, U e H. Let (D', G,o®Ps,} and (D', G,
@ W¥sy} be two Lu.s’s of A corvesponding to U and U’ respectively. If
Uc U, there exists a diffeomorphism A from D' onto an open set in
D’ such that p@s, = @ ¥'sy A.

PROOF. Take the mappings Lz D'-2>¢~1(U) c o=} (U") X2 L D’
that preserve leaves. We have then the following mappings induced
in its respective quotients D' |G i> UcU ﬂ D'[G’, where @ and
¥ -1 denote the mappings induced by @ and Y1 respectively. Let
B be P10 @ from D’ |G to D'|G’. 1t is clear that § is injective and
open. Denote by = and =’ the canonical projections D’ — D’[/G and

D" — D’|G" respectively. To prove the proposition we need the fo-
llowing

Lemma. Let A be a cownected open set in D'. Suppose that we have
two mappings A: A - D', u: A — D' such that each of them is a dif-
Sfeomorphism from A onto an open set in D' and that n' 0 A =8 o =,
w' o u =P oa Then, there is a unique g € G' such that g'A(x) = u(x)
for any x € A.

ProOOF oF LEMMA. Since f is open and n and z’ are both conti-
nuous and open then, 4 and u must be open. Let us prove the uni-
queness of g'. If there were g’ and g’, such that g'; A(x) = u(x) and
g2 A(x) = p(x), we would have g’y A(x) = g5 A(#) for any x € A. Choose
%o such that the isotropy group G';,, is the identity. (It is possible
since A(4) is open). We have g’y g',71 € G';,, hence g’y = g5. Let
us prove the existence. We know that D’/G’ has a natural V-mani-
fold structure (analogous to that in example 1.1). Given x € 4, let
U’)» be a small open ball centered at A(x), contained in A(4), such
that {U';,), G';ny, 7'} is a Lus. Fix xe 4. p o A1 gives rise to a
diffeomorphism from U’;(,, onto a neighborhood of u(x). Take U,
sufficiently small such that -1 (U’;(,)) e U’,,,. Sincen’ 0 A=pon =
=a'opthenn’ opo A1 =a"on U’;,. Hence y o 1~ 1is an injection
U1 G'agy WL = Uy, G'uyy» @'} Let ¢ be the canonical injection
Uiy Gupwy» @'y = (D', G', 2"y Then 7 o u o A~1 will be an injection
Uz Gy, 'y = {D', G, 7'y, Let j be the canonical injection
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U, G @} = D', G, @'y, We know that there is a unique
o' €G’ such that 20 p o A71 = ¢’ 0 7. In other words, uA=1(y) = o' (¥)
for any y e U’;(,. That is, u(z) = o’A(2) for any ze 471 (U";(,)). We can
summarize this fact as follows. Given x € 4 there is a neighborhodd
U, of x contained in 4 and a unique ¢’ € G’ such that u(2) = o’A(2)
VzeU,.

Fix %€ A and choose U,, and g’ € G’ such that 4y =g" o 4 on
U,,- We want to see that y =g’ 0o 1 on 4. Let C be the subset of
A consisting of those x such that there is an open neighborhood of
x such that 4 = g’A on this neighborhood. C is obviously open. Let

us prove that it is closed in 4. Let x € 4 n C. Let U, be a neighborhood
of x as above such that there is a unique o' € G’ such that y = ¢’ o
Aon U,. Let y e U,nC. There is a small neighborhood of y (that
we can suppose contained in U,) such that 4 = g’ o A on this neigh-
borhood. Let z be a point of this neighborhood such that G';;, = I.
We shall have ¢A(z) = g'A(z). Hence ¢’ = g’. Hence u =g’ o 1 on
U,. Hence x € C. Since C is closed, open, and not empty, then C = 4.

END OF PROOF OF PROPOSITION. We want to define 1:D" — D’
such that A is a diffeomorphism from D’ onto an open set of D’ and
that ¢®s, = ¢ ¥s, A. We know that U = ¢®@(Lx; D')c U’. Let D"
be an open ball in R* centered at the origin, of radius 7, (1/2) <7 < 1,
such that ¢®@(Lx; D) c U’. We shall have @s,(D")c @(Lx;D") =
=@ lo@(LxgD")c ¢~ (U’). We shall have then @os,: D" —
- ¢@~1(U’). Take the composition ¥~1®s,: D" - Lx; D'. Let B
be the family of local charts V' of L such that Vg' nV =¢ if g’ £ 1,
g €G’. Let C be the family of those open sets in Lxy D’ of the form
Vxg D' with V e€B. For any xye D" take a mneighborhood W of
¥~1 s, %y such that W e C and take a small open ball 4, centered
at x, contained in D", such that ¥~1®s,(4)c W. The family of

all these balls {4,}.¢5 constitutes an open cover of D’. Since D’ is
compact, we can choose a finite subcover. Denote by A4;... 4, the
balls of this subcover. One can rearrange A, ... A, in another way
such that B; = |J 4, is connected for any ¢ =1...7 and that the
i=1

intersection A; n B;_; is connected for any ¢ = 2...7. At the end
of the proof we shall justify this fact. Accept this possibility and
continue the proof. For any A4; denote by W, the W e C such that
V-10s,(4;)cW,. W, is of the form V; xs D' with V, € B. For any
g €G’ let f;p be the mapping from W, to D’ defined by
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Vixg D' —> D'

%) —>g %

fig is well defined. Let us define A on 0 4;. Let us begin by defining

ji=1
Aon A;. Fix any g’ € G’ and define 1 on 4, by A = f1, P~ 1Ps,+ A
is then a diffeomorphism from A; to an open set in D’ and one has

r
#' 0 A= f om Let us extend A to |J 4; by recurrence. Suppose that
i=1

i—1

A is already extended to B;_; = |J 4, in such a way that 1 is a dif-
i=1

feomorphism from B;_; to an open set in D’ and that z' 0 A = o x.

Let us extend A to B;. Choose any ¢’ G’ and take the mappingv: 4;— D’

defined by v = f;,, Y"1 ®s,. v is then a diffeomorphism from 4; to

an open set in D’ and one has zn’ 0 v = 8 o &. Take now 4| (B;_1 n 4,)

and »|(B;,_1 n4;). Since B;_; n 4, is connected, there is (by lemma)

a unique ¢’ € G’ such that o'v(x) = A(x) for any x € B;_; n4;. De-

fine 4 on 4; to be equal to ¢’ o ». In this way we define A on |J 4, and

i=1
hence on D'. Condition @' 0 A = o n imply ¢Ps, = ¢ ¥sy A. In
fact, by virtue of the commutativity of the diagram

A

’ ’ SP' b4
D~ D s La D —E5 g1 (U

A |

7
pi6 Lot o £

onehaspW¥s, A = f’ﬂn. But since g = P-1 @ one has p¥sy A= dom.
On the other hand, by virtue of the commutativity of the diagram

S (1}
D2y Lag D' ——s g1 (U)

n\ l s l‘P
DG — U
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one has @ o 7 = @ Ds,. Hence, ¢ ¥s, A = ¢ Ps,. It remains to justi-
fy the possibility of rearranging A;... A, in such a way that each
B; is connected and each A; n B;_; is connected. Suppose, by recu-
rrence, that we have already chosen 4, ... 4; ; with this property,
and let us pick 4;. It is easy to see that given & > 0 there is a neigh-
borhood B, of B;_; such that any ball A centered at x € B,, of ra-
dius > ¢, is such that A n B;_; is connected and A u B;_; is con-
nected. Let 3 ¢ be the Lebesgue number of the cover 4, ... 4, before
rearranging. Take any xe B, — B,_;. Take the ball centered at
% of radius 2 &. This ball will be contained in some 4;. Choose such
a j. We have j¢{1...7 — 1} since x ¢ B; ;. Take A; as a new
A;. Obviously, all the required properties will be fulfilled.

AN IMPORTANT CLASS OF FOLIATE VECTOR BUNDLES (ALLOWABLE
VECTOR BUNDLES)

Let M be a manifold of dimension # + m endowed with a C’
foliation F (» > 1) of codimension #. Fach point has a neighbor-
hood U and a coordinate system (x1...x" y1...9™) such that the
leaves are given in U by %! = constant, ..., 4* = constant. We sup-
pose, for U sufficiently small, that U is homeomorphic to a product
U, X U, where U, is a cubical neighborhood in R* and U, a cubical
neighborhood in R™. A coordinate neighborhood (U, x1 ... x*, y1 ... y™)
satisfying all these conditions will be called flat. Let E -~ M be a
vector bundle on M. We shall say that E is foliate if it is possible
to find a cover U = {W} of M, by flat local charts, and trivializations
of E on each W, such that the transition functions of E on each
WnaW' (W, W’ eU) only depend on the coordinates x1...x". The
transversal bundle is such.

When the foliation F is compact, Hausdorff, we are going to
introduce a very important class of foliate vector bundles. The vector
bundles in this class will be called allowable. Let us begin by an exam-
ple.

Example 4.2. Let Lx;D be the foliate manifold of example 4.1.
Let T(D) be the tangent bundle of D. The action of G on D gives
rise to a natural action of G on T (D). Define an action of G on Lx T (D)
by g(p, ) = (pg™1, gx). Denote by Lx; T (D) the quotient of Lx T (D)
by this action. Take the canonical projection Lx;T (D) - LxgD.
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It is easy to see (using the fact that the action of G on L is free) that
Lx;T (D) - Lxg D is a vector bundle of class C" on Lx; D (We shall
see this fact later, in general). This vector bundle is precisely the
transversal bundle of the foliation in Lx;D introduced in example
4.1. Remark that T(D) is the trivial bundle Dx R*. The action of
G on T(D) verifies the following property: If X, € T,(D), one has
g(X,) € T, (D) for any g € G. If we think T (D) as the product Dx R”
then X, will be a couple (x, v). g(X,) will be a couple (g(x), w). Given
x €D and g eG, the mapping v > w is an element of GL (»n, R) de-
pending on x and g. Denote by 7(g) (») this element. The action of
G on T (D) will be of the form g(x, v) = (g(x), n(g) (x)v). Take the
action of G on Lx Dx R" defined by g(p, x, v) = (pg~1, gx, n(g) (x)v).
Denote by (Lx Dx R*) /G the quotient space of Lx Dx R" by this ac-
tion. It is clear that we can think the transversal bundle Lx; T (D)
as (LxDx R"/G.

Generalization of example 4.2. Let Lx; D be the foliate manifold of
example 4.1. Denote by C*~1(D, G L (k, R)) the space of C*~1 mappings
from D to GL(k, R). Suppose that (as in example 4.2) we have a
mapping 5 : G - C*~1(D, GL(k, R)) such that for any x € D and for
any o, 7 € G one has 7 (c7) (¥) = n(0) (vx) o n(z) (x). Take the action
of G on Lx Dx R* defined by g(p, %, v) = (pg~1, g%, n(g) (¥)v). Denote
by (LxDx R¥)[G the quotient by this action. If (p, x,v) e Lx Dx R¥,

we denote by (p, %, v) its class in (Lx Dx R¥)/G. The projection p of

(LxDx R¥/G to Lx,D defined by (p, x, v) — (p, x) is well defined.
We are going to see that p: (Lx Dx R*)/G — Lx; D is a vector bundle
with fibre R*. In fact, given # € Lx; D, let (p, x) be a representative
of u. Take a local chart U in L such that Ugn U = ¢ for any g # I,
g € G. (It is possible since the action of G on L is free). Let V be the

subset of Lx;D consisting of those classes (', x) with ' € U and
x € D. Define a trivialization of p=1(V), f:p~1(V) - Vx R* in the
following way. Let o« € p~1 (V). There is a unique (p’, x) € Lx D such
that p(«) = (7', x). Then o = (p', %, v) with v uniquely determined.
Define f(¢', %, v) to be ((¢, %), v).

Definition 4.1. Given a mapping : G — C*~1(D, G L (k, R)) such that
for any x € D and for any o, v € G one has 5(c7) (¥) = (o) (r*) o
7(7) (x), take the action of G on Lx Dx R* defined above and take
the vector bundle p: (LxDx R*)/G - Lx; D. Such a vector bundle
on Lx; D will be called allowable.
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Defimition 4.2. Suppose that M is endowed with a compact,
Hausdorff foliation of class 7, say F. Let E — M be a vector bundle.
Such a vector bundle will be called allowable if given any leaf L,
there is a subgroup G of O(n), a free action of G on L, a neighborhood
U of Ly, and a diffeomorphism @: Lx; D — U verifying the proper-
ties of theorem 4.1 such that the pull-back of E|U by @ is an allowable
vector bundle on Lx;D.

We have the following

Proposition 4.2. An allowable vector bundle is foliate.

SKETCH OFP ROOF. Take an allowable vector bundle p:(Lx DxR¥) |G —
— Lx;D. Take two connected charts V; and V, in L such that
gV.nV,=¢ for any geG, g #1,7=1,2. We know that V,;xD
is a local chart for V,x;D and that the induced vector bundle
over V,x; D is trivial. Suppose (Vix;D) n (Vy%; D) # ¢. Then,
there is a unique g € G such that V,g-1 0V, # ¢. The trivializa-
tion taken on each V;x;D is given by (p:,‘;,— V) — ((pra), v). So,
the transition function on (V;x; D) n (V,%;D) is given by n(g) (¢)
(depending only on «xl...x").

Remark. The trivial bundle and the transversal bundle are both
allowable. To give examples of allowable vector bundles the follo-
wing considerations are useful. ILet T be a differentiable functor
in the category of finite dimensional vector spaces. It is well known
~ that T can be extended to a functor T, in the category of vector
bundles on M. Suppose for example that T is a functor in 7 + s
variables, contravariant in the first ones and covariant in the other
variables. Let T,, be its extension. Since the definition of allowable
vector bundle is obviously functorial, if E;... E, F;... F, are allo-
wable, then T, (E,... E,, Fy... F,) is such. Hence. if E and F are
allowable, then E® F. EQ F, E*, Hom (E, F), A*E, ... etc, are
allowable.

Definition 4.3. Let E — M be a foliate vector bundle. Let U = {W}
be a cover of M by flat local charts, and trivializations of E|W for
each W e U given by bases of sections s; ... s, of E|W such that the
transition functions only depend on x1...x". We shall say that a
cross section y of E is base-like if one has an expression y = 3 ¢4 s4
on each W e U, where the functions y4 only depend on x!...x".
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From now on we shall denote by I',(E) the space of base-like cross
sections of E.

Allowable vector bundles are important because of the following

Theoren 4.3. Let M be a manifold with a compact Hausdorff C
folzation F(r = 1). Let B be the quotient space M |F with the structure
of V-manifold given in theovem 4.2. Let E — M be an allowable vector
bundle with fibve R*. Then there is a V-vector bundle on B with fibre
R* that we shall denote by B(E) -~ B such that if we call I'(B(E) the
space of differentiable cvoss sections of B(E) one has I'(B(E)) ~ I, (E).

SkETCH OF PrOOF. Let M -%-> B be the canonical projection. Each
leaf Ly has an open neighborhood U with the properties required
in Definition 4.2. Let G be the family of those open sets in B of the
form ¢ (U), where U is a neighborhood of a leaf with the properties
required in Definition 4.2. Let A be the defining family (of the V-ma-
nifold structure) introduced in theorem 4.2. Let 4’ be the subfamily
of those {D', G, ®Ps,} € 4 such that ¢ @s,(D')eG. A" is also a
defining family. Let {D’, G, ®s,} and {D’,G', ¢ ¥sy} € A" such
that ¢ @s,(D')c ¢ ¥s, (D'). We have

Lx;D' 2> Uc U <= Lag D' .

Let (Lx D’ x R¥) /G be the pull-back of E|U by @ and (Lx D' x R*)|G’
the pull-back of E|U’ by ¥. We know that the restriction of (Lx D" x
R} |G to s,(D') is trivial. The pull-back of (LxD’x R¥)/G by
S, D" > L D' will be trivial. Analogously, the pull-back of (L¥D" x
RY/G" by s, :D" - Lxy D’ will be trivial. Let A4 be an injection
(D', G ¢ Ds,} ~{D',G',p Psy}. We have the following commuta-
tive diagram

Y-104¢

Ly, D) ———> Lag D'

T l T

D' — D

Let F and F’ be the pull-backs of (Lx D’ x R¥) /G and (Lx D' x R*) /G’
by s, and s, respectively. The pull-back of F’ by 1is F. Hence we
have a mapping A: F’ — F such that
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7
FF—>F
|y
D—>D

is commutative. But F’ and F are trivial and we have a canonical
trivialization of each one of them since (LxD’'x R*)/G over s,(D’)
and (Lx D’ x R*) /G over s,,(D’) are canonically trivial. The mapping
2 will have the form

A:D' xR~ D' x R*
(%, v) > (A(x), g1(x)v)

where g, is a C* map from D’ to GL(k, R). Suppose now that
one has (D', G, ¢ Ds,}, (D', G', ¢ ¥s,} and (D', G, posy} € A’
with @ @s,(D') € ¢ Psy(D') € ¢ esr(D’). Let A be an injection
D', G', o s} — {D', G, ¢ Ps,} and let u be an injection
D',G,p¥sy} > {D',G", pps,}. As above we shall have mappings
2:D'x R* > D' x R* and p: D' x R* - D’ ¥ R*. We shall have
i A(x, v) = n(A(x), & (¥)v) = (ui(x), 8 (A(x)) o g (x)v). Hence,
(*) Buor(x) = £u(A(x) 0 & (%) .

We have then a system of functions {g;(¥)} for any injection 1 sa-
tisfying (*). By virtue of theorem 1 on page 472 of [11] these g, de-
termine a V-vector bundle with fibre R* on B that we call B(E) - B.
Let y be an element of I',(E). Let a = {D’, G, p Ps,} be an element
of A’. We have @: Lx; D' — U. The restriction y, of y to U gives,
by @, a base-like section of (LxD’x RF)/G. Take the p € L that
appears in s,. Take V a small neighborhood in L such that there
is a canonical trivialization of (LxD’x R*)/G over Vx;D’. This
base-like section restricted to Vx; D' will give a function D’ - R?
and so, a section of the trivial bundle D’ x R* over D’. Call y, this
section. The system {y,} for any a € 4’ is a differentiable cross sec-
tion of B(E) in the sense of definition 1.9. One can see that the corres-
pondence y — {y,} from I',(E) to I'(B(E)) is the isomorphism looked
for,
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Remark. We can repeat all this section assuming that E is a vec-
tor bundle with fibre C*. We shall then get as a bundle B(E) a V-vector
bundle with fibre C%.

COMPLEX ANALYTIC FOLIATIONS WITH BUNDLE-LIKE METRICS.
COHOMOLOGY OF BASE-LIKE FORMS.

Let M be a compact complex manifold of complex dimension
#n + m, endowed with a complex analytic foliation of complex codi-
mension # whose leaves are closed in M. Call F this foliation. We
suppose that F is defined by an adapted atlas {(U,, 2,4 2,*)} (index
convention: 4, b, ... = 1,...%,u, v,... = n + 1,... n + m) where
2* = constant define the leaves. We suppose that M is endowed
with a complete bundle-like Hermitian metric g. By a theorem of
R. Hermann [6], the quotient space B = M |F is Hausdorff, so we
can apply to this situation the results of previous sections.

We shall denote by # the Hodge star operator corresponding to
g and by ¥ the operator ¥ ¢ = * p. We shall have a Hermitian scalar
product defined on the space of differential forms by (g, ¥) =

=J @ A ¥ ¥ and the operator § = — ¥ d% such that (dg, ¥) =
M

= (@, 6¥). We shall have decompositions d = d’ + d", § = ¢ + §”
with respect to complex types.

Let E - M be a foliate complex analytic vector bundle with
7-dimensional fibre (the transition functions only depend on 2?), en-
dowed with a foliate Hermitian metric %4 (given locally by a Her-
mitian matrix (4,p) depending only on 2* and z%) (index convention:
A,B...=1...7). We shall use the associate Hermitian connexion
locally given by w,8 = (d' hyc) h°B. We can define a Hermitian pro-

duct on E-valued differential forms by (¢, ¥) =J hap @t A% PP
M

(If ¢ is an E-valued differential form then ¢ has the local ex-
pression ¢ = ¢* @ s, where ¢* are ordinary forms and {s,} is the
basis of sections given by the taken trivialization).

We can define the operators 4"z and ¢"’; on E-valued forms by
the following local expressions:

@5t =" g
(8590 = 8" 9% —Fc(O) T ",
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where ¢(6) means the exterior product by the matrix 6 = (6,%), 0% =
= hBC(d" hcy4).
If ¢ and ¥ are E-valued forms, one has

<d”E¢, T> == <(P, 6”E ':[l> .

Let 4" be the Laplace operator (acting on E-valued forms) de-
fined by A"y = d’’5 §"'p 6’ dz. We shall denote by D?:4(E) the space
of C* E-valued base-like (p, g)-forms, that is, the space of E-valued
forms which have a local expression:

(4.1) o =i'—1—<p"a,..upz,.,s dzv A .. A dzo A\ dab L dzbe R s,
ptoq ‘

where the coefficients ¢Aa1..a,51..b} only depend on z1...2% zl.. 2"
Let H?4(M, E) be the space of those ¢ € D*?(E) such that 4", ¢ = 0.
Observe that the operator d''y maps D??(E) into D*?+ 1(E).

Theorem 4.4. 6" o (DP9+ 1(E)) € D?4(E) and if E is an allowable com-
plex analytic vector bundle (see def. 4.1 and 4.2) one has the following
orthogonal decomposition with respect to( |, :

(4.2) D"4(E) = H"*(M, E) © d"g(D"*~1(E)) © 8"g(D** 1 (E)).
Moreover, the space H?4(M, E) has finite dimension.

Proor. Let D?? be the space of ordinary base-like (p, g)-forms.
At each point xy € M we can define algebraically a Hodge star opera-
tor ¥, : D, »? - D, *~#"~? (using only the transversal part (g,5) of the
metric g) in the following way. We can always suppose that the coor-
dinates 21.. 2" have been taken such that the matrix (gz) at % is

the identity. (This can be got by a linear change 2* = o,* 2”, where
ay® are constants). Let 4, = {a; .. a,} bea set of indices a; < .. < 4,
0 < a; < #n. We denote by A’, = {l...n} — A, ordered by <. We
can define ¥, at xy by

%, (fdzts A dzB) = (— 1109 (A4, A',) e(B,, B',) fdz*» A d2P7,

~

where f is any complex number. Define §, on DM by §, = — ¥,d %,.
We need the following

Lemma. If ¢ € D?? then 6,9 = .
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ProOOF OF LEMMA. It suffices to prove this relation at a point
%o. Take an adapted coordinate system (U, 2%, z#) with x5 € U such
that (g;) and (g.;) are the identity at xy. If ¢ has the local expression
(4.1) we shall have

Fd¥ o _ L.t 07 94,5, % (A2 \ ¥ (dz%» N\ dzBe)) +
P g
1 1 ~ 3 ~ B,
tor T Yo n T @EAT (@t \ d2R))
Poog!

We shall have an analogous expression for %, %,. In order to prove
the lemma it suffices to prove that one has at x;:

F(@r \F (@detr N\ dzB)) =F, (@2 \ Fy(dzts \ d2P0)),

and the analogous expression for dz¢. But these algebraic relations
are obvious. This concludes the proof of lemma.

Define the operator (§'z), on D??(E) by (6"g), = 6"’y — ¥ e(0) ¥5.
Since the metric 4 is foliate (6”g), maps D#?(E) into D»?~1(E). One
can also prove (in the same way that in lemma) that (6”;), = 6"¢
on D#?(E). On D??(E) we shall have 4"z = d""5(6"g)s + (6"5)s 3”5 .
Hence 4"z maps D??(E) into itself. The spaces d''y (D*?-1(E)),
8" (DP9 +1(E)) and H??(M, E) are mutually orthogonal in D??(E)
with respect to the Hermitian product { , ). The spaces 4" g (D??(E))
and H??(M, E) are also orthogonal. If we prove that if E is allowa-
ble one has

(4.3) DP4(E) = H"*(M, E) ® 4" (D**(E))

then A" (D??(E)) will be the orthogonal complement of H??(M, E).
Hence, d";(D??~1(E))® 85 (DP?+ 1 (E)) (orthogonal to H??(M, E))
will be contained in A"y (D??(E)). But (by definition of A4'y)
A" g (DPU(E)) c d"'g(DP?~L(E)) D 6"z (DP9 + 1(E)). Then, we shall have
(4.2). Therefore it suffices to prove (4.3) and that H#?(M, E) has
finite dimension in order to prove the theorem.

Let us denote by 7, the base-like volume element. 7, is the ele-
ment of D*” defined by

=V det(gz) dA A ...d" NdZL A ... d2".
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If 9, ¥ € D*(E) we denote by (p, ¥), the base-like function defined
locally by

hap @ N ¥y VB = (9, )y

Let ¢ € D#?—1(E) and ¥ e D?4(E). One can easily prove the following
local expression

Alhap@? N ¥, P5) = d" (hyp o' N ¥y P5) = hypd” " \N¥, V5 —
—hap @' A% (076, )2 = (@50, Vo — (@, (8"E)s P)s 7 -

In other words, we have

@c@ ¥ = (p, (0"e)y ¥)p m, + differential of a base-like
(2n — 1)-form.

Therefore, if ¢, ¥ € D*?(E) we shall have

A"c @, V) mp = (9, A4"'c W), n, + differential of a base-like
(2n — 1)-form. '

Let us denote by Q the transversal (orthogonal) bundle of com-
plex type (1, 0) corresponding to the foliation F. Q is an allowable
complex analytic vector bundle. Let us denote by F = A PQ* &

® A0*®E. F is allowable. We shall have I',(F) = D»4(E). On
each fibre F, of F we shall have the Hermitian product induced by
(,)s- Hence, we shall have a Hermitian product in the vector bundle
F — M also called (,),. This Hermitian product is foliate.

Consider now the quotient space B = M [F as a real 2n-dimen-
sional V-manifold. Let B(F) — B be the V-vector bundle (with com-
plex fibres) described in the preceding section. Given s e I'(B(F)),
there exists y e I, (F) such that {y,} =s, a € 4’ (we use the notation
of proof of th. 4.3). We define 4"z s by setting (4" s), = (4" ¥).-
We have then an elliptic operator A", : I'(B(F)) —» I'(B(F)).
The foliate Hermitian product (, ), of F induces a Hermitian pro-
duct in the V-vector bundle B(F) — B that we shall also denote
by (, )s. The bundle-like metric on M induces a Riemannian metric
on B that we shall also denote by g. The V-manifold B is orientable.
In fact, it suffices to observe that if (U, 2z 2*), (U, 2" z") are
two flat local charts of F in M, one has
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0(z,1... 2" 2.

— >0
0(zp ... 28" zpl.

2,")
25")

The volume element on B corresponding to g is precisely the 2#-form
defined by {(7,)7} that we shall also denote by 7,.
Define a Hermitian product [, ] on I'(B) (F) by

g, ] = J @ ) -
B

If s = {s7} is an r-form over B, we define its exterior differential
ds to be the (r + 1)-form on B ds = {dsp}y. If ¢, ¥ e I'(B(F)) we
shall have

A"z V)yny = (¢ A" V), np + differential of a (2» — 1)-form on B.

By integrating over B we shall have
A" V]=[p 4" ¥] —f—J differential of a (2» — 1)-form on B.
B

But this integral vanishes since B is compact. In fact, if fisa (2n — 1)-
form over B, 8 = {f7}, we take a partition of unity subordinate to

a finite cover {U;} of B with {(7,~, G;, ¢} € A and we shall have

1
n(G;)

We have then proven that A”'p is a self adjoint elliptic operator
acting on I'(B(F)). By virtue of theorem 3.6, I'(B(F)) = ker A" D
@ Im A"; and ker A"y has finite dimension. From the isomorphism
I'(B(F)) = I,(F) we obtain (4.3) and that H?9(M, E) has finite
dimension. This ends the proof.

4= z0p =2 o [ dtipm =0,

Corollary. Let H(D?:-(E), d"y) be the q cohomology space of the
complex

... —> DP(E) L5 DPIYU(E) —> ...

We have H?(D?-(E), d"'y) = H?1(M, E), and these spaces have finite
dimension. (We are assuming that E is allowable).
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Added in proof

In theorem 3.5 we must also assume that the family H of open

sets in B corresponding to lu.s’s is a basis of open sets in B. In
fact, in order to prove that Q = ¥ f;0;g; is a p.d.o., given p € B
we must take a neighborhood U of p, U € H, contained in U, if
i€ l, and such that Unsupg, = ¢ for any i¢I,. Such an U
satisfies condition (C). (Note that it does not suffice to take U e H
contained in U; for any 7€ I, to assure that f;Q,(g; f) =0 if 1 ¢ 1,).

Because of this we also must assume this condition on the base

space B of the V-vector bundle E — B in the last two sections of
chapter 3. Observe that the examples considered in chapter 4 ful-
fil this supplementary assumption.






